
28 CHAPTER 2. PROPOSITIONAL LOGIC

De�nition 2.1.2 (Atom, Literal). A propositional formula P is
alled an atom.

It is also
alled a (positive) literal and its negation :P is
alled a (negative)

literal. If L is a literal, then :L = P if L = :P and :L = :P if L = P . Literals

are denoted by letters L;K. The literals P and :P are
alled
omplementary.

Automated reasoning is very mu
h formula manipulation. In order to pre-

isely represent the manipulation of a formula, we introdu
e positions.

De�nition 2.1.3 (Position). A position is a word over N. The set of positions

of a formula � is indu
tively de�ned by

pos(�) := f�g if � 2 f>;?g or � 2 �

pos(:�) := f�g [f1p j p 2 pos(�)g

pos(� Æ) := f�g [f1p j p 2 pos(�)g [f2p j p 2 pos()g

where Æ 2 f^;_;!;$g.

The pre�x order � on positions is de�ned by p � q if there is some p

0

su
h

that pp

0

= q. Note that the pre�x order is partial, e.g., the positions 12 and 21

are not
omparable, they are \parallel", see below. By < we denote the stri
t

part of �, i.e., p < q if p � q but not q � p. By k we denote in
omparable

positions, i.e., p k q if neither p � q, nor q � p. Then we say that p is above q if

p � q, p is stri
tly above q if p < q, and p and q are parallel if p k q.

The size of a formula � is given by the
ardinality of pos(�): j�j := j pos(�)j.

The subformula of � at position p 2 pos(�) is re
ursively de�ned by �j

�

:= �,

:�j

1p

:= �j

p

, and (�

1

Æ �

2

)j

ip

:= �

i

j

p

where i 2 f1; 2g, Æ 2 f^;_;!;$g.

Finally, the repla
ement of a subformula at position p 2 pos(�) by a formula

 is re
ursively de�ned by �[℄

�

:= and (�

1

Æ �

2

)[℄

1p

:= (�

1

[℄

p

Æ �

2

),

(�

1

Æ �

2

)[℄

2p

:= (�

1

Æ �

2

[℄

p

), where Æ 2 f^;_;!;$g.

Example 2.1.4. The set of positions for the formula � = (P ^ Q) ! (P _Q)

is pos(�) = f�; 1; 11; 12; 2; 21; 22g. The subformula at position 22 is Q, �j

22

= Q

and repla
ing this formula by P $ Q results in �[P $ Q℄

22

= (P ^ Q) !

(P _ (P $ Q)).

A further prerequisite for eÆ
ient formula manipulation is notion of the

polarity of a subformula of � at position p. The polarity
onsiders the number

of \negations" starting from � at � down to p. It is 1 for an even number along the

path, �1 for an odd number and 0 if there is at least one equivalen
e
onne
tive

along the path.

De�nition 2.1.5 (Polarity). The polarity of a subformula of � at position

p 2 pos(�) is indu
tively de�ned by

pol(�; �) := 1

pol(:�; 1p) := � pol(�; p)

pol(�

1

Æ �

2

; ip) := pol(�

i

; p) if Æ 2 f^;_g

pol(�

1

! �

2

; 1p) := � pol(�

1

; p)

pol(�

1

! �

2

; 2p) := pol(�

2

; p)

pol(�

1

$ �

2

; ip) := 0

2.2. SEMANTICS 29

Example 2.1.6. We reuse the formula � = (A^B) ! (A_B) of Example 2.1.4.

Then pol(�; 1) = pol(�; 11) = �1 and pol(�; 2) = pol(�; 22) = 1. For the

formula �

0

= (A ^ B)$ (A _ B) we get pol(�

0

; �) = 1 and pol(�

0

; p) = 0 for all

other p 2 pos(�

0

), p 6= �.

2.2 Semanti
s

In
lassi
al logi
 there are two truth values \true" and \false" whi
h we shall

denote, respe
tively, by 1 and 0. There are many-valued logi
s [21℄ having more

than two truth values and in fa
t, as we will see later on, for the de�nition of

some propositional logi

al
uli, we will need an impli
it third truth value
alled

\unde�ned".

De�nition 2.2.1 ((Partial) Valuation). A �-valuation is a map

A : �! f0; 1g:

where f0; 1g is the set of truth values. A partial �-valuation is a map A

0

: �

0

!

f0; 1g where �

0

� �.

