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De�nition 2.1.2 (Atom, Literal). A propositional formula P is alled an atom.

It is also alled a (positive) literal and its negation :P is alled a (negative)

literal. If L is a literal, then :L = P if L = :P and :L = :P if L = P . Literals

are denoted by letters L;K. The literals P and :P are alled omplementary.

Automated reasoning is very muh formula manipulation. In order to pre-

isely represent the manipulation of a formula, we introdue positions.

De�nition 2.1.3 (Position). A position is a word over N. The set of positions

of a formula � is indutively de�ned by

pos(�) := f�g if � 2 f>;?g or � 2 �

pos(:�) := f�g [ f1p j p 2 pos(�)g

pos(� Æ  ) := f�g [ f1p j p 2 pos(�)g [ f2p j p 2 pos( )g

where Æ 2 f^;_;!;$g.

The pre�x order � on positions is de�ned by p � q if there is some p

0

suh

that pp

0

= q. Note that the pre�x order is partial, e.g., the positions 12 and 21

are not omparable, they are \parallel", see below. By < we denote the strit

part of �, i.e., p < q if p � q but not q � p. By k we denote inomparable

positions, i.e., p k q if neither p � q, nor q � p. Then we say that p is above q if

p � q, p is stritly above q if p < q, and p and q are parallel if p k q.

The size of a formula � is given by the ardinality of pos(�): j�j := j pos(�)j.

The subformula of � at position p 2 pos(�) is reursively de�ned by �j

�

:= �,

:�j

1p

:= �j

p

, and (�

1

Æ �

2

)j

ip

:= �

i

j

p

where i 2 f1; 2g, Æ 2 f^;_;!;$g.

Finally, the replaement of a subformula at position p 2 pos(�) by a formula

 is reursively de�ned by �[ ℄

�

:=  and (�

1

Æ �

2

)[ ℄

1p

:= (�

1

[ ℄

p

Æ �

2

),

(�

1

Æ �

2

)[ ℄

2p

:= (�

1

Æ �

2

[ ℄

p

), where Æ 2 f^;_;!;$g.

Example 2.1.4. The set of positions for the formula � = (P ^ Q) ! (P _Q)

is pos(�) = f�; 1; 11; 12; 2; 21; 22g. The subformula at position 22 is Q, �j

22

= Q

and replaing this formula by P $ Q results in �[P $ Q℄

22

= (P ^ Q) !

(P _ (P $ Q)).

A further prerequisite for eÆient formula manipulation is notion of the

polarity of a subformula of � at position p. The polarity onsiders the number

of \negations" starting from � at � down to p. It is 1 for an even number along the

path, �1 for an odd number and 0 if there is at least one equivalene onnetive

along the path.

De�nition 2.1.5 (Polarity). The polarity of a subformula of � at position

p 2 pos(�) is indutively de�ned by

pol(�; �) := 1

pol(:�; 1p) := � pol(�; p)

pol(�

1

Æ �

2

; ip) := pol(�

i

; p) if Æ 2 f^;_g

pol(�

1

! �

2

; 1p) := � pol(�

1

; p)

pol(�

1

! �

2

; 2p) := pol(�

2

; p)

pol(�

1

$ �

2

; ip) := 0
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Example 2.1.6. We reuse the formula � = (A^B) ! (A_B) of Example 2.1.4.

Then pol(�; 1) = pol(�; 11) = �1 and pol(�; 2) = pol(�; 22) = 1. For the

formula �

0

= (A ^ B)$ (A _ B) we get pol(�

0

; �) = 1 and pol(�

0

; p) = 0 for all

other p 2 pos(�

0

), p 6= �.

2.2 Semantis

In lassial logi there are two truth values \true" and \false" whih we shall

denote, respetively, by 1 and 0. There are many-valued logis [21℄ having more

than two truth values and in fat, as we will see later on, for the de�nition of

some propositional logi aluli, we will need an impliit third truth value alled

\unde�ned".

De�nition 2.2.1 ((Partial) Valuation). A �-valuation is a map

A : �! f0; 1g:

where f0; 1g is the set of truth values. A partial �-valuation is a map A

0

: �

0

!

f0; 1g where �

0

� �.

