2.6. NORMAL FORMS 39

Proof. A consequence of the proof of Theorem 2.5.6 |

Consider the example tableau shown in Figure 2.5. The open first branch
corresponds to the valuation A = {P, R, ~Q} which is a model of the formula
S[(PA=(QV-R)) = (QAR).

2.6 Normal Forms

In order to check the status of a formula ¢ via truth tables, the truth table
contains a column for the subformulas of ¢ and all valuations for its variables.
Any shape of ¢ is fine in order to generate the respective truth table. For the
superposition calculus (Section 2.8) and the CDCL (Conflict Driven Clause
Learning) calculus (Section 2.10) I introduce in the next two sections, the shape
of ¢ is restricted. Both calculi accept only conjunctions of disjunctions of literals,
a particular normal form. It is called Clause Normal Form or simply CNF. The
purpose of this section is to show that an arbitrary formula ¢ can be effectively
transformed into an equivalent formula in CNF.

Definition 2.6.1 (CNF, DNF). A formulaisin conjunctive normal form (CNF)
or clause normal form if it is a conjunction of disjunctions of literals, or in other
words, a conjunction of clauses.

A formula is in disjunctive normal form (DNF), if it is a disjunction of
conjunctions of literals.

So a CNF has the form A;V; L; and a DNF the form \/; A, L; where L;
are literals. A disjunction of literals Ly, ..., L, is called a clause.

Although CNF and DNF are defined in almost any text book on au-
tomated reasoning, the definitions in the literature differ with respect
to the “border” cases: (i) are complementary literals permitted in a

clause? (ii) are duplicated literals permitted in a clause? (iii) are empty dis-
junctions/conjunctions permitted? For the above Definition 2.6.1 the answer is
“yes” to all three questions. A clause containing complementary literals is valid,
as in PV @ V =P. Duplicate literals may occur, as in PV @ V P. The empty
disjunction is 1 and the empty conjunction T, i.e., the empty disjunction is
always false while the empty conjunction is always true.

Checking the validity of CNF formulas or the unsatisfiability of DNF formu-
las is easy: (i) a formula in CNF is valid, if and only if each of its disjunctions
contains a pair of complementary literals P and —P, (ii) conversely, a formula
in DNF is unsatisfiable, if and only if each of its conjunctions contains a pair of
complementary literals P and =P (see Exercise 2.12).

On the other hand, checking the unsatisfiability of CNF formulas or
the validity of DNF formulas is coNP-complete. For any propositional
formula ¢ there is an equivalent formula in CNF and DNF and T will

prove this below by actually providing an effective procedure for the transforma-
tion. However, also because of the above comment on validity and satisfiability

40 CHAPTER 2. PROPOSITIONAL LOGIC

checking for CNF and DNF formulas, respectively, the transformation is costly.
In general, a CNF or DNF of a formula ¢ is exponentially larger than ¢ as long
as the normal forms need to be logically equivalent. If this is not needed, then
by the introduction of fresh propositional variables, CNF or DNF normal forms
for ¢ can be computed in linear time in the size of ¢. More concrete, given a for-
mula ¢ instead of checking validity the unsatisfiability of —¢ can be considered.
Then the linear time CNF normal form algorithm (see Section ??) computes a

satisfiability preserving formula, i.e., the linear time CNF of —¢ is unsatisfiable
iff —|¢5 is.

Proposition 2.6.2. For every formula there is an equivalent formula in CNF
and also an equivalent formula in DNF.

Proof. See the rewrite systems =ponrF, and = acnrF below and the lemmata on
their properties. O

2.6.1 Basic CNF/DNF Transformation

The below algorithm benf is a basic algorithm for transforming any propositional
formula into CNF, or DNF if rule PushDisj is replaced by PushConj.

Algorithm 2: benf(¢)

Input : A propositional formula ¢.
Output: A propositional formula ¢ equivalent to ¢ in CNF.
whilerule (ElimEquiv(¢)) do ;

whilerule (ElimImp(¢)) do ;
whilerule (ElimTB1(g),...,.EimTB6(¢)) do ;

whilerule (PushNegl(9),...,PushNeg3(¢)) do ;

© 0 N O R WY =

whilerule (PushDisj(¢)) do ;

-
(=]

?

return ¢;

[y
=

In the sequel I study only the CNF version of the algorithm. All properties
hold in an analogous way for the DNF version. To start an informal analysis of
the algorithm, consider the following example CNF transformation.