De�nition 2.2.2 (Semanti
s). A �-valuation A is indu
tively extended from

propositional variables to propositional formulas �; 2 PROP(�) by

A(?) := 0

A(>) := 1

A(:�) := 1�A(�)

A(� ^) := min(fA(�);A()g)

A(� _) := max(fA(�);A()g)

A(�!) := max(f(1�A(�));A()g)

A(�$) := if A(�) = A() then 1 else 0

If A(�) = 1 for some �-valuation A of a formula � then � is satis�able and

we write A j= �. If A(�) = 1 for all �-valuations A of a formula � then � is

valid and we write j= �. If there is no �-valuations A for a formula � where

A(�) = 1 we say � is unsatis�able. A formula � entails , written � j= , if for

all �-valuations A whenever A j= � then A j= .

A

ordingly, a formula � is satis�able, valid, unsatis�able, respe
tively, with

respe
t to a partial valuation A

0

with domain �

0

, if for any valuation A with

A(P) = A

0

(P) for all P 2 �

0

the formula � is satis�able, valid, unsatis�able,

respe
tively, with respe
t to a A.

I
all the fa
t that some formula � is satis�able, unsatis�able, or valid, the

status of �. Note that if � is valid it is also satis�able, but not the other way

round.

Valuations
an be ni
ely represented by sets or sequen
es of literals that do

not
ontain
omplementary literals nor dupli
ates. If A is a (partial) valuation

of domain � then it
an be represented by the set fP j P 2 � and A(P) =

1g [f:P j P 2 � and A(P) = 0g. For example, for the valuation A = fP;:Qg

30 CHAPTER 2. PROPOSITIONAL LOGIC

the truth value of P _ Q is A(P _ Q) = 1, for P _ R it is A(P _ R) = 1, for

:P ^ R it is A(:P ^ R) = 0, and the status of :P _ R
annot be established

by A. In parti
ular, A is a partial valuation for � = fP;Q;Rg.

Example 2.2.3. The formula � _ :� is valid, independently of �. A

ording

to De�nition 2.2.2 we need to prove that for all �-valuations A of � we have

A(� _ :�) = 1. So let A be an arbitrary valuation. There are two
ases to

onsider. If A(�) = 1 then A(� _ :�) = 1 be
ause the valuation fun
tion takes

the maximum if distributed over _. If A(�) = 0 then A(:�) = 1 and again by

the before argument A(� _ :�) = 1. This �nishes the proof that j= � _ :�.

Proposition 2.2.4. � j= i� j= �!

Proof. ()) Suppose that � entails and let A be an arbitrary �-valuation.

We need to show A j= � ! . If A(�) = 1, then A() = 1, be
ause � entails

 , and therefore A j= � ! . For otherwise, if A(�) = 0, then A(� !) =

max(f(1�A(�));A()g) = max(f(1;A()g) = 1, independently of the value of

A(). In both
ases A j= �! .

(() By
ontraposition. Suppose that � does not entail . Then there exists a

�-valuation A su
h that A j= �, A(�) = 1 but A 6j= , A() = 0. By de�nition,

A(� !) = max(f(1 � A(�));A()g) = max(f(1 � 1); 0g) = 0, hen
e � !

does not hold in A.

Proposition 2.2.5. The equivalen
es of Figure 2.1 are valid for all formulas

�; ; �.

From Figure 2.1 we
on
lude that the propositional language introdu
ed

in De�nition 2.1.1 is redundant in the sense that
ertain
onne
tives
an be

expressed by others. For example, the equivalen
e Eliminate ! expresses im-

pli
ation by means of disjun
tion and negation. So for any propositional for-

mula � there exists an equivalent formula �

0

su
h that �

0

does not
ontain the

impli
ation
onne
tive. In order to prove this proposition we need the below

repla
ement lemma.

T

Note that the formulas � ^ and ^ � are equivalent. Nevertheless,

re
alling the problem state de�nition for Sudokus in Se
tion 1.1 the

two states (N ; f(2; 3) = 1 ^ f(2; 4) = 4;>) and (N ; f(2; 4) = 4 ^

f(2; 3) = 1;>) are signi�
antly di�erent. For example, it
an be that the �rst

state
an lead to a solution by the rules of the algorithm where the latter

annot, be
ause the latter impli
itly means that the square (2; 4) has already

been
he
ked for all values smaller than 4. This reveals the important point that

arguing by logi
al equivalen
e in the
ontext of a rule set manipulating formulas

an lead to wrong results.

