28 CHAPTER 2. PROPOSITIONAL LOGIC

Definition 2.1.2 (Atom, Literal). A propositional formula P is called an atom.
It is also called a (positive) literal and its negation —P is called a (negative)
literal. If L is a literal, then —=L = P if L = —=P and -L = —P if L = P. Literals
are denoted by letters L, K. The literals P and —P are called complementary.

Automated reasoning is very much formula manipulation. In order to pre-
cisely represent the manipulation of a formula, we introduce positions.

Definition 2.1.3 (Position). A position is a word over N. The set of positions
of a formula ¢ is inductively defined by

pos(¢) = {e}ifpe{T,L}orpeX
pos(=p) = {e}U{lp|p € pos(¢)}
pos(¢ o 1) {e}U{lp|p € pos(¢)} U{2p|p € pos(¥))}

where o € {A,V, =, <}

The prefix order < on positions is defined by p < g if there is some p’ such
that pp’ = ¢. Note that the prefix order is partial, e.g., the positions 12 and 21
are not comparable, they are “parallel”, see below. By < we denote the strict
part of <, i.e., p < ¢ if p < ¢ but not ¢ < p. By || we denote incomparable
positions, i.e., p || ¢ if neither p < ¢, nor ¢ < p. Then we say that p is above ¢ if
p < q, pis strictly above q if p < q, and p and ¢ are parallel if p || q.

The size of a formula ¢ is given by the cardinality of pos(@): |¢| := | pos(d)].
The subformula of ¢ at position p € pos(¢) is recursively defined by ¢|. := ¢,
—|¢|1p = ¢|pa and (¢1 o ¢2)|ip = ¢,|p where 7 € {1,2}, o € {/\,V,—),(—)}.
Finally, the replacement of a subformula at position p € pos(¢) by a formula
¢ is recursively defined by @[] := ¢ and (¢1 o ¢2)[¥]1p = (d1[¢]p © ¢2),
(¢1 0 ¢2)[¢]2P = (10 ¢2[¢]P)7 where o € {/\,V,—),(—)}.

Example 2.1.4. The set of positions for the formula ¢ = (PA Q) = (P V Q)
is pos(¢) = {¢,1,11,12,2,21,22}. The subformula at position 22 is @, ¢|22 = @
and replacing this formula by P + @Q results in ¢[P ¢ Q2 = (PAQ) —
(PV (P Q).

A further prerequisite for efficient formula manipulation is notion of the
polarity of a subformula of ¢ at position p. The polarity considers the number
of “negations” starting from ¢ at € down to p. It is 1 for an even number along the
path, —1 for an odd number and 0 if there is at least one equivalence connective
along the path.

Definition 2.1.5 (Polarity). The polarity of a subformula of ¢ at position
p € pos(¢) is inductively defined by

pol(¢p,e) = 1
pol(=¢,1p) := —pol(e,p)
pol(¢1 0 ¢2,ip) = pol(¢;,p) if o € {A,V}
pol(¢1 — ¢2,1p) = —pol(¢1,p)
pol(¢1 — ¢2,2p) = pol(¢2,p)
pol(¢1 < ¢a,ip) = 0

2.2. SEMANTICS 29

Example 2.1.6. We reuse the formula ¢ = (AAB) — (AVB) of Example 2.1.4.
Then pol(¢,1) = pol(4,11) = —1 and pol(4,2) = pol(¢,22) = 1. For the
formula ¢’ = (AA B) + (AV B) we get pol(¢',€) = 1 and pol(¢’,p) = 0 for all
other p € pos(¢'), p # e.

2.2 Semantics

In classical logic there are two truth values “true” and “false” which we shall
denote, respectively, by 1 and 0. There are many-valued logics [21] having more
than two truth values and in fact, as we will see later on, for the definition of
some propositional logic calculi, we will need an implicit third truth value called
“undefined”.

