
2.6. NORMAL FORMS 39

Proof. A onsequene of the proof of Theorem 2.5.6

Consider the example tableau shown in Figure 2.5. The open �rst branh

orresponds to the valuation A = fP;R;:Qg whih is a model of the formula

:[(P ^ :(Q _ :R))! (Q ^ R)℄.

2.6 Normal Forms

In order to hek the status of a formula � via truth tables, the truth table

ontains a olumn for the subformulas of � and all valuations for its variables.

Any shape of � is �ne in order to generate the respetive truth table. For the

superposition alulus (Setion 2.8) and the CDCL (Conit Driven Clause

Learning) alulus (Setion 2.10) I introdue in the next two setions, the shape

of � is restrited. Both aluli aept only onjuntions of disjuntions of literals,

a partiular normal form. It is alled Clause Normal Form or simply CNF. The

purpose of this setion is to show that an arbitrary formula � an be e�etively

transformed into an equivalent formula in CNF.

De�nition 2.6.1 (CNF, DNF). A formula is in onjuntive normal form (CNF)

or lause normal form if it is a onjuntion of disjuntions of literals, or in other

words, a onjuntion of lauses.

A formula is in disjuntive normal form (DNF), if it is a disjuntion of

onjuntions of literals.

So a CNF has the form

V

i

W

j

L

j

and a DNF the form

W

i

V

j

L

j

where L

j

are literals. A disjuntion of literals L

1

; : : : ; L

n

is alled a lause.

T

Although CNF and DNF are de�ned in almost any text book on au-

tomated reasoning, the de�nitions in the literature di�er with respet

to the \border" ases: (i) are omplementary literals permitted in a

lause? (ii) are dupliated literals permitted in a lause? (iii) are empty dis-

juntions/onjuntions permitted? For the above De�nition 2.6.1 the answer is

\yes" to all three questions. A lause ontaining omplementary literals is valid,

as in P _ Q _ :P . Dupliate literals may our, as in P _ Q _ P . The empty

disjuntion is ? and the empty onjuntion >, i.e., the empty disjuntion is

always false while the empty onjuntion is always true.

Cheking the validity of CNF formulas or the unsatis�ability of DNF formu-

las is easy: (i) a formula in CNF is valid, if and only if eah of its disjuntions

ontains a pair of omplementary literals P and :P , (ii) onversely, a formula

in DNF is unsatis�able, if and only if eah of its onjuntions ontains a pair of

omplementary literals P and :P (see Exerise 2.12).

C

On the other hand, heking the unsatis�ability of CNF formulas or

the validity of DNF formulas is oNP-omplete. For any propositional

formula � there is an equivalent formula in CNF and DNF and I will

prove this below by atually providing an e�etive proedure for the transforma-

tion. However, also beause of the above omment on validity and satis�ability

40 CHAPTER 2. PROPOSITIONAL LOGIC

heking for CNF and DNF formulas, respetively, the transformation is ostly.

In general, a CNF or DNF of a formula � is exponentially larger than � as long

as the normal forms need to be logially equivalent. If this is not needed, then

by the introdution of fresh propositional variables, CNF or DNF normal forms

for � an be omputed in linear time in the size of �. More onrete, given a for-

mula � instead of heking validity the unsatis�ability of :� an be onsidered.

Then the linear time CNF normal form algorithm (see Setion ??) omputes a

satis�ability preserving formula, i.e., the linear time CNF of :� is unsatis�able

i� :� is.

Proposition 2.6.2. For every formula there is an equivalent formula in CNF

and also an equivalent formula in DNF.

Proof. See the rewrite systems)

BCNF

, and)

ACNF

below and the lemmata on

their properties.

2.6.1 Basi CNF/DNF Transformation

The below algorithm bnf is a basi algorithm for transforming any propositional

formula into CNF, or DNF if rule PushDisj is replaed by PushConj.

Algorithm 2: bnf(�)

Input : A propositional formula �.

Output: A propositional formula equivalent to � in CNF.

1 whilerule (ElimEquiv(�)) do ;

2 ;

3 whilerule (ElimImp(�)) do ;

4 ;

5 whilerule (ElimTB1(�),: : :,ElimTB6(�)) do ;

6 ;

7 whilerule (PushNeg1(�),: : :,PushNeg3(�)) do ;

8 ;

9 whilerule (PushDisj(�)) do ;

10 ;

11 return �;

In the sequel I study only the CNF version of the algorithm. All properties

hold in an analogous way for the DNF version. To start an informal analysis of

the algorithm, onsider the following example CNF transformation.