Lemma 2.2.6 (Formula Repla
ement). Let � be a propositional formula
on-

taining a subformula at position p, i.e., �j

p

= . Furthermore, assume

j= $ �. Then j= �$ �[�℄

p

.

2.2. SEMANTICS 31

(I) (� ^ �)$ � Idempoten
y ^

(� _ �)$ � Idempoten
y _

(II) (� ^)$ (^ �) Commutativity ^

(� _)$ (_ �) Commutativity _

(III) (� ^ (^ �))$ ((� ^) ^ �) Asso
iativity ^

(� _ (_ �))$ ((� _) _ �) Asso
iativity _

(IV) (� ^ (_ �))$ (� ^) _ (� ^ �) Distributivity ^_

(� _ (^ �))$ (� _) ^ (� _ �) Distributivity _^

(V) (� ^ (� _))$ � Absorption ^_

(� _ (� ^))$ � Absorption _^

(VI) :(� _)$ (:� ^ :) De Morgan :_

:(� ^)$ (:� _ :) De Morgan :^

(VII) (� ^ :�)$? Introdu
tion ?

(� _ :�)$ > Introdu
tion >

:> $? Propagate :>

:? $ > Propagate :?

(� ^ >)$ � Absorption >^

(� _ ?)$ � Absorption ?_

(�! ?)$:� Eliminate ! ?

(? ! �)$ > Eliminate ? !

(�! >)$ > Eliminate ! >

(> ! �)$ � Eliminate > !

(�$?)$:� Eliminate ? $

(�$ >)$ � Eliminate > $

(� _ >)$ > Propagate >

(� ^ ?)$? Propagate ?

(VIII) (�!)$ (:� _) Eliminate !

(IX) (�$)$ (�!) ^ (! �) Eliminate1 $

(�$)$ (� ^) _ (:� ^ :) Eliminate2 $

Figure 2.1: Valid Propositional Equivalen
es

Proof. By indu
tion on jpj and stru
tural indu
tion on �. For the base step let

p = � and A be an arbitrary valuation.

A(�) = A() (by de�nition of repla
ement)

= A(�) (be
ause A j= $ �)

= A(�[�℄

�

) (by de�nition of repla
ement)

For the indu
tion step the lemma holds for all positions p and has to be

shown for all positions ip. By stru
tural indu
tion on � I show the
ases where

� = :�

1

and � = �

1

! �

2

in detail. All other
ases are analogous.

If � = :�

1

then showing the lemma amounts to proving j= :�

1

$:�

1

[�℄

1p

.

32 CHAPTER 2. PROPOSITIONAL LOGIC

Let A be an arbitrary valuation.

A(:�

1

) = 1�A(�

1

) (expanding semanti
s)

= 1�A(�

1

[�℄

p

) (by indu
tion hypothesis)

= A(:�[�℄

1p

) (applying semanti
s)

If � = �

1

! �

2

then showing the lemma amounts to proving the two
ases

j= (�

1

! �

2

) $ (�

1

! �

2

)[�℄

1p

and j= (�

1

! �

2

) $ (�

1

! �

2

)[�℄

2p

. Both

ases are similar so I show only the �rst
ase. Let A be an arbitrary valuation.

A(�

1

! �

2

) = max(f(1�A(�

1

));A(�

2

)g) (expanding semanti
s)

= max(f(1�A(�

1

[�℄

p

));A(�

2

)g) (by indu
tion hypothesis)

= A((�

1

! �

2

)[�℄

1p

) (applying semanti
s)

C

The equivalen
es of Figure 2.1 show that the propositional language

introdu
ed in De�nition 2.1.1 is redundant in the sense that
ertain

onne
tives
an be expressed by others. For example, the equivalen
e

Eliminate! expresses impli
ation by means of disjun
tion and negation. So for

any propositional formula � there exists an equivalent formula �

0

su
h that �

0

does not
ontain the impli
ation
onne
tive. In order to prove this proposition

the above repla
ement lemma is key.

2.3 Abstra
t Properties of Cal
uli

A proof pro
edure
an be sound,
omplete, strongly
omplete, refutationally

omplete or terminating. Terminating means that it terminates on any input

formula. Now depending on whether the
al
ulus investigates validity (unsatis-

�ability) or satis�ability the before notions have a di�erent meaning.