De�nition 2.2.2 (Semantis). A �-valuation A is indutively extended from

propositional variables to propositional formulas �;  2 PROP(�) by

A(?) := 0

A(>) := 1

A(:�) := 1�A(�)

A(� ^  ) := min(fA(�);A( )g)

A(� _  ) := max(fA(�);A( )g)

A(�!  ) := max(f(1�A(�));A( )g)

A(�$  ) := if A(�) = A( ) then 1 else 0

If A(�) = 1 for some �-valuation A of a formula � then � is satis�able and

we write A j= �. If A(�) = 1 for all �-valuations A of a formula � then � is

valid and we write j= �. If there is no �-valuations A for a formula � where

A(�) = 1 we say � is unsatis�able. A formula � entails  , written � j=  , if for

all �-valuations A whenever A j= � then A j=  .

Aordingly, a formula � is satis�able, valid, unsatis�able, respetively, with

respet to a partial valuation A

0

with domain �

0

, if for any valuation A with

A(P ) = A

0

(P ) for all P 2 �

0

the formula � is satis�able, valid, unsatis�able,

respetively, with respet to a A.

I all the fat that some formula � is satis�able, unsatis�able, or valid, the

status of �. Note that if � is valid it is also satis�able, but not the other way

round.

Valuations an be niely represented by sets or sequenes of literals that do

not ontain omplementary literals nor dupliates. If A is a (partial) valuation

of domain � then it an be represented by the set fP j P 2 � and A(P ) =

1g [ f:P j P 2 � and A(P ) = 0g. For example, for the valuation A = fP;:Qg
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the truth value of P _ Q is A(P _ Q) = 1, for P _ R it is A(P _ R) = 1, for

:P ^ R it is A(:P ^ R) = 0, and the status of :P _ R annot be established

by A. In partiular, A is a partial valuation for � = fP;Q;Rg.

Example 2.2.3. The formula � _ :� is valid, independently of �. Aording

to De�nition 2.2.2 we need to prove that for all �-valuations A of � we have

A(� _ :�) = 1. So let A be an arbitrary valuation. There are two ases to

onsider. If A(�) = 1 then A(� _ :�) = 1 beause the valuation funtion takes

the maximum if distributed over _. If A(�) = 0 then A(:�) = 1 and again by

the before argument A(� _ :�) = 1. This �nishes the proof that j= � _ :�.

Proposition 2.2.4. � j=  i� j= �!  

Proof. ()) Suppose that � entails  and let A be an arbitrary �-valuation.

We need to show A j= � !  . If A(�) = 1, then A( ) = 1, beause � entails

 , and therefore A j= � !  . For otherwise, if A(�) = 0, then A(� !  ) =

max(f(1�A(�));A( )g) = max(f(1;A( )g) = 1, independently of the value of

A( ). In both ases A j= �!  .

(() By ontraposition. Suppose that � does not entail  . Then there exists a

�-valuation A suh that A j= �, A(�) = 1 but A 6j=  , A( ) = 0. By de�nition,

A(� !  ) = max(f(1 � A(�));A( )g) = max(f(1 � 1); 0g) = 0, hene � !  

does not hold in A.

Proposition 2.2.5. The equivalenes of Figure 2.1 are valid for all formulas

�;  ; �.

From Figure 2.1 we onlude that the propositional language introdued

in De�nition 2.1.1 is redundant in the sense that ertain onnetives an be

expressed by others. For example, the equivalene Eliminate ! expresses im-

pliation by means of disjuntion and negation. So for any propositional for-

mula � there exists an equivalent formula �

0

suh that �

0

does not ontain the

impliation onnetive. In order to prove this proposition we need the below

replaement lemma.

T

Note that the formulas � ^  and  ^ � are equivalent. Nevertheless,

realling the problem state de�nition for Sudokus in Setion 1.1 the

two states (N ; f(2; 3) = 1 ^ f(2; 4) = 4;>) and (N ; f(2; 4) = 4 ^

f(2; 3) = 1;>) are signi�antly di�erent. For example, it an be that the �rst

state an lead to a solution by the rules of the algorithm where the latter

annot, beause the latter impliitly means that the square (2; 4) has already

been heked for all values smaller than 4. This reveals the important point that

arguing by logial equivalene in the ontext of a rule set manipulating formulas

an lead to wrong results.