Definition 2.2.1 ((Partial) Valuation). A Y-valuation is a map
A:¥ - {0,1}.

where {0, 1} is the set of truth values. A partial X-valuation is a map A" : &' —
{0,1} where ¥’ C X.

Definition 2.2.2 (Semantics). A -valuation A is inductively extended from
propositional variables to propositional formulas ¢, € PROP(X) by

A(L) = 0
A(T) = 1
Al-¢) = 1-A(9)
Al@Ay) = min({A(), A(})})
AlpV) = max({A(¢), A(¥)})
Al — ¢g = max({(1 - A(¢)), A(¥)})

= if A(¢) = A(+)) then 1 else 0

If A(¢) = 1 for some X-valuation A of a formula ¢ then ¢ is satisfiable and
we write 4 = ¢. If A(¢) = 1 for all X-valuations A of a formula ¢ then ¢ is
valid and we write = ¢. If there is no X-valuations A for a formula ¢ where
A(¢) =1 we say ¢ is unsatisfiable. A formula ¢ entails 1, written ¢ = o, if for
all ¥-valuations A whenever A |= ¢ then A |= 1.

Accordingly, a formula ¢ is satisfiable, valid, unsatisfiable, respectively, with
respect to a partial valuation A’ with domain ¥', if for any valuation A with
A(P) = A'(P) for all P € ¥' the formula ¢ is satisfiable, valid, unsatisfiable,
respectively, with respect to a A.

I call the fact that some formula ¢ is satisfiable, unsatisfiable, or valid, the
status of ¢. Note that if ¢ is valid it is also satisfiable, but not the other way
round.

Valuations can be nicely represented by sets or sequences of literals that do
not contain complementary literals nor duplicates. If A is a (partial) valuation
of domain ¥ then it can be represented by the set {P | P € ¥ and A(P) =
1}U{=P | P € ¥ and A(P) = 0}. For example, for the valuation A = {P,-Q}

30 CHAPTER 2. PROPOSITIONAL LOGIC

the truth value of PV Q is A(PV Q) =1, for PV R it is A(PV R) = 1, for
“PARIitis A(-P A R) =0, and the status of =P V R cannot be established
by A. In particular, A is a partial valuation for ¥ = {P, Q, R}.

Example 2.2.3. The formula ¢ V —¢ is valid, independently of ¢. According
to Definition 2.2.2 we need to prove that for all ¥-valuations A of ¢ we have
A(p vV =¢) = 1. So let A be an arbitrary valuation. There are two cases to
consider. If A(¢) = 1 then A(¢ V =¢) = 1 because the valuation function takes
the maximum if distributed over V. If A(¢) = 0 then A(—¢) = 1 and again by
the before argument A(¢ V —¢) = 1. This finishes the proof that | ¢ V —¢.

Proposition 2.2.4. ¢ E¢ iff = ¢ = ¢

Proof. (=) Suppose that ¢ entails ¢ and let A be an arbitrary X-valuation.
We need to show A = ¢ — ¢. If A(p) = 1, then A(¢)) = 1, because ¢ entails
¥, and therefore A |= ¢ — 1. For otherwise, if A(¢) = 0, then A(¢ — ¢) =
max({(1— A(¢)), A(¥)}) = max({(1, A(¥)}) = 1, independently of the value of
A(). In both cases A |= ¢ — 9.

(<) By contraposition. Suppose that ¢ does not entail 1). Then there exists a
Y-valuation A such that A = ¢, A(¢) = 1 but A £ ¢, A(¢p) = 0. By definition,
Al — 1) = max({(1 — A()), A(%)}) = max({(1 — 1),0}) = 0, hence ¢ — 1
does not hold in A. O

Proposition 2.2.5. The equivalences of Figure 2.1 are valid for all formulas

¢, X-

From Figure 2.1 we conclude that the propositional language introduced
in Definition 2.1.1 is redundant in the sense that certain connectives can be
expressed by others. For example, the equivalence Eliminate — expresses im-
plication by means of disjunction and negation. So for any propositional for-
mula ¢ there exists an equivalent formula ¢’ such that ¢’ does not contain the
implication connective. In order to prove this proposition we need the below
replacement lemma.