Example 2.6.3. Consider the formula :((P _ Q) $ (P ! (Q ^ >))) and the

appliation of)

BCNF

depited in Figure 2.7. Already for this simple formula

the CNF transformation via)

BCNF

beomes quite messy. Note that the CNF

result in Figure 2.7 is still highly redundant. If I remove all disjuntions that

are trivially true, beause they ontain a propositional literal and its negation,

the result beomes

2.6. NORMAL FORMS 41

ElimEquiv �[(�$)℄

p

)

BCNF

�[(�!) ^ (! �)℄

p

ElimImp �[(�!)℄

p

)

BCNF

�[(:� _)℄

p

PushNeg1 �[:(� _)℄

p

)

BCNF

�[(:� ^ :)℄

p

PushNeg2 �[:(� ^)℄

p

)

BCNF

�[(:� _ :)℄

p

PushNeg3 �[::�℄

p

)

BCNF

�[�℄

p

PushDisj �[(�

1

^ �

2

) _ ℄

p

)

BCNF

�[(�

1

_) ^ (�

2

_)℄

p

PushConj �[(�

1

_ �

2

) ^ ℄

p

)

BDNF

�[(�

1

^) _ (�

2

^)℄

p

ElimTB1

�[(� ^ >)℄

p

)

BCNF

�[�℄

p

ElimTB2

�[(� ^ ?)℄

p

)

BCNF

�[?℄

p

ElimTB3

�[(� _ >)℄

p

)

BCNF

�[>℄

p

ElimTB4

�[(� _ ?)℄

p

)

BCNF

�[�℄

p

ElimTB5

�[:?℄

p

)

BCNF

�[>℄

p

ElimTB6

�[:>℄

p

)

BCNF

�[?℄

p

Figure 2.6: Basi CNF/DNF Transformation Rules

(P _ :Q) _ (:Q _ :P) ^ (:Q _ :Q)

now elimination of dupliate literals beauti�es the third lause and the overall

formula into

(P _ :Q) _ (:Q _ :P) ^ :Q.

Now let's inspet this formula a little loser. Any valuation satisfying the formula

must set A(Q) = 0, beause of the third lause. But then the �rst two lauses

are already satis�ed. The formula 6= Q subsumes the formulas P _ :Q and

:Q _ :P in this sense. The notion of subsumption will be disussed in detail

for lauses in Setion 2.7.

So it is eventually equivalent to

:Q.

The orretness of the result is obvious by looking at the original formula and

doing a ase analysis. For any valuation A with A(Q) = 1 the two parts of the

equivalene beome true, independently of P , so the overall formula is false.

For A(Q) = 0, for any value of P , the truth values of the two sides of the

equivalene are di�erent, so the equivalene beomes false and hene the overall

formula true.

After proving)

BCNF

orret and terminating, in the sueeding setion I

will present an algorithm)

ACNF

that atually generates :Q out of :((P _Q)$

(P ! (Q^>))) and does this without generating the mess of formulas)

BCNF

does. Please reall that the above rules apply modulo ommutativity of _, ^,

e.g., the rule ElimTB1 is both appliable to the formulas � ^ > and > ^ �.

42 CHAPTER 2. PROPOSITIONAL LOGIC

:((P _Q)$ (P ! (Q ^ >)))

)

Step 1

BCNF

:([(P _Q)! (P ! (Q ^ >))℄ ^ [(P ! (Q ^ >))! (P _Q)℄)

)

Step 2

BCNF

:([:(P _Q) _ (P ! (Q ^ >))℄ ^ [(P ! (Q ^ >))! (P _Q)℄)

)

Step 2

BCNF

:([:(P _Q) _ (P ! (Q ^ >))℄ ^ [:(P ! (Q ^ >)) _ (P _Q)℄)

)

Step 2

BCNF

:([:(P _Q) _ (P ! (Q ^ >))℄ ^ [:(:P _ (Q ^ >)) _ (P _Q)℄)

)

Step 2

BCNF

:([:(P _Q) _ (:P _ (Q ^>))℄ ^ [:(:P _ (Q ^>)) _ (P _Q)℄)

)

Step 3

BCNF

:([:(P _Q) _ (:P _Q)℄ ^ [:(:P _Q) _ (P _Q)℄)