Lemma 2.2.6 (Formula Replaement). Let � be a propositional formula on-

taining a subformula  at position p, i.e., �j

p

=  . Furthermore, assume

j=  $ �. Then j= �$ �[�℄

p

.
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(I) (� ^ �)$ � Idempoteny ^

(� _ �)$ � Idempoteny _

(II) (� ^  )$ ( ^ �) Commutativity ^

(� _  )$ ( _ �) Commutativity _

(III) (� ^ ( ^ �))$ ((� ^  ) ^ �) Assoiativity ^

(� _ ( _ �))$ ((� _  ) _ �) Assoiativity _

(IV) (� ^ ( _ �))$ (� ^  ) _ (� ^ �) Distributivity ^_

(� _ ( ^ �))$ (� _  ) ^ (� _ �) Distributivity _^

(V) (� ^ (� _  ))$ � Absorption ^_

(� _ (� ^  ))$ � Absorption _^

(VI) :(� _  )$ (:� ^ : ) De Morgan :_

:(� ^  )$ (:� _ : ) De Morgan :^

(VII) (� ^ :�)$ ? Introdution ?

(� _ :�)$ > Introdution >

:> $ ? Propagate :>

:? $ > Propagate :?

(� ^ >)$ � Absorption >^

(� _ ?)$ � Absorption ?_

(�! ?)$ :� Eliminate ! ?

(? ! �)$ > Eliminate ? !

(�! >)$ > Eliminate ! >

(> ! �)$ � Eliminate > !

(�$ ?)$ :� Eliminate ? $

(�$ >)$ � Eliminate > $

(� _ >)$ > Propagate >

(� ^ ?)$ ? Propagate ?

(VIII) (�!  )$ (:� _  ) Eliminate !

(IX) (�$  )$ (�!  ) ^ ( ! �) Eliminate1 $

(�$  )$ (� ^  ) _ (:� ^ : ) Eliminate2 $

Figure 2.1: Valid Propositional Equivalenes

Proof. By indution on jpj and strutural indution on �. For the base step let

p = � and A be an arbitrary valuation.

A(�) = A( ) (by de�nition of replaement)

= A(�) (beause A j=  $ �)

= A(�[�℄

�

) (by de�nition of replaement)

For the indution step the lemma holds for all positions p and has to be

shown for all positions ip. By strutural indution on � I show the ases where

� = :�

1

and � = �

1

! �

2

in detail. All other ases are analogous.

If � = :�

1

then showing the lemma amounts to proving j= :�

1

$ :�

1

[�℄

1p

.
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Let A be an arbitrary valuation.

A(:�

1

) = 1�A(�

1

) (expanding semantis)

= 1�A(�

1

[�℄

p

) (by indution hypothesis)

= A(:�[�℄

1p

) (applying semantis)

If � = �

1

! �

2

then showing the lemma amounts to proving the two ases

j= (�

1

! �

2

) $ (�

1

! �

2

)[�℄

1p

and j= (�

1

! �

2

) $ (�

1

! �

2

)[�℄

2p

. Both

ases are similar so I show only the �rst ase. Let A be an arbitrary valuation.

A(�

1

! �

2

) = max(f(1�A(�

1

));A(�

2

)g) (expanding semantis)

= max(f(1�A(�

1

[�℄

p

));A(�

2

)g) (by indution hypothesis)

= A((�

1

! �

2

)[�℄

1p

) (applying semantis)

C

The equivalenes of Figure 2.1 show that the propositional language

introdued in De�nition 2.1.1 is redundant in the sense that ertain

onnetives an be expressed by others. For example, the equivalene

Eliminate! expresses impliation by means of disjuntion and negation. So for

any propositional formula � there exists an equivalent formula �

0

suh that �

0

does not ontain the impliation onnetive. In order to prove this proposition

the above replaement lemma is key.