Note that the formulas ¢ A ¢ and ¢ A ¢ are equivalent. Nevertheless,
recalling the problem state definition for Sudokus in Section 1.1 the

two states (N; f(2,3) = 1A f(2,4) = 4, T) and (N; f(2,4) = 4 A
f(2,3) = 1;T) are significantly different. For example, it can be that the first
state can lead to a solution by the rules of the algorithm where the latter
cannot, because the latter implicitly means that the square (2,4) has already
been checked for all values smaller than 4. This reveals the important point that
arguing by logical equivalence in the context of a rule set manipulating formulas
can lead to wrong results.

Lemma 2.2.6 (Formula Replacement). Let ¢ be a propositional formula con-
taining a subformula ¢ at position p, i.e., ¢|, = . Furthermore, assume

=4 < x. Then = ¢ & ¢[x]p.

2.2. SEMANTICS

I (pAB) & ¢ Idempotency A
(pVe) & ¢ Idempotency V
(II) (pNAY) & (W AP) Commutativity A
(pVi) & (¥ Vo) Commutativity V
(111) (AW AX) & ((pAY Associativity A
(pV (VX)) & (VY Associativity V
(IV) (A (WY V X)) & (dAY)V Distributivity AV
(V@ AX) & (VYA Distributivity VA
V) GABVY) & & Absorption AV
GV (pAY)) & @ Absorption VA
(VD) (P VY) < (mdp A—) De Morgan —V
—(dAY) & (o V) De Morgan —A
(VII) (pA—p) & L Introduction L
(pV—g) T Introduction T
=T L Propagate =T
Al T Propagate =L
(PAT) < & Absorption TA
(VL)< o Absorption LV
(¢ — 1) & ¢ Eliminate — L
(L=¢) T Eliminate 1 —
(p—=T)eT Eliminate — T
(T—=9) ¢ Eliminate T —
(¢ L) & o Eliminate 1 «
(peT)ed Eliminate T <
(pVT)&T Propagate T
(pAL) & L Propagate |
(VIIT) (¢ =) & (mo V) Eliminate —
(IX) (=)o (0= Y)A{W) = ¢) Eliminatel <

(¢ 1) < (dAY)V (m) A 1))

Eliminate2 «»

Figure 2.1: Valid Propositional Equivalences

31

Proof. By induction on |p| and structural induction on ¢. For the base step let

p =€ and A be an arbitrary valuation.

Al9)

A
A
A

(¥)
(x)
(ox]e)

(by definition of replacement)
(because A =9 <> x)
(by definition of replacement)

For the induction step the lemma holds for all positions p and has to be
shown for all positions i¢p. By structural induction on ¢ I show the cases where

¢ = —¢1 and ¢ = @1 — @2 in detail. All other cases are analogous.

If $ = =1 then showing the lemma amounts to proving = —¢1 <+ =1 [x]1p-

32 CHAPTER 2. PROPOSITIONAL LOGIC

Let A be an arbitrary valuation.

A(=¢1) =1 - A1)
=1—A(¢1[x]p)
= A(=¢[x]1p)

(expanding semantics)
(by induction hypothesis)
(applying semantics)

If ¢ = ¢1 — ¢ then showing the lemma amounts to proving the two cases

F (01 = ¢2) < (¢1 = d2)[x]1p and |= (61 = ¢2) < (d1 = ¢2)[x]2p- Both
cases are similar so I show only the first case. Let A be an arbitrary valuation.