Example 2.6.3. Consider the formula =((PV Q) < (P — (Q A T))) and the
application of =gonr depicted in Figure 2.7. Already for this simple formula
the CNF transformation via =pcnr becomes quite messy. Note that the CNF
result in Figure 2.7 is still highly redundant. If I remove all disjunctions that
are trivially true, because they contain a propositional literal and its negation,
the result becomes

2.6. NORMAL FORMS 41

¢ =)A= 9)lp
¢V Y)p

(_‘¢ A _‘w)]p

(_‘¢ \ _‘w)]p

ElimEquiv x[(¢ < ¢¥)], =Bone X[(
ElimImp x[(¢ = ¢¥)], =Bone X[(
PushNegl x[~(¢ V)], =BoNF X
PushNeg2 x[- (¢ A¢)], =BCoNE X
PushNeg3 x[—¢], =rone X[P]p
PushDisj x[(¢1 A ¢2) V], =Bene X[(61 V) A (2 V)],
PushConj x[(¢1V ¢2) AY], =BDNE X[(01 AY)V (62 A)],p
ElimTB1 x[(¢AT), =Benre X[6lp
ElimTB2 x[(¢A L), =Bene x[L]p
ElimTB3 x[(¢V T)], =Bone X[Tlp

[(

[

[

[
[

ElimTB4 x[(¢V 1), =Bcone X[9]p
ElimTB5 x[~Ll], =Bcne X[Tp
ElimTB6 x[~T], =Bcne X[L1]p

Figure 2.6: Basic CNF/DNF Transformation Rules

(PV=Q)V (=QV=P)A(=QV=Q)
now elimination of duplicate literals beautifies the third clause and the overall
formula into
(PV=Q)V (~QV-P)A-Q.

Now let’s inspect this formula a little closer. Any valuation satisfying the formula
must set A(Q) = 0, because of the third clause. But then the first two clauses
are already satisfied. The formula # @ subsumes the formulas P V =) and
=@ V =P in this sense. The notion of subsumption will be discussed in detail
for clauses in Section 2.7.

So it is eventually equivalent to
|Q
The correctness of the result is obvious by looking at the original formula and
doing a case analysis. For any valuation A with A(Q) = 1 the two parts of the
equivalence become true, independently of P, so the overall formula is false.
For A(Q) = 0, for any value of P, the truth values of the two sides of the
equivalence are different, so the equivalence becomes false and hence the overall
formula true.

After proving =pcnp correct and terminating, in the succeeding section I
will present an algorithm = scnp that actually generates =@ out of =((PVQ) +
(P — (QAT))) and does this without generating the mess of formulas =gceNF
does. Please recall that the above rules apply modulo commutativity of V, A,
e.g., the rule ElimTB1 is both applicable to the formulas p A T and T A ¢.

42 CHAPTER 2. PROPOSITIONAL LOGIC

~((PVQ) & (P—=(QAT))

SSeRl S((PVQ) = (P = (QAT)IALP = (QAT)) = (PVQ))

=gk ~(L(PVQ) V(P @QATNIAIP = (QAT) = (PVQ)D
Speke ([FPVQ)V (P = (QATNIA[(P = (QAT)V(PVQ))
S3R2 S([A(PVQ)V (P = (QAT)A[(-PV(QAT) V(PVQ))
Spcke ((PVQ)VPVQATIAEPYQAT)V(PVQ))
SER S S([~(PVQ)V (=P V Q) A[=(=PV Q) V (PV Q)

SR S([(-P A=Q) V (=P V Q)] A[A(=PV Q) V (PV Q)])

SR e S([(AP A=Q) V (=P V Q)] A[(-=P A=Q) V (PV Q)])

S5t (P A-Q)V (-PV Q) A[(-=P A-Q) V (PV Q)])

SEeNE + [(57PV=2Q) A (-=P AQ)]V [(+==P V==Q) A (<P A-Q)]

[
Shonb [(PVQ)A(PA=Q)]V (=P V Q) A (=P A=Q)]
=Spone” (PVQV-PVQ)A(PVQV-P)A(PVQV=Q)A(PV-PV
QAN (PV-PYA(PV-Q)AN(-QV=PVQ)A(=QV-=P)A(=QV Q)

Figure 2.7: Example Basic CNF Transformation

Figure 2.1 contains more potential for simplification. For example, the

idempotency equivalences (pA¢@) «> ¢, (pVd) <> ¢ can be turned into
simplification rules by applying them left to right. However, the way they are
stated they can only be applied in case of identical subformulas. The formula
(PVQ)A(QV P) does this way not reduce to (Q V P). A solution is to consider
identity modulo commutativity. But then identity modulo commutativity and
associativity (AC) asin ((PVQ)VR)A(QV (RV P) is still not detected. On the
other hand, in practice, checking identity modulo AC is often too expensive. An
elegant way out of this situation is to implement AC connectives like V or A with
flexible arity, to normalize nested occurrences of the connectives, and finally to
sort the arguments using some total ordering. Applying this to ((PV Q) V R) A
(QV (RV P) with ordering R > P > @ the result is (Q VPV R)A(QV PV R).
Now complete AC simplification is back at the cost of checking for identical
subformulas. Note that in an appropriate implementation, the normalization
and ordering process is only done once at the start and then normalization and
argument ordering is kept as an invariant.