Validity Satis�ability

Sound Whenever the
al
ulus

outputs a proof the

formula is valid.

Whenever the
al
ulus

outputs a model the

formula has a model.

Complete If the formula is valid the

al
ulus outputs a proof.

If the formula is satis�-

able, the
al
ulus outputs

a model.

Strongly

Complete

For any proof of the for-

mula, there is a sequen
e

of rule appli
ations that

generates this proof.

For any model of the for-

mula, there is a sequen
e

of rule appli
ations that

generates this model.

2.4. TRUTH TABLES 33

There are some assumptions underlying these informal de�nitions. First, the

al
ulus a
tually produ
es a proof in
ase of investigating validity, and in
ase of

investigating satis�ability it produ
es a model. This in fa
t requires the notion

of a proof and a model. Then soundness means in both
ases that the
al
ulus

has no bugs. The results it produ
es are
orre
t. Completeness means that if

there is a proof (model) for a formula, the
al
ulus will eventually �nd it. Strong

ompleteness requires in addition that any proof (model)
an be found by the

al
ulus. A variant of
omplete
al
ulus is a refutationally
omplete
al
ulus: a

al
ulus is refutationally
omplete, if for any unsatis�able formula it outputs

a proof of
ontradi
tion. Many automated theorem pro
edures like resolution

(see Se
tion 2.7), or tableau (see Se
tion 2.5) are a
tually only refutationally

omplete.

C

Note that soundness and
ompleteness are not
losely related to ter-

mination. A sound and
omplete (strongly)
omplete
al
ulus needs

not to be terminating. For example, while investigating validity of an

invalid formula, a sound and
omplete
al
ulus for validity may not terminate.

A sound and terminating pro
edure needs not to be
omplete. It
an simply

terminate, \giving up", without produ
ing a proof (model).

2.4 Truth Tables

The �rst
al
ulus I
onsider are truth tables. For example,
onsider proving va-

lidity of the formula � = (A^B)! A. A

ording to De�nition 2.2.2 this is the

ase if a
tually for all valuations A over � = fA;Bg we have A(�) = 1. The

extension of A to formulas is de�ned indu
tively over the
onne
tives, so if the

result of A on the arguments of a
onne
tive is known, it
an be straightfor-

wardly
omputed for the overall formula. That's the idea behind truth tables.

We simply make all valuations A on � expli
it and then extend it
onne
tive by

onne
tive bottom-up to the overall formula. Stated otherwise, in order to es-

tablish the truth value for a formula � we establish it subformula by subformula

of � a

ording to �. If p; q 2 pos(�) and p � q then we �rst
ompute the truth

value for �j

q

. The truth table for (P ^Q)! P is then depi
ted in Figure 2.2

P Q P ^Q (P ^Q)! P

0 0 0 1

0 1 0 1

1 0 0 1

1 1 1 1

Figure 2.2: Truth Table for (P ^Q)! P

De�nition 2.4.1 (Truth Table). Let � be a propositional formula over variables

P

1

; : : : ; P

n

, p

i

2 pos(�), 1 � i � k and p

k

= �. Then a truth table for � is a

table with n+ k
olumns and 2

n

+ 1 rows of the form

34 CHAPTER 2. PROPOSITIONAL LOGIC

P

1

: : : P

n

�j

p

1

: : : �j

p

k

0 : : : 0 A

1

(�j

p

1

) : : : A

1

(�j

p

k

)

.

.

.

1 : : : 1 A

2

n

(�j

p

1

) : : : A

2

n

(�j

p

k

)

su
h that the A

i

are exa
tly the 2

n

di�erent valuations for P

1

; : : : ; P

n

and either

p

i

k p

i+j

or p

i

� p

i+j

, for all i; j � 0, i+ j � k and whenever �j

p

i

has a proper

subformula that is not an atom, there is exa
tly one j < i with �j

p

j

= .

Now given a truth table for some formula �, � is satis�able, if there is at

least one 1 in the �
olumn. It is valid, if there is no 0 in the �
olumn. It is

unsatis�able, if there is no 1 in the �
olumn. So truth tables are a simple and

\easy" way to establish the status of a formula. They need not to be
ompletely

omputed in order to establish the status of a formula. For example, as soon as

the
olumn of � in a truth table
ontains a 1 and a 0, then � is satis�able but

neither valid nor unsatis�able.