2.3 Abstrat Properties of Caluli

A proof proedure an be sound, omplete, strongly omplete, refutationally

omplete or terminating. Terminating means that it terminates on any input

formula. Now depending on whether the alulus investigates validity (unsatis-

�ability) or satis�ability the before notions have a di�erent meaning.

Validity Satis�ability

Sound Whenever the alulus

outputs a proof the

formula is valid.

Whenever the alulus

outputs a model the

formula has a model.

Complete If the formula is valid the

alulus outputs a proof.

If the formula is satis�-

able, the alulus outputs

a model.

Strongly

Complete

For any proof of the for-

mula, there is a sequene

of rule appliations that

generates this proof.

For any model of the for-

mula, there is a sequene

of rule appliations that

generates this model.
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There are some assumptions underlying these informal de�nitions. First, the

alulus atually produes a proof in ase of investigating validity, and in ase of

investigating satis�ability it produes a model. This in fat requires the notion

of a proof and a model. Then soundness means in both ases that the alulus

has no bugs. The results it produes are orret. Completeness means that if

there is a proof (model) for a formula, the alulus will eventually �nd it. Strong

ompleteness requires in addition that any proof (model) an be found by the

alulus. A variant of omplete alulus is a refutationally omplete alulus: a

alulus is refutationally omplete, if for any unsatis�able formula it outputs

a proof of ontradition. Many automated theorem proedures like resolution

(see Setion 2.7), or tableau (see Setion 2.5) are atually only refutationally

omplete.

C

Note that soundness and ompleteness are not losely related to ter-

mination. A sound and omplete (strongly) omplete alulus needs

not to be terminating. For example, while investigating validity of an

invalid formula, a sound and omplete alulus for validity may not terminate.

A sound and terminating proedure needs not to be omplete. It an simply

terminate, \giving up", without produing a proof (model).

2.4 Truth Tables

The �rst alulus I onsider are truth tables. For example, onsider proving va-

lidity of the formula � = (A^B)! A. Aording to De�nition 2.2.2 this is the

ase if atually for all valuations A over � = fA;Bg we have A(�) = 1. The

extension of A to formulas is de�ned indutively over the onnetives, so if the

result of A on the arguments of a onnetive is known, it an be straightfor-

wardly omputed for the overall formula. That's the idea behind truth tables.

We simply make all valuations A on � expliit and then extend it onnetive by

onnetive bottom-up to the overall formula. Stated otherwise, in order to es-

tablish the truth value for a formula � we establish it subformula by subformula

of � aording to �. If p; q 2 pos(�) and p � q then we �rst ompute the truth

value for �j

q

. The truth table for (P ^Q)! P is then depited in Figure 2.2

P Q P ^Q (P ^Q)! P

0 0 0 1

0 1 0 1

1 0 0 1

1 1 1 1

Figure 2.2: Truth Table for (P ^Q)! P

De�nition 2.4.1 (Truth Table). Let � be a propositional formula over variables

P

1

; : : : ; P

n

, p

i

2 pos(�), 1 � i � k and p

k

= �. Then a truth table for � is a

table with n+ k olumns and 2

n

+ 1 rows of the form
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P

1

: : : P

n

�j

p

1

: : : �j

p

k

0 : : : 0 A

1

(�j

p

1

) : : : A

1

(�j

p

k

)

.

.

.

1 : : : 1 A

2

n

(�j

p

1

) : : : A

2

n

(�j

p

k

)

suh that the A

i

are exatly the 2

n

di�erent valuations for P

1

; : : : ; P

n

and either

p

i

k p

i+j

or p

i

� p

i+j

, for all i; j � 0, i+ j � k and whenever �j

p

i

has a proper

subformula  that is not an atom, there is exatly one j < i with �j

p

j

=  .

Now given a truth table for some formula �, � is satis�able, if there is at

least one 1 in the � olumn. It is valid, if there is no 0 in the � olumn. It is

unsatis�able, if there is no 1 in the � olumn. So truth tables are a simple and

\easy" way to establish the status of a formula. They need not to be ompletely

omputed in order to establish the status of a formula. For example, as soon as

the olumn of � in a truth table ontains a 1 and a 0, then � is satis�able but

neither valid nor unsatis�able.