)

Step 4

BCNF

:([(:P ^ :Q) _ (:P _Q)℄ ^ [:(:P _Q) _ (P _Q)℄)

)

Step 4

BCNF

:([(:P ^ :Q) _ (:P _Q)℄ ^ [(::P ^ :Q) _ (P _Q)℄)

)

Step 4

BCNF

:([(:P ^ :Q) _ (:P _Q)℄ ^ [(::P ^ :Q) _ (P _Q)℄)

)

�;Step 4

BCNF

[(::P _::Q)^ (::P ^:Q)℄_ [(:::P _::Q)^ (:P ^:Q)℄

)

�;Step 4

BCNF

[(P _Q) ^ (P ^ :Q)℄ _ [(:P _Q) ^ (:P ^ :Q)℄

)

�;Step 5

BCNF

(P _Q_:P _Q)^ (P _Q_:P)^ (P _Q_:Q)^ (P _:P _

Q) ^ (P _ :P) ^ (P _ :Q) ^ (:Q _ :P _Q) ^ (:Q _ :P) ^ (:Q _ :Q)

Figure 2.7: Example Basi CNF Transformation

I Figure 2.1 ontains more potential for simpli�ation. For example, the

idempoteny equivalenes (�^�) $ �, (�_�) $ � an be turned into

simpli�ation rules by applying them left to right. However, the way they are

stated they an only be applied in ase of idential subformulas. The formula

(P _Q)^ (Q_P) does this way not redue to (Q_P). A solution is to onsider

identity modulo ommutativity. But then identity modulo ommutativity and

assoiativity (AC) as in ((P _Q)_R)^ (Q_ (R_P) is still not deteted. On the

other hand, in pratie, heking identity modulo AC is often too expensive. An

elegant way out of this situation is to implement AC onnetives like _ or ^ with

exible arity, to normalize nested ourrenes of the onnetives, and �nally to

sort the arguments using some total ordering. Applying this to ((P _Q)_R)^

(Q_ (R_ P) with ordering R > P > Q the result is (Q_P _R)^ (Q_ P _R).

Now omplete AC simpli�ation is bak at the ost of heking for idential

subformulas. Note that in an appropriate implementation, the normalization

and ordering proess is only done one at the start and then normalization and

argument ordering is kept as an invariant.

2.6.2 Advaned CNF Transformation

The simple algorithm for CNF transformation Algorithm 2 an be improved in

various ways: (i) more aggressive formula simpli�ation, (ii) renaming, (iii) po-

larity dependant transformations. The before studied Example 2.6.3 serves al-

ready as a nie motivation for (i) and (iii). Firstly, removing > from the formula

:((P _Q)$ (P ! (Q^>))) �rst and not at the end of the algorithm obviously

shortens the overall proess. Seondly, if the equivalene is replaed polarity

dependant, i.e., using the equivalene (� $)$ (� ^) _ (:� ^ :) and not

2.6. NORMAL FORMS 43

the one used in rule ElimEquiv applied before, a lot of redundany generated

by)

BCNF

is prevented. In general, if [�

1

$ �

2

℄

p

and pol(; p) = �1 then

for CNF transformation do [(�

1

^ �

2

) _ (:�

1

^ :�

2

)℄

p

and if pol(; p) = 1 do

 [(�

1

! �

2

) ^ (�

2

! �

1

)℄

p

Item (ii) an be motivated by a formula

P

1

$ (P

2

$ (P

3

$ (: : : (P

n�1

$ P

n

) : : :)))

where Algorithm 2 generates a CNF with 2

n

lauses out of this formula. The

way out of this problem is the introdution of additional fresh propositional

variables that rename subformulas. The prie to pay is that a renamed formula

is not equivalent to the original formula due to the extra propositional variables,

but satis�ability preserving. A renamed formula for the above formula is

(P

1

$ (P

2

$ Q

1

)) ^ (Q

1

$ (P

3

$ Q

2

)) ^ : : :

where the Q

i

are additional, fresh propositional variables. The number of lauses

of the CNF of this formula is 4(n�1) where eah onjunt (Q

i

$ (P

j

$ Q

i+1

))

ontributes four lauses.

Proposition 2.6.4. Let P be a propositional variable not ourring in [�℄

p

.

1. If pol(; p) = 1, then [�℄

p

is satis�able if and only if [P ℄

p

^ (P ! �) is

satis�able.