A(fr = ¢2) = max({(1 — A(¢1)), A(¢2)})
= max({(1 — A(¢1[x]p)), A(#2)})
= A((¢1 = é2)[x]1p)

(expanding semantics)
(by induction hypothesis)
(applying semantics)

O

The equivalences of Figure 2.1 show that the propositional language
introduced in Definition 2.1.1 is redundant in the sense that certain

connectives can be expressed by others. For example, the equivalence
Eliminate — expresses implication by means of disjunction and negation. So for
any propositional formula ¢ there exists an equivalent formula ¢’ such that ¢’
does not contain the implication connective. In order to prove this proposition
the above replacement lemma is key.

2.3 Abstract Properties of Calculi

A proof procedure can be sound, complete, strongly complete, refutationally
complete or terminating. Terminating means that it terminates on any input
formula. Now depending on whether the calculus investigates validity (unsatis-
fiability) or satisfiability the before notions have a different meaning.

Validity Satisfiability
Sound Whenever the calculus | Whenever the calculus
outputs a proof the | outputs a model the
formula is valid. formula has a model.
Complete If the formula is valid the | If the formula is satisfi-
calculus outputs a proof. able, the calculus outputs
a model.
Strongly For any proof of the for- | For any model of the for-
Complete mula, there is a sequence | mula, there is a sequence
of rule applications that | of rule applications that
generates this proof. generates this model.

2.4. TRUTH TABLES 33

There are some assumptions underlying these informal definitions. First, the
calculus actually produces a proof in case of investigating validity, and in case of
investigating satisfiability it produces a model. This in fact requires the notion
of a proof and a model. Then soundness means in both cases that the calculus
has no bugs. The results it produces are correct. Completeness means that if
there is a proof (model) for a formula, the calculus will eventually find it. Strong
completeness requires in addition that any proof (model) can be found by the
calculus. A variant of complete calculus is a refutationally complete calculus: a
calculus is refutationally complete, if for any unsatisfiable formula it outputs
a proof of contradiction. Many automated theorem procedures like resolution
(see Section 2.7), or tableau (see Section 2.5) are actually only refutationally
complete.

Note that soundness and completeness are not closely related to ter-
mination. A sound and complete (strongly) complete calculus needs
not to be terminating. For example, while investigating validity of an

invalid formula, a sound and complete calculus for validity may not terminate.

A sound and terminating procedure needs not to be complete. It can simply
terminate, “giving up”, without producing a proof (model).

2.4 Truth Tables

The first calculus I consider are truth tables. For example, consider proving va-
lidity of the formula ¢ = (A A B) — A. According to Definition 2.2.2 this is the
case if actually for all valuations A over ¥ = {4, B} we have A(¢) = 1. The
extension of A to formulas is defined inductively over the connectives, so if the
result of 4 on the arguments of a connective is known, it can be straightfor-
wardly computed for the overall formula. That’s the idea behind truth tables.
We simply make all valuations A on ¥ explicit and then extend it connective by
connective bottom-up to the overall formula. Stated otherwise, in order to es-
tablish the truth value for a formula ¢ we establish it subformula by subformula
of ¢ according to <. If p,q € pos(¢) and p < ¢ then we first compute the truth
value for ¢|,. The truth table for (P A Q) — P is then depicted in Figure 2.2

P Q|PAQ|(PAQ) =P
0 O 0 1
0 1 0 1
1 0 0 1
1 1 1 1

Figure 2.2: Truth Table for (P A Q) — P

Definition 2.4.1 (Truth Table). Let ¢ be a propositional formula over variables
Py,...,P,, p; € pos(¢), 1 <i <k and pr = €. Then a truth table for ¢ is a
table with n + k£ columns and 2™ + 1 rows of the form

34 CHAPTER 2. PROPOSITIONAL LOGIC

Pl | Pl 6l || 6l
0. 10 A [A(dlp)
Ll [1| A (@) | o | Az (0l

such that the A4; are exactly the 2™ different valuations for Py, ..., P, and either
Di || Pitj O P > piyj, for all 4,5 > 0, i+ j < k and whenever ¢|,, has a proper
subformula 1 that is not an atom, there is exactly one j < i with ¢[,, = 1.