The formula (P _ Q) $ (P _ R) is satis�able but not valid. Figure 2.3

ontains a truth table for the formula.

P Q R P _Q P _ R (P _Q)$ (P _R)

0 0 0 0 0 1

0 1 0 1 0 0

1 0 0 1 1 1

1 1 0 1 1 1

0 0 1 0 1 0

0 1 1 1 1 1

1 0 1 1 1 1

1 1 1 1 1 1

Figure 2.3: Truth Table for (P _Q)$ (P _ R)

Of ourse, there are ases where a truth table for some formula � an have

less olumns than the number of variables ourring in � plus the number of

subformulas in �. For example, for the formula � = (P _ Q) ^ (R ! (P _ Q))

only one olumn with formula (P _Q) is needed for both subformulas �j

1

and

�j

22

. In general, there is only for eah di�erent subformula a olumn is needed.

Deteting subformula equivalene is bene�ial. For the above example, this was

simply syntati, i.e., the two subformulas �j

1

and �j

22

. But what about a

slight variation of the formula �

0

= (P _Q)^ (R ! (Q_P ))? Stritly speaking,

now the two subformulas �

0

j

1

and �

0

j

22

are di�erent, but sine disjuntion is

ommutative, they are equivalent. One or two olumns in the truth table for the

two subformulas? Again, saving a olumn is bene�ial but in general, deteting

equivalene of two subformulas may beome as diÆult as heking whether the

overall formula is valid. A ompromise, often performed in pratie, are normal

forms that guarantee that ertain ourrenes of equivalent subformulas an

be found in polynomial time. For our example, we an simply assume some
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ordering on the propositional variables and assume that for a disjuntion of two

propositional variables, the smaller variable always omes �rst. So if P < Q

then the normal form of P _Q and Q _ P is in fat P _Q.

C

In pratie, nobody uses truth tables as a reasoning proedure. Worst

ase, omputing a truth table for heking the status of a formula �

requires O(2

n

) steps, where n is the number of di�erent propositional

variables in �. But this is atually not the reason why the proedure is impra-

tial, beause the worst ase behavior of all other proedures for propositional

logi known today is also of exponential omplexity. So why are truth tables

not a good proedure? The answer is: beause they do not adapt to the inher-

ent struture of a formula. The reasoning mehanism of a truth table for two

formulas � and  sharing the same propositional variables is exatly the same:

we enumerate all valuations. However, if � is, e.g., of the form � = P ^ �

0

and

we are interested in the satis�ability of �, then � an only beome true for a

valuation A with A(P ) = 1. Hene, 2

n�1

rows of �'s truth table are superu-

ous. All proedures I will introdue in the sequel, automatially detet this (and

further) spei� strutures of a formula and use it to speed up the reasoning

proess.

2.5 Semanti Tableaux

Like resolution, semanti tableaux were developed in the sixties, independently

by Lis [14℄ and Smullyan [19℄ on the basis of work by Gentzen in the 30s [11℄

and of Beth [3℄ in the 50s. For an at that time state of the art overview onsider

Fitting's book [10℄.

In ontrast to the aluli introdued in subsequent setions, semanti tableau

does not rely on a normal form of input formulas but atually applies to any

propositional formula. The formulas are divided into �- and �-formulas, where

intuitively an � formula represents a (hidden) onjuntion and a � formula a

(hidden) disjuntion.

De�nition 2.5.1 (�-, �-Formulas). A formula � is alled an �-formula if � is

a formula ::�

1

, �

1

^ �

2

, �

1

$ �

2

, :(�

1

_ �

2

), or :(�

1

! �

2

). A formula � is

alled an �-formula if � is a formula �

1

_�

2

, �

1

! �

2

, :(�

1

^�

2

), or :(�

1

$ �

2

).

A ommon property of �-, �-formulas is that they an be deomposed into

diret desendants representing (modulo negation) subformulas of the respetive

formulas. Then an �-formula is valid i� all its desendants are valid and a �-

formula is valid if one of its desendants is valid. Therefore, the literature uses

both the notions semanti tableaux and analyti tableaux.