The formula (P _ Q) $ (P _ R) is satis�able but not valid. Figure 2.3

ontains a truth table for the formula.

P Q R P _Q P _ R (P _Q)$ (P _R)

0 0 0 0 0 1

0 1 0 1 0 0

1 0 0 1 1 1

1 1 0 1 1 1

0 0 1 0 1 0

0 1 1 1 1 1

1 0 1 1 1 1

1 1 1 1 1 1

Figure 2.3: Truth Table for (P _Q)$ (P _ R)

Of
ourse, there are
ases where a truth table for some formula �
an have

less
olumns than the number of variables o

urring in � plus the number of

subformulas in �. For example, for the formula � = (P _ Q) ^ (R ! (P _ Q))

only one
olumn with formula (P _Q) is needed for both subformulas �j

1

and

�j

22

. In general, there is only for ea
h di�erent subformula a
olumn is needed.

Dete
ting subformula equivalen
e is bene�
ial. For the above example, this was

simply synta
ti
, i.e., the two subformulas �j

1

and �j

22

. But what about a

slight variation of the formula �

0

= (P _Q)^ (R ! (Q_P))? Stri
tly speaking,

now the two subformulas �

0

j

1

and �

0

j

22

are di�erent, but sin
e disjun
tion is

ommutative, they are equivalent. One or two
olumns in the truth table for the

two subformulas? Again, saving a
olumn is bene�
ial but in general, dete
ting

equivalen
e of two subformulas may be
ome as diÆ
ult as
he
king whether the

overall formula is valid. A
ompromise, often performed in pra
ti
e, are normal

forms that guarantee that
ertain o

urren
es of equivalent subformulas
an

be found in polynomial time. For our example, we
an simply assume some

2.5. SEMANTIC TABLEAUX 35

ordering on the propositional variables and assume that for a disjun
tion of two

propositional variables, the smaller variable always
omes �rst. So if P < Q

then the normal form of P _Q and Q _ P is in fa
t P _Q.

C

In pra
ti
e, nobody uses truth tables as a reasoning pro
edure. Worst

ase,
omputing a truth table for
he
king the status of a formula �

requires O(2

n

) steps, where n is the number of di�erent propositional

variables in �. But this is a
tually not the reason why the pro
edure is impra
-

ti
al, be
ause the worst
ase behavior of all other pro
edures for propositional

logi
 known today is also of exponential
omplexity. So why are truth tables

not a good pro
edure? The answer is: be
ause they do not adapt to the inher-

ent stru
ture of a formula. The reasoning me
hanism of a truth table for two

formulas � and sharing the same propositional variables is exa
tly the same:

we enumerate all valuations. However, if � is, e.g., of the form � = P ^ �

0

and

we are interested in the satis�ability of �, then �
an only be
ome true for a

valuation A with A(P) = 1. Hen
e, 2

n�1

rows of �'s truth table are super
u-

ous. All pro
edures I will introdu
e in the sequel, automati
ally dete
t this (and

further) spe
i�
 stru
tures of a formula and use it to speed up the reasoning

pro
ess.

2.5 Semanti
 Tableaux

Like resolution, semanti
 tableaux were developed in the sixties, independently

by Lis [14℄ and Smullyan [19℄ on the basis of work by Gentzen in the 30s [11℄

and of Beth [3℄ in the 50s. For an at that time state of the art overview
onsider

Fitting's book [10℄.

In
ontrast to the
al
uli introdu
ed in subsequent se
tions, semanti
 tableau

does not rely on a normal form of input formulas but a
tually applies to any

propositional formula. The formulas are divided into �- and �-formulas, where

intuitively an � formula represents a (hidden)
onjun
tion and a � formula a

(hidden) disjun
tion.

De�nition 2.5.1 (�-, �-Formulas). A formula � is
alled an �-formula if � is

a formula ::�

1

, �

1

^ �

2

, �

1

$ �

2

, :(�

1

_ �

2

), or :(�

1

! �

2

). A formula � is

alled an �-formula if � is a formula �

1

_�

2

, �

1

! �

2

, :(�

1

^�

2

), or :(�

1

$ �

2

).

A
ommon property of �-, �-formulas is that they
an be de
omposed into

dire
t des
endants representing (modulo negation) subformulas of the respe
tive

formulas. Then an �-formula is valid i� all its des
endants are valid and a �-

formula is valid if one of its des
endants is valid. Therefore, the literature uses

both the notions semanti
 tableaux and analyti
 tableaux.