Now given a truth table for some formula ¢, ¢ is satisfiable, if there is at
least one 1 in the ¢ column. It is valid, if there is no 0 in the ¢ column. It is
unsatisfiable, if there is no 1 in the ¢ column. So truth tables are a simple and
“easy” way to establish the status of a formula. They need not to be completely
computed in order to establish the status of a formula. For example, as soon as
the column of ¢ in a truth table contains a 1 and a 0, then ¢ is satisfiable but
neither valid nor unsatisfiable.

The formula (P V Q) < (P V R) is satisfiable but not valid. Figure 2.3
contains a truth table for the formula.

P Q R|PVQ|PVR|(PVQ)« (PVR)
0 0 0] 0 0 1
0 1 0| 1 0 0
1 0 0of 1 1 1
1 1 0| 1 1 1
0 0 1| 0 1 0
0 1 1] 1 1 1
1 0 1| 1 1 1
1 1 1| 1 1 1

Figure 2.3: Truth Table for (P V Q) +> (PV R)

Of course, there are cases where a truth table for some formula ¢ can have
less columns than the number of variables occurring in ¢ plus the number of
subformulas in ¢. For example, for the formula ¢ = (PV Q) A (R —» (PV Q))
only one column with formula (P V @) is needed for both subformulas ¢|; and
¢|22. In general, there is only for each different subformula a column is needed.
Detecting subformula equivalence is beneficial. For the above example, this was
simply syntactic, i.e., the two subformulas ¢|; and ¢|s2. But what about a
slight variation of the formula ¢’ = (PVQ)A (R — (QV P))? Strictly speaking,
now the two subformulas ¢[; and ¢'[22 are different, but since disjunction is
commutative, they are equivalent. One or two columns in the truth table for the
two subformulas? Again, saving a column is beneficial but in general, detecting
equivalence of two subformulas may become as difficult as checking whether the
overall formula is valid. A compromise, often performed in practice, are normal
forms that guarantee that certain occurrences of equivalent subformulas can
be found in polynomial time. For our example, we can simply assume some

2.5. SEMANTIC TABLEAUX 35

ordering on the propositional variables and assume that for a disjunction of two
propositional variables, the smaller variable always comes first. So if P < @
then the normal form of PV @ and @ V P is in fact PV Q.

In practice, nobody uses truth tables as a reasoning procedure. Worst
case, computing a truth table for checking the status of a formula ¢
requires O(2") steps, where n is the number of different propositional

variables in ¢. But this is actually not the reason why the procedure is imprac-
tical, because the worst case behavior of all other procedures for propositional
logic known today is also of exponential complexity. So why are truth tables
not a good procedure? The answer is: because they do not adapt to the inher-
ent structure of a formula. The reasoning mechanism of a truth table for two
formulas ¢ and v sharing the same propositional variables is exactly the same:
we enumerate all valuations. However, if ¢ is, e.g., of the form ¢ = P A ¢' and
we are interested in the satisfiability of ¢, then ¢ can only become true for a
valuation A with A(P) = 1. Hence, 2" ! rows of ¢’s truth table are superflu-
ous. All procedures I will introduce in the sequel, automatically detect this (and
further) specific structures of a formula and use it to speed up the reasoning
process.

2.5 Semantic Tableaux

Like resolution, semantic tableaux were developed in the sixties, independently
by Lis [14] and Smullyan [19] on the basis of work by Gentzen in the 30s [11]
and of Beth [3] in the 50s. For an at that time state of the art overview consider
Fitting’s book [10].

In contrast to the calculi introduced in subsequent sections, semantic tableau
does not rely on a normal form of input formulas but actually applies to any
propositional formula. The formulas are divided into a- and S-formulas, where
intuitively an a formula represents a (hidden) conjunction and a 3 formula a
(hidden) disjunction.

Definition 2.5.1 (a-, 8-Formulas). A formula ¢ is called an a-formula if ¢ is

a formula = =1, @1 A da, 1 & da, 2(¢1 V), or =(d1 = ¢2). A formula ¢ is
called an B-formula if ¢ is a formula ¢1 Vo, 1 — ¢a, =(d1 Ad2), or = (1 < P2).