De�nition 2.5.2 (Diret Desendant). Given an �- or �-formula �, Figure 2.4

shows its diret desendants.

Dupliating � for the �-desendants of ::� is a trik for onformity. Any

propositional formula is either an �-formula or a �-formula or a literal.



36 CHAPTER 2. PROPOSITIONAL LOGIC

� Left Desendant Right Desendant

::� � �

�

1

^ �

2

�

1

�

2

�

1

$ �

2

�

1

! �

2

�

2

! �

1

:(�

1

_ �

2

) :�

1

:�

2

:(�

1

! �

2

) �

1

:�

2

� Left Desendant Right Desendant

�

1

_ �

2

�

1

�

2

�

1

! �

2

:�

1

�

2

:(�

1

^ �

2

) :�

1

:�

2

:(�

1

$ �

2

) :(�

1

! �

2

) :(�

2

! �

1

)

Figure 2.4: �- and �-Formulas

Proposition 2.5.3. For any valuation A: (i) if � is an �-formula then A(�) = 1

i� A(�

1

) = 1 and A(�

2

) = 1 for its desendants �

1

, �

2

. (ii) if � is a �-formula

then A(�) = 1 i� A(�

1

) = 1 or A(�

2

) = 1 for its desendants �

1

, �

2

.

Proof. Exerise ??.

The tableaux alulus operates on states that are sets of sequenes of for-

mulas. Semantially, the set represents a disjuntion of sequenes that are in-

terpreted as onjuntions of the respetive formulas. A sequene of formulas

(�

1

; : : : ; �

n

) is alled losed if there are two formulas �

i

and �

j

in the sequene

where �

i

= :�

j

or :�

i

= �

j

. A state is losed if all its formula sequenes are

losed. A state atually represents a tree and this tree is alled a tableau in

the literature. So if a state is losed, the respetive tree, the tableau is losed

too. The tableaux alulus is a alulus showing unsatis�ability. Suh aluli are

alled refutational aluli. Later on soundness and ompleteness of the alulus

imply that a formula � is valid i� the rules of tableaux produe a losed state

starting with N = f(:�)g.

A formula � ourring in some sequene is alled open if in ase � is an

�-formula not both diret desendants are already part of the sequene and if

it is a �-formula non of its desendants is part of the sequene.

�-Expansion N℄f(�

1

; : : : ;  ; : : : ; �

n

)g )

T

N℄f(�

1

; : : : ;  ; : : : ; �

n

;  

1

;  

2

)g

provided  is an open �-formula,  

1

,  

2

its diret desendants and the sequene

is not losed.

�-Expansion N℄f(�

1

; : : : ;  ; : : : ; �

n

)g )

T

N℄f(�

1

; : : : ;  ; : : : ; �

n

;  

1

)g℄

f(�

1

; : : : ;  ; : : : ; �

n

;  

2

)g

provided  is an open �-formula,  

1

,  

2

its diret desendants and the sequene

is not losed.
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Consider the question of validity of the formula (P ^:(Q_:R)) ! (Q^R).

Applying the tableau rules generates the following derivation:

f(:[(P ^ :(Q _ :R))! (Q ^ R)℄)g

�-Expansion)

�

T

f(:[(P ^ :(Q _ :R))! (Q ^ R)℄;

P ^ :(Q _ :R);:(Q ^ R); P;:(Q _ :R);:Q;::R;R)g

�-Expansion)

T

f(:[(P ^ :(Q _ :R))! (Q ^ R)℄;

P ^ :(Q _ :R);:(Q ^ R); P;:(Q _ :R);:Q;::R;R;:Q);

(:[(P ^ :(Q _ :R))! (Q ^ R)℄;

P ^ :(Q _ :R);:(Q ^ R); P;:(Q _ :R);:Q;::R;R;:R)g

The state after �-expansion is �nal, i.e., no more rule an be applied. The

�rst sequene is not losed, whereas the seond sequene is beause it ontains R

and :R. A tree representation, where ommon formulas of sequenes are shared,

an be found in Figure 2.5.