2. If pol(; p) = �1, then [�℄

p

is satis�able if and only if [P ℄

p

^ (� ! P)

is satis�able.

3. If pol(; p) = 0, then [�℄

p

is satis�able if and only if [P ℄

p

^ (P $ �) is

satis�able.

Proof. Exerise.

So depending on the formula , the position p where the variable P is in-

trodued de�nition of P is given by

def(; p; P) :=

8

<

:

(P ! j

p

) if pol(; p) = 1

(j

p

! P) if pol(; p) = �1

(P $ j

p

) if pol(; p) = 0

For renaming there are several hoies whih subformula to hoose. Ob-

viously, sine a formula has only linearly many subformulas, renaming every

subformula works [20, 17℄. Basially this is what I show below. In the following

setion a renaming variant is introdued that produes smallest CNFs.

SimpleRenaming �)

SimpRen

�[P

1

℄

p

1

[P

2

℄

p

2

: : : [P

n

℄

p

n

^ def(�; p

1

; P

1

) ^

: : : ^ def(�[P

1

℄

p

1

[P

2

℄

p

2

: : : [P

n�1

℄

p

n�1

; p

n

; P

n

)

provided fp

1

; : : : ; p

n

g � pos(�) and for all i; i+ j either p

i

k p

i+j

or p

i

> p

i+j

and the P

i

are di�erent and new to �

44 CHAPTER 2. PROPOSITIONAL LOGIC

Atually, the rule SimpleRenaming does not provide an e�etive way to

ompute the set fp

1

; : : : ; p

n

g of positions in � to be renamed. Where are several

hoies. Following Plaisted and Greenbaum [17℄, the set ontains all positions

from � that do not point to a propositional variable or a negation symbol. In

addition, renaming position � does not make sense beause it would generate the

formula P ^ (P ! �) whih results in more lauses than just �. Choosing the

set of Plaisted and Greenbaum prevents the explosion in the number of lauses

during CNF transformation. But not all renamings are needed to this end.

A smaller set of positions from �, let's all it the set of obvious positions, is

still preventing the explosion and given by the rules: (i) if �j

p

is an equivalene

and there is a position q < p suh that �j

q

is either an equivalene or disjuntive

in � then p is an obvious position (ii) if �j

pq

is a onjuntive formula in �, �j

p

is a disjuntive formula in � and for all positions r with p < r < pq the formula

�j

r

is not a onjuntive formula then pq is an obvious position. A formula �j

p

is onjuntive in � if �j

p

is a onjuntion and pol(�; p) 2 f0; 1g or �j

p

is a

disjuntion or impliation and pol(�; p) 2 f0;�1g. Analogously, a formula �j

p

is disjuntive in � if �j

p

is a disjuntion or impliation and pol(�; p) 2 f0; 1g or

�j

p

is a onjuntion and pol(�; p) 2 f0;�1g.

Consider as an example the formula

[:(:P _ (Q ^ R))℄! [P ^ (:Q$:R)℄

The before mentioned polarity dependent transformations for equivalenes

are realized by the following two rules:

ElimEquiv1 �[(�$)℄

p

)

ACNF

�[(�!) ^ (! �)℄

p

provided pol(�; p) 2 f0; 1g

ElimEquiv2 �[(�$)℄

p

)

ACNF

�[(� ^) _ (:� ^ :)℄

p

provided pol(�; p) = �1

:((P _Q)$ (P ! (Q ^ >)))

)

Step 1

ACNF

:((P _Q)$ (P ! Q))

)

Step 3

ACNF

:(((P _Q) ^ (P ! Q)) _ (:(P _Q) ^ :(P ! Q)))

)

�;Step 4

ACNF

:(((P _Q) ^ (:P _Q)) _ (:(P _Q) ^ :(:P _Q)))

)

�;Step 5

ACNF

((:P ^ :Q) _ (P ^ :Q)) ^ ((P _Q) _ (:P _Q))

)

�;Step 6

ACNF

(:P _P)^(:P _:Q)^(:Q_P)^(:Q_:Q)^(P _Q_:P _Q)

Figure 2.8: Example Advaned CNF Transformation

2.6.3 Renaming Optimized for small CNF

Here I suggest to rename a subformula if the eventual number of generated

lauses by bnf dereases after renaming [5, 16℄. The below funtion a omputes