De�nition 2.5.2 (Dire
t Des
endant). Given an �- or �-formula �, Figure 2.4

shows its dire
t des
endants.

Dupli
ating � for the �-des
endants of ::� is a tri
k for
onformity. Any

propositional formula is either an �-formula or a �-formula or a literal.

36 CHAPTER 2. PROPOSITIONAL LOGIC

� Left Des
endant Right Des
endant

::� � �

�

1

^ �

2

�

1

�

2

�

1

$ �

2

�

1

! �

2

�

2

! �

1

:(�

1

_ �

2

) :�

1

:�

2

:(�

1

! �

2

) �

1

:�

2

� Left Des
endant Right Des
endant

�

1

_ �

2

�

1

�

2

�

1

! �

2

:�

1

�

2

:(�

1

^ �

2

) :�

1

:�

2

:(�

1

$ �

2

) :(�

1

! �

2

) :(�

2

! �

1

)

Figure 2.4: �- and �-Formulas

Proposition 2.5.3. For any valuation A: (i) if � is an �-formula then A(�) = 1

i� A(�

1

) = 1 and A(�

2

) = 1 for its des
endants �

1

, �

2

. (ii) if � is a �-formula

then A(�) = 1 i� A(�

1

) = 1 or A(�

2

) = 1 for its des
endants �

1

, �

2

.

Proof. Exer
ise ??.

The tableaux
al
ulus operates on states that are sets of sequen
es of for-

mulas. Semanti
ally, the set represents a disjun
tion of sequen
es that are in-

terpreted as
onjun
tions of the respe
tive formulas. A sequen
e of formulas

(�

1

; : : : ; �

n

) is
alled
losed if there are two formulas �

i

and �

j

in the sequen
e

where �

i

= :�

j

or :�

i

= �

j

. A state is
losed if all its formula sequen
es are

losed. A state a
tually represents a tree and this tree is
alled a tableau in

the literature. So if a state is
losed, the respe
tive tree, the tableau is
losed

too. The tableaux
al
ulus is a
al
ulus showing unsatis�ability. Su
h
al
uli are

alled refutational
al
uli. Later on soundness and
ompleteness of the
al
ulus

imply that a formula � is valid i� the rules of tableaux produ
e a
losed state

starting with N = f(:�)g.

A formula � o

urring in some sequen
e is
alled open if in
ase � is an

�-formula not both dire
t des
endants are already part of the sequen
e and if

it is a �-formula non of its des
endants is part of the sequen
e.

�-Expansion N℄f(�

1

; : : : ; ; : : : ; �

n

)g)

T

N℄f(�

1

; : : : ; ; : : : ; �

n

;

1

;

2

)g

provided is an open �-formula,

1

,

2

its dire
t des
endants and the sequen
e

is not
losed.

�-Expansion N℄f(�

1

; : : : ; ; : : : ; �

n

)g)

T

N℄f(�

1

; : : : ; ; : : : ; �

n

;

1

)g℄

f(�

1

; : : : ; ; : : : ; �

n

;

2

)g

provided is an open �-formula,

1

,

2

its dire
t des
endants and the sequen
e

is not
losed.

2.5. SEMANTIC TABLEAUX 37

Consider the question of validity of the formula (P ^:(Q_:R)) ! (Q^R).

Applying the tableau rules generates the following derivation:

f(:[(P ^ :(Q _ :R))! (Q ^ R)℄)g

�-Expansion)

�

T

f(:[(P ^ :(Q _ :R))! (Q ^ R)℄;

P ^ :(Q _ :R);:(Q ^ R); P;:(Q _ :R);:Q;::R;R)g

�-Expansion)

T

f(:[(P ^ :(Q _ :R))! (Q ^ R)℄;

P ^ :(Q _ :R);:(Q ^ R); P;:(Q _ :R);:Q;::R;R;:Q);

(:[(P ^ :(Q _ :R))! (Q ^ R)℄;

P ^ :(Q _ :R);:(Q ^ R); P;:(Q _ :R);:Q;::R;R;:R)g

The state after �-expansion is �nal, i.e., no more rule
an be applied. The

�rst sequen
e is not
losed, whereas the se
ond sequen
e is be
ause it
ontains R

and :R. A tree representation, where
ommon formulas of sequen
es are shared,

an be found in Figure 2.5.