:[(P ^ :(Q _ :R))! (Q ^ R)℄

P ^ :(Q _ :R)

:(Q ^ R)

P

:(Q _ :R)

:Q

::R

R

:Q :R

Figure 2.5: A Tableau for (P ^ :(Q _ :R))! (Q ^R)

Theorem 2.5.4 (Semanti Tableaux is Sound). If for a formula � the tableaux

alulus omputes f(:�)g )

�

T

N and N is a losed, then � is valid.

Proof. It is suÆient to show the following: (i) if N is losed then the disjuntion

of the onjuntion of all sequene formulas is unsatis�able (ii) all three semati

tableaux rules preserve satis�ability.

Part (i) is obvious: if N is losed all its sequenes are losed. A sequene is

losed if it ontains a formula and its negation. The onjuntion of two suh

formulas is unsatis�able.

Part (ii) is shown by indution on the length of a derivation and then by a

ase analysis for the two rules. �-Expansion: for any valuation A if A( ) = 1

then A( 

1

) = A( 

2

) = 1. �-Expansion: for any valuation A if A( ) = 1 then

A( 

1

) = 1 or A( 

2

) = 1 (see Proposition 2.5.3).

Theorem 2.5.5 (Semanti Tableaux Terminates). Starting from a start state

f(�)g for some formula �, )

+

T

is well-founded.
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Proof. Take the two-folded multi-set extension of the lexiographi extension

of > on the naturals on triples (n; k; l). The measure � is �rst de�ned on for-

mulas by �(�) := (n; k; l) where n is the number of equivalene symbols in �,

k is the sum of all disjuntion, onjuntion, impliation symbols in � and l is

j�j. On sequenes (�

1

; : : : ; �

n

) the measure is de�ned to deliver a multiset by

�((�

1

; : : : ; �

n

)) := ft

1

; : : : ; t

n

g where t

i

= �(�

i

) if � is open in the sequene

and t

i

= (0; 0; 0) otherwise. Finally, � is extended to states by omputing the

multiset �(N) := f�(s) j s 2 Ng.

Note, that �-, as well as �-expansion stritly extend sequenes. One a for-

mula is losed in a sequene by applying an expansion rule, it remains losed

forever in the sequene.

An �-expansion on a formula  

1

^ 

2

on the sequene (�

1

; : : : ;  

1

^ 

2

; : : : ; �

n

)

results in (�

1

; : : : ;  

1

^ 

2

; : : : ; �

n

;  

1

;  

2

). It needs to be shown �((�

1

; : : : ;  

1

^

 

2

; : : : ; �

n

)) >

mul

�((�

1

; : : : ;  

1

^  

2

; : : : ; �

n

;  

1

;  

2

)). In the seond sequene

�( 

1

^  

2

) = (0; 0; 0) beause the formula is losed. For the triple (n; k; l)

assigned by � to  

1

^  

2

in the �rst sequene, it holds (n; k; l) >

lex

�( 

1

),

(n; k; l) >

lex

�( 

2

) and (n; k; l) >

lex

(0; 0; 0), the former beause the  

i

are

subformulas and the latter beause l 6= 0. This proves the ase.

A �-expansion on a formula  

1

_ 

2

on the sequene (�

1

; : : : ;  

1

_ 

2

; : : : ; �

n

)

results in (�

1

; : : : ;  

1

_ 

2

; : : : ; �

n

;  

1

), (�

1

; : : : ;  

1

_ 

2

; : : : ; �

n

;  

2

). It needs to

be shown �((�

1

; : : : ;  

1

_ 

2

; : : : ; �

n

)) >

mul

�((�

1

; : : : ;  

1

^ 

2

; : : : ; �

n

;  

1

)) and

�((�

1

; : : : ;  

1

_ 

2

; : : : ; �

n

)) >

mul

�((�

1

; : : : ;  

1

^ 

2

; : : : ; �

n

;  

2

)). In the derived

sequenes �( 

1

_  

2

) = (0; 0; 0) beause the formula is losed. For the triple

(n; k; l) assigned by � to  

1

_  

2

in the starting sequene, it holds (n; k; l) >

lex

�( 

1

), (n; k; l) >

lex

�( 

2

) and (n; k; l) >

lex

(0; 0; 0), the former beause the  

i

are subformulas and the latter beause l 6= 0. This proves the ase.

