Chapter 2

Propositional Logic

2.1 Syntax

Consider a finite, non-empty signature X of propositional variables, the “alpha-
bet” of propositional logic. In addition to the alphabet “propositional connec-
tives” are further building blocks composing the sentences (formulas) of the
language and auxiliary symbols such as parentheses enable disambiguation.

Definition 2.1.1 (Propositional Formula). The set PROP(X) of propositional
formulas over a signature ¥ is inductively defined by:

PROP(X) Comment

L connective | denotes “false”
T connective T denotes “true”
P for any propositional variable P € ¥
(—9) connective = denotes “negation”
(¢ ANp)  connective A denotes “conjunction”
(¢ V1)  connective V denotes “disjunction”

(¢ — 1)  connective — denotes “implication”
(¢ <> 1)  connective <> denotes “equivalence”

where ¢,9 € PROP(X).

The above definition is an abbreviation for setting PROP(X) to be the
language of a context free grammar PROP(X) = L((N,T, P, S)) (see Defini-
tion 1.3.9) where N = {¢, v}, T =S U{(,)}U{L, T,~,A,V,—,«} with rules
S=L|Tl@AY)|(6VY)| (4 ) and S = P for every P € 3.

As a notational convention we assume that — binds strongest and we omit
outermost parenthesis. So =P V @ is actually a shorthand for ((=P) V @). For
all other logical connectives we will explicitly put parenthesis when needed.
From the semantics we will see that A and V are associative and commutative.
Therefore instead of (P A Q) A R) we simply write P A Q A R.
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Definition 2.1.2 (Atom, Literal). A propositional formula P is called an atom.
It is also called a (positive) literal and its negation —P is called a (negative)
literal. If L is a literal, then —=L = P if L = —=P and -L = —P if L = P. Literals
are denoted by letters L, K. The literals P and —P are called complementary.

Automated reasoning is very much formula manipulation. In order to pre-
cisely represent the manipulation of a formula, we introduce positions.

Definition 2.1.3 (Position). A position is a word over N. The set of positions
of a formula ¢ is inductively defined by

pos(¢) {e}ifpe{T,L}orpex
pos(=p) = {e}U{lp|p € pos(¢)}
pos(pop) = {e}U{lp|p € pos(p)}U{2p|p € pos(v)}

where o € {A,V, =, <}

The prefix order < on positions is defined by p < ¢ if there is some p’ such
that pp’ = ¢. Note that the prefix order is partial, e.g., the positions 12 and 21
are not comparable, they are “parallel”, see below. By < we denote the strict
part of <, i.e.,, p < ¢ if p < ¢ but not ¢ < p. By || we denote incomparable
positions, i.e., p || ¢ if neither p < ¢, nor ¢ < p. Then we say that p is above ¢ if
p < q, pis strictly above q if p < q, and p and ¢ are parallel if p || q.

The size of a formula ¢ is given by the cardinality of pos(¢): |¢| := | pos(¢)|.
The subformula of ¢ at position p € pos(¢) is recursively defined by ¢|. := ¢,
—|¢|1p = ¢|p7 and (¢1 o ¢2)|ip = ¢z|p where ¢ € {1,2}, o € {/\,\/,—),H}.
Finally, the replacement of a subformula at position p € pos(¢) by a formula )
is recursively defined by ¢[¢]c := ¥ and (¢1 0 ¢=2)[]ip := ¢:[t0]p, where i € {1,2},
o€ {AV,—=, e}

Example 2.1.4. The set of positions for the formula ¢ = (A A B) — (AV B)
is pos(¢) = {¢,1,11,12,2,21,22}. The subformula at position 22 is B, ¢|22 = B
and replacing this formula by A <> B results in ¢g[A <> Blos = (AAB) —
(AV (A & B)).

A further prerequisite for efficient formula manipulation is notion of the
polarity of a subformula of ¢ at position p. The polarity considers the number
of “negations” starting from ¢ at € down to p. It is 1 for an even number along the
path, —1 for an odd number and 0 if there is at least one equivalence connective
along the path.

Definition 2.1.5 (Polarity). The polarity of a subformula of ¢ at position p is
inductively defined by

pol(¢,e) = 1
pol(=¢,1p) := —pol(¢,p)
pol(¢1 0 ¢2,ip) = pol(¢;,p) if o € {A,V}
pol(¢1 — ¢2,1p) = —pol(¢1,p)
pol(¢1 — ¢2,2p) = pol(¢2,p)
pol(¢1 < ¢a,ip) = 0