:[(P ^ :(Q _ :R))! (Q ^ R)℄

P ^ :(Q _ :R)

:(Q ^ R)

P

:(Q _ :R)

:Q

::R

R

:Q :R

Figure 2.5: A Tableau for (P ^ :(Q _ :R))! (Q ^R)

Theorem 2.5.4 (Semanti
 Tableaux is Sound). If for a formula � the tableaux

al
ulus
omputes f(:�)g)

�

T

N and N is a
losed, then � is valid.

Proof. It is suÆ
ient to show the following: (i) if N is
losed then the disjun
tion

of the
onjun
tion of all sequen
e formulas is unsatis�able (ii) all three semati

tableaux rules preserve satis�ability.

Part (i) is obvious: if N is
losed all its sequen
es are
losed. A sequen
e is

losed if it
ontains a formula and its negation. The
onjun
tion of two su
h

formulas is unsatis�able.

Part (ii) is shown by indu
tion on the length of a derivation and then by a

ase analysis for the two rules. �-Expansion: for any valuation A if A() = 1

then A(

1

) = A(

2

) = 1. �-Expansion: for any valuation A if A() = 1 then

A(

1

) = 1 or A(

2

) = 1 (see Proposition 2.5.3).

Theorem 2.5.5 (Semanti
 Tableaux Terminates). Starting from a start state

f(�)g for some formula �,)

+

T

is well-founded.

38 CHAPTER 2. PROPOSITIONAL LOGIC

Proof. Take the two-folded multi-set extension of the lexi
ographi
 extension

of > on the naturals on triples (n; k; l). The measure � is �rst de�ned on for-

mulas by �(�) := (n; k; l) where n is the number of equivalen
e symbols in �,

k is the sum of all disjun
tion,
onjun
tion, impli
ation symbols in � and l is

j�j. On sequen
es (�

1

; : : : ; �

n

) the measure is de�ned to deliver a multiset by

�((�

1

; : : : ; �

n

)) := ft

1

; : : : ; t

n

g where t

i

= �(�

i

) if � is open in the sequen
e

and t

i

= (0; 0; 0) otherwise. Finally, � is extended to states by
omputing the

multiset �(N) := f�(s) j s 2 Ng.

Note, that �-, as well as �-expansion stri
tly extend sequen
es. On
e a for-

mula is
losed in a sequen
e by applying an expansion rule, it remains
losed

forever in the sequen
e.

An �-expansion on a formula

1

^

2

on the sequen
e (�

1

; : : : ;

1

^

2

; : : : ; �

n

)

results in (�

1

; : : : ;

1

^

2

; : : : ; �

n

;

1

;

2

). It needs to be shown �((�

1

; : : : ;

1

^

2

; : : : ; �

n

)) >

mul

�((�

1

; : : : ;

1

^

2

; : : : ; �

n

;

1

;

2

)). In the se
ond sequen
e

�(

1

^

2

) = (0; 0; 0) be
ause the formula is
losed. For the triple (n; k; l)

assigned by � to

1

^

2

in the �rst sequen
e, it holds (n; k; l) >

lex

�(

1

),

(n; k; l) >

lex

�(

2

) and (n; k; l) >

lex

(0; 0; 0), the former be
ause the

i

are

subformulas and the latter be
ause l 6= 0. This proves the
ase.

A �-expansion on a formula

1

_

2

on the sequen
e (�

1

; : : : ;

1

_

2

; : : : ; �

n

)

results in (�

1

; : : : ;

1

_

2

; : : : ; �

n

;

1

), (�

1

; : : : ;

1

_

2

; : : : ; �

n

;

2

). It needs to

be shown �((�

1

; : : : ;

1

_

2

; : : : ; �

n

)) >

mul

�((�

1

; : : : ;

1

^

2

; : : : ; �

n

;

1

)) and

�((�

1

; : : : ;

1

_

2

; : : : ; �

n

)) >

mul

�((�

1

; : : : ;

1

^

2

; : : : ; �

n

;

2

)). In the derived

sequen
es �(

1

_

2

) = (0; 0; 0) be
ause the formula is
losed. For the triple

(n; k; l) assigned by � to

1

_

2

in the starting sequen
e, it holds (n; k; l) >

lex

�(

1

), (n; k; l) >

lex

�(

2

) and (n; k; l) >

lex

(0; 0; 0), the former be
ause the

i

are subformulas and the latter be
ause l 6= 0. This proves the
ase.