A common property of a-, S-formulas is that they can be decomposed into
direct descendants representing (modulo negation) subformulas of the respective
formulas. Then an a-formula is valid iff all its descendants are valid and a -
formula is valid if one of its descendants is valid. Therefore, the literature uses
both the notions semantic tableaux and analytic tableaux.

Definition 2.5.2 (Direct Descendant). Given an a- or -formula ¢, Figure 2.4
shows its direct descendants.

Duplicating ¢ for the a-descendants of —=—¢ is a trick for conformity. Any
propositional formula is either an a-formula or a S-formula or a literal.

36

CHAPTER 2. PROPOSITIONAL LOGIC

« Left Descendant | Right Descendant
- ¢ ¢
d1 A P2 1 ¢2
d1 & P2 $1 = P2 2 = ¢1
(1 V ¢o) -1 —¢2
—(¢1 — ¢2) b1 o
B8 Left Descendant | Right Descendant
1V P2 b1 P2
D1 — P2 -1 ¢2
—(p1 A p2) Py P
(1 & g2) | (P = ¢2) (2 — ¢1)

Figure 2.4: a- and g-Formulas

Proposition 2.5.3. For any valuation A: (i) if ¢ is an a-formula then A(¢) =1
iff A(¢1) =1 and A(¢2) = 1 for its descendants ¢y, ¢=. (ii) if ¢ is a S-formula
then A(¢) = 1iff A(¢1) =1 or A(¢2) =1 for its descendants ¢y, ¢ps.

Proof. Exercise ?7. O

The tableaux calculus operates on states that are sets of sequences of for-
mulas. Semantically, the set represents a disjunction of sequences that are in-
terpreted as conjunctions of the respective formulas. A sequence of formulas
(¢1,-..,¢n) is called closed if there are two formulas ¢; and ¢; in the sequence
where ¢; = —¢; or —¢; = ¢;. A state is closed if all its formula sequences are
closed. A state actually represents a tree and this tree is called a tableau in
the literature. So if a state is closed, the respective tree, the tableau is closed
too. The tableaux calculus is a calculus showing unsatisfiability. Such calculi are
called refutational calculi. Later on soundness and completeness of the calculus
imply that a formula ¢ is valid iff the rules of tableaux produce a closed state
starting with N = {(—¢)}.

A formula ¢ occurring in some sequence is called open if in case ¢ is an
a-formula not both direct descendants are already part of the sequence and if
it is a S-formula non of its descendants is part of the sequence.
a-Expansion

NLﬂ{(qﬁl,...,@b,...,(ﬁn)} =T N&J{(¢1,...,¢,...,¢n,¢1,¢2)}

provided v is an open a-formula, 1), 15 its direct descendants and the sequence
is not closed.

B-Expansion Ny{(¢y,...
{(@1,-- 0, Bns2)}

provided v is an open S-formula, 1)1, 1 its direct descendants and the sequence
is not closed.

awa"'a¢n)} =T NHJ{(¢1,---,¢:---,¢na¢1)}@

2.5. SEMANTIC TABLEAUX 37

Consider the question of validity of the formula (PA-(QV-R)) - (QAR).
Applying the tableau rules generates the following derivation:

{(AI(PA~(QV ~R)) > (@ A R}
a-Expansion =4 {(-[(P A =(Q V —R)) = (Q A R)],
PA _'(Q \ _'R)7 _'(Q A R)a P, _'(Q \ _'R)a -Q, _'_'RaR)}
B-Expansion =1 {(=[(P A =(Q V —R)) = (Q A R)],
PA _'(Q \% _'R)a _'(Q A R)7 P, _'(Q \% _'R)7 -Q,—R,R, _‘Q),
(=[(PA=(QV-R)) = (QAR),
PA —|(Q \% —IR), —I(Q A R), P, —|(Q V —|R), =@, R,R, —|R)}

The state after S-expansion is final, i.e., no more rule can be applied. The
first sequence is not closed, whereas the second sequence is because it contains R
and —R. A tree representation, where common formulas of sequences are shared,
can be found in Figure 2.5.