Theorem 2.5.6 (Semanti Tableaux is Complete). If � is valid, semanti

tableaux omputes a losed state out of f(:�)g.

Proof. If � is valid then :� is unsatis�able. Now assume after termination the

resulting state and hene at least one sequene is not losed. For this sequene

onsider a valuation A onsisting of the literals in the sequene. By assumption

there are no opposite literals, so A is well-de�ned. I prove by ontradition that

A is a model for the sequene. Assume not. Then there is a minimal formula

in the sequene, with respet to the ordering on triples onsidered in the proof

of Theorem 2.5.5, that is not satis�ed by A. By de�nition of A the formula

annot be a literal. So it is an �-formula or a �-formula. In all ases at least one

desendant formula is ontained in the sequene, is smaller than the original

formula, false in A (Proposition 2.5.3) and hene ontradits the assumption.

Therefore, A satis�es the sequene ontraditing that :� is unsatis�able.

Corollary 2.5.7 (Semanti Tableaux generates Models). Let � be a formula,

f(�)g )

�

T

N and s 2 N be a sequene that is not losed and neither �-expansion

nor �-expansion are appliable to s. Then the literals in s form a valuation that

is a model for �.
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Proof. A onsequene of the proof of Theorem 2.5.6

Consider the example tableau shown in Figure 2.5. The open �rst branh

orresponds to the valuation A = fP;R;:Qg whih is a model of the formula

:[(P ^ :(Q _ :R))! (Q ^ R)℄.

2.6 Normal Forms

In order to hek the status of a formula � via truth tables, the truth table

ontains a olumn for the subformulas of � and all valuations for its variables.

Any shape of � is �ne in order to generate the respetive truth table. For the

superposition alulus (Setion 2.8) and the CDCL (Conit Driven Clause

Learning) alulus (Setion 2.10) I introdue in the next two setions, the shape

of � is restrited. Both aluli aept only onjuntions of disjuntions of literals,

a partiular normal form. It is alled Clause Normal Form or simply CNF. The

purpose of this setion is to show that an arbitrary formula � an be e�etively

transformed into an equivalent formula in CNF.

De�nition 2.6.1 (CNF, DNF). A formula is in onjuntive normal form (CNF)

or lause normal form if it is a onjuntion of disjuntions of literals, or in other

words, a onjuntion of lauses.

A formula is in disjuntive normal form (DNF), if it is a disjuntion of

onjuntions of literals.

T

Although CNF and DNF are de�ned in almost any text book on au-

tomated reasoning, the de�nitions in the literature di�er with respet

to the \border" ases: (i) are omplementary literals permitted in a

lause? (ii) are dupliated literals permitted in a lause? (iii) are empty dis-

juntions/onjuntions permitted? For the above De�nition 2.6.1 the answer is

\yes" to all three questions. A lause ontaining omplementary literals is valid,

as in P _ Q _ :P . Dupliate literals may our, as in P _ Q _ P . The empty

disjuntion is ? and the empty onjuntion >, i.e., the empty disjuntion is

always false while the empty onjuntion is always true.

Cheking the validity of CNF formulas or the unsatis�ability of DNF formu-

las is easy: (i) a formula in CNF is valid, if and only if eah of its disjuntions

ontains a pair of omplementary literals P and :P , (ii) onversely, a formula

in DNF is unsatis�able, if and only if eah of its onjuntions ontains a pair of

omplementary literals P and :P (see Exerise 2.12).

C

On the other hand, heking the unsatis�ability of CNF formulas or

the validity of DNF formulas is oNP-omplete. For any propositional

formula � there is an equivalent formula in CNF and DNF and I will

prove this below by atually providing an e�etive proedure for the transforma-

tion. However, also beause of the above omment on validity and satis�ability

heking for CNF and DNF formulas, respetively, the transformation is ostly.