Theorem 2.5.6 (Semanti
 Tableaux is Complete). If � is valid, semanti

tableaux
omputes a
losed state out of f(:�)g.

Proof. If � is valid then :� is unsatis�able. Now assume after termination the

resulting state and hen
e at least one sequen
e is not
losed. For this sequen
e

onsider a valuation A
onsisting of the literals in the sequen
e. By assumption

there are no opposite literals, so A is well-de�ned. I prove by
ontradi
tion that

A is a model for the sequen
e. Assume not. Then there is a minimal formula

in the sequen
e, with respe
t to the ordering on triples
onsidered in the proof

of Theorem 2.5.5, that is not satis�ed by A. By de�nition of A the formula

annot be a literal. So it is an �-formula or a �-formula. In all
ases at least one

des
endant formula is
ontained in the sequen
e, is smaller than the original

formula, false in A (Proposition 2.5.3) and hen
e
ontradi
ts the assumption.

Therefore, A satis�es the sequen
e
ontradi
ting that :� is unsatis�able.

Corollary 2.5.7 (Semanti
 Tableaux generates Models). Let � be a formula,

f(�)g)

�

T

N and s 2 N be a sequen
e that is not
losed and neither �-expansion

nor �-expansion are appli
able to s. Then the literals in s form a valuation that

is a model for �.

2.6. NORMAL FORMS 39

Proof. A
onsequen
e of the proof of Theorem 2.5.6

Consider the example tableau shown in Figure 2.5. The open �rst bran
h

orresponds to the valuation A = fP;R;:Qg whi
h is a model of the formula

:[(P ^ :(Q _ :R))! (Q ^ R)℄.

2.6 Normal Forms

In order to
he
k the status of a formula � via truth tables, the truth table

ontains a
olumn for the subformulas of � and all valuations for its variables.

Any shape of � is �ne in order to generate the respe
tive truth table. For the

superposition
al
ulus (Se
tion 2.8) and the CDCL (Con
i
t Driven Clause

Learning)
al
ulus (Se
tion 2.10) I introdu
e in the next two se
tions, the shape

of � is restri
ted. Both
al
uli a

ept only
onjun
tions of disjun
tions of literals,

a parti
ular normal form. It is
alled Clause Normal Form or simply CNF. The

purpose of this se
tion is to show that an arbitrary formula �
an be e�e
tively

transformed into an equivalent formula in CNF.

De�nition 2.6.1 (CNF, DNF). A formula is in
onjun
tive normal form (CNF)

or
lause normal form if it is a
onjun
tion of disjun
tions of literals, or in other

words, a
onjun
tion of
lauses.

A formula is in disjun
tive normal form (DNF), if it is a disjun
tion of

onjun
tions of literals.

T

Although CNF and DNF are de�ned in almost any text book on au-

tomated reasoning, the de�nitions in the literature di�er with respe
t

to the \border"
ases: (i) are
omplementary literals permitted in a

lause? (ii) are dupli
ated literals permitted in a
lause? (iii) are empty dis-

jun
tions/
onjun
tions permitted? For the above De�nition 2.6.1 the answer is

\yes" to all three questions. A
lause
ontaining
omplementary literals is valid,

as in P _ Q _ :P . Dupli
ate literals may o

ur, as in P _ Q _ P . The empty

disjun
tion is ? and the empty
onjun
tion >, i.e., the empty disjun
tion is

always false while the empty
onjun
tion is always true.

Che
king the validity of CNF formulas or the unsatis�ability of DNF formu-

las is easy: (i) a formula in CNF is valid, if and only if ea
h of its disjun
tions

ontains a pair of
omplementary literals P and :P , (ii)
onversely, a formula

in DNF is unsatis�able, if and only if ea
h of its
onjun
tions
ontains a pair of

omplementary literals P and :P (see Exer
ise 2.12).

C

On the other hand,
he
king the unsatis�ability of CNF formulas or

the validity of DNF formulas is
oNP-
omplete. For any propositional

formula � there is an equivalent formula in CNF and DNF and I will

prove this below by a
tually providing an e�e
tive pro
edure for the transforma-

tion. However, also be
ause of the above
omment on validity and satis�ability

he
king for CNF and DNF formulas, respe
tively, the transformation is
ostly.