S[(PA=(QV=R)) = (QAR)]
PA=(QV-R)
~(Q A R)
P
~(QV—R)
—Q
-—R
R

/\

-Q R
Figure 2.5: A Tableau for (P A —=(Q V —R)) = (Q A R)

Theorem 2.5.4 (Semantic Tableaux is Sound). If for a formula ¢ the tableaux
calculus computes {(=¢)} =4 N and N is a closed, then ¢ is valid.

Proof. Tt is sufficient to show the following: (i) if NV is closed then the disjunction
of the conjunction of all sequence formulas is unsatisfiable (ii) all three sematic
tableaux rules preserve satisfiability.

Part (i) is obvious: if N is closed all its sequences are closed. A sequence is
closed if it contains a formula and its negation. The conjunction of two such
formulas is unsatisfiable.

Part (ii) is shown by induction on the length of a derivation and then by a
case analysis for the two rules. a-Expansion: for any valuation A if A(y) =1
then A(y1) = A(¢2) = 1. -Expansion: for any valuation A if A(¢)) = 1 then
A1) =1 or A(tp2) =1 (see Proposition 2.5.3). O

Theorem 2.5.5 (Semantic Tableaux Terminates). Starting from a start state
{(¢)} for some formula ¢, = is well-founded.

38 CHAPTER 2. PROPOSITIONAL LOGIC

Proof. Take the two-folded multi-set extension of the lexicographic extension
of > on the naturals on triples (n,k,l). The measure y is first defined on for-
mulas by u(¢) := (n,k,l) where n is the number of equivalence symbols in ¢,
k is the sum of all disjunction, conjunction, implication symbols in ¢ and [is
|¢|. On sequences (¢1,...,¢,) the measure is defined to deliver a multiset by
w((op1,...,én)) == {t1,...,tn} where t; = u(¢;) if ¢ is open in the sequence
and t; = (0,0,0) otherwise. Finally, u is extended to states by computing the
multiset u(N) := {u(s) | s € N}.

Note, that a-, as well as f-expansion strictly extend sequences. Once a for-
mula is closed in a sequence by applying an expansion rule, it remains closed
forever in the sequence.

An a-expansion on a formula 1)1 A, on the sequence (¢1, ..., 01 A Y2, ..., dn)
results in (@1, ...,9%1 A2, ..., dn,¥1,12). It needs to be shown u((¢1,...,9%1 A
Yo,y dn)) >Smul (A1, 1 Ao, .., P, 1,12)). In the second sequence
w(tpr A ps) = (0,0,0) because the formula is closed. For the triple (n,k,1)
assigned by u to 1 A 19 in the first sequence, it holds (n,k,l) >1ex p(t1),
(n,k,1) >1ex p(t2) and (n,k,1) >ex (0,0,0), the former because the 1; are
subformulas and the latter because I # 0. This proves the case.

A B-expansion on a formula 1)1 V)5 on the sequence (@1, ..., 01 Vo, ..., dn)
results in (¢1, . ,’(/11 \/’(/12,. . -7¢n7'¢}1)7 (¢1, . ,’(/11 \/’(/12,. . -7¢n7¢2)- It needs to
be shown M((¢1a s awl Vd]?a sy ¢n)) >mul /j’((¢17 s 71111 /\w27) ¢naw1)) and

M((Qsla e 717[]1 V¢2a R ¢n)) >mul M((¢1a e awl /\¢2, Tt ¢naw2)) In the derived
sequences u(1 V) = (0,0,0) because the formula is closed. For the triple

(n, k,1) assigned by p to ¢ V 12 in the starting sequence, it holds (n, k,) >lex
p(thr), (n, k1) >1ex u(th2) and (n,k,1) >iex (0,0,0), the former because the v;
are subformulas and the latter because [# 0. This proves the case. O

Theorem 2.5.6 (Semantic Tableaux is Complete). If ¢ is valid, semantic
tableaux computes a closed state out of {(—¢)}.

Proof. If ¢ is valid then —¢ is unsatisfiable. Now assume after termination the
resulting state and hence at least one sequence is not closed. For this sequence
consider a valuation A consisting of the literals in the sequence. By assumption
there are no opposite literals, so A is well-defined. I prove by contradiction that
A is a model for the sequence. Assume not. Then there is a minimal formula
in the sequence, with respect to the ordering on triples considered in the proof
of Theorem 2.5.5, that is not satisfied by A. By definition of A the formula
cannot be a literal. So it is an a-formula or a S-formula. In all cases at least one
descendant formula is contained in the sequence, is smaller than the original
formula, false in A (Proposition 2.5.3) and hence contradicts the assumption.
Therefore, A satisfies the sequence contradicting that —¢ is unsatisfiable. [

Corollary 2.5.7 (Semantic Tableaux generates Models). Let ¢ be a formula,
{(¢)} =% N and s € N be a sequence that is not closed and neither a-expansion
nor 3-expansion are applicable to s. Then the literals in s form a valuation that
is a model for ¢.

2.6. NORMAL FORMS 39

Proof. A consequence of the proof of Theorem 2.5.6 |

Consider the example tableau shown in Figure 2.5. The open first branch
corresponds to the valuation A = {P, R,—Q} which is a model of the formula

S[(PA=(QV-R)) = (QAR)

2.6 Normal Forms

In order to check the status of a formula ¢ via truth tables, the truth table
contains a column for the subformulas of ¢ and all valuations for its variables.
Any shape of ¢ is fine in order to generate the respective truth table. For the
superposition calculus (Section 2.8) and the CDCL (Conflict Driven Clause
Learning) calculus (Section 2.10) I introduce in the next two sections, the shape
of ¢ is restricted. Both calculi accept only conjunctions of disjunctions of literals,
a particular normal form. It is called Clause Normal Form or simply CNF. The
purpose of this section is to show that an arbitrary formula ¢ can be effectively
transformed into an equivalent formula in CNF.

Definition 2.6.1 (CNF, DNF). A formula isin conjunctive normal form (CNF)
or clause normal form if it is a conjunction of disjunctions of literals, or in other
words, a conjunction of clauses.

A formula is in disjunctive normal form (DNF), if it is a disjunction of
conjunctions of literals.

Although CNF and DNF are defined in almost any text book on au-
tomated reasoning, the definitions in the literature differ with respect
to the “border” cases: (i) are complementary literals permitted in a

clause? (ii) are duplicated literals permitted in a clause? (iii) are empty dis-
junctions/conjunctions permitted? For the above Definition 2.6.1 the answer is
“yes” to all three questions. A clause containing complementary literals is valid,
as in PV @ V =P. Duplicate literals may occur, as in PV @ V P. The empty
disjunction is 1 and the empty conjunction T, i.e., the empty disjunction is
always false while the empty conjunction is always true.

Checking the validity of CNF formulas or the unsatisfiability of DNF formu-
las is easy: (i) a formula in CNF is valid, if and only if each of its disjunctions
contains a pair of complementary literals P and —P, (ii) conversely, a formula
in DNF is unsatisfiable, if and only if each of its conjunctions contains a pair of
complementary literals P and —P (see Exercise 2.12).

On the other hand, checking the unsatisfiability of CNF formulas or
the validity of DNF formulas is coNP-complete. For any propositional
formula ¢ there is an equivalent formula in CNF and DNF and I will

prove this below by actually providing an effective procedure for the transforma-

tion. However, also because of the above comment on validity and satisfiability
checking for CNF and DNF formulas, respectively, the transformation is costly.