2.6.2 Advanced CNF Transformation

The simple algorithm for CNF transformation Algorithm 2 can be improved in
various ways: (i) more aggressive formula simplification, (ii) renaming, (iii) po-
larity dependant transformations. The before studied Example 2.6.3 serves al-
ready as a nice motivation for (i) and (iii). Firstly, removing T from the formula
-((PVQ) < (P — (QAT))) first and not at the end of the algorithm obviously
shortens the overall process. Secondly, if the equivalence is replaced polarity
dependant, i.e., using the equivalence (¢ <> ¥) <> (¢ A1) V (=d A —¢p) and not

2.6. NORMAL FORMS 43

the one used in rule ElimEquiv applied before, a lot of redundancy generated
by =pcnr is prevented. In general, if ¢[¢; <> ¢2], and pol(y,p) = —1 then
for CNF transformation do ¢[(¢1 A ¢2) V (1 A ~2)], and if pol(yp,p) =1 do

Yl(d1 = d2) A (P2 — é1)]p

Item (ii) can be motivated by a formula
P~ (P2 s (P3 s (.. (Pn,1 s Pn) ..)))

where Algorithm 2 generates a CNF with 2™ clauses out of this formula. The
way out of this problem is the introduction of additional fresh propositional
variables that rename subformulas. The price to pay is that a renamed formula
is not equivalent to the original formula due to the extra propositional variables,
but satisfiability preserving. A renamed formula for the above formula is

(P1 — (P2 HQl))/\(Ql — (Pg (—)Qg))/\

where the ; are additional, fresh propositional variables. The number of clauses
of the CNF of this formula is 4(n — 1) where each conjunct (Q; <> (Pj ¢ Qi41))
contributes four clauses.

Proposition 2.6.4. Let P be a propositional variable not occurring in ¢[¢],.

1. If pol(¢p, p) = 1, then 9[¢], is satisfiable if and only if ¢[P], A (P — ¢) is
satisfiable.

2. If pol(¢, p) = —1, then 9[¢], is satisfiable if and only if ¢[P], A (¢ — P)
is satisfiable.

3. If pol(¢), p) = 0, then ¢[¢)], is satisfiable if and only if ¥[P], A (P > ¢) is
satisfiable.

Proof. Exercise. O

So depending on the formula 1, the position p where the variable P is in-
troduced definition of P is given by

(P —lp) if pol(y,p) =1
def(d},p, P) = (¢|P — P) if pOI(wap) =-1
(P <> plp) if pol(s,p) =0

For renaming there are several choices which subformula to choose. Ob-
viously, since a formula has only linearly many subformulas, renaming every
subformula works [20, 17]. Basically this is what I show below. In the following
section a renaming variant is introduced that produces smallest CNFs.

SimpleRenaming ¢ =SimpRen P[Pilp, [Pelps - - - [Pnlp, A def(d,p1, Pr) A
oo A def(P[Pr]p, [Palps - - - [Prn—1lpn_1>Pn, Pn)

provided {p1,...,pn} C pos(¢) and for all 4,7 + j either p; || pi+; or p; > piy;j
and the P; are different and new to ¢

44 CHAPTER 2. PROPOSITIONAL LOGIC

Actually, the rule SimpleRenaming does not provide an effective way to
compute the set {p1,...,pn} of positions in ¢ to be renamed. Where are several
choices. Following Plaisted and Greenbaum [17], the set contains all positions
from ¢ that do not point to a propositional variable or a negation symbol. In
addition, renaming position € does not make sense because it would generate the
formula P A (P — ¢) which results in more clauses than just ¢. Choosing the
set of Plaisted and Greenbaum prevents the explosion in the number of clauses
during CNF transformation. But not all renamings are needed to this end.

A smaller set of positions from ¢, let’s call it the set of obvious positions, is
still preventing the explosion and given by the rules: (i) if ¢|, is an equivalence
and there is a position ¢ < p such that ¢|, is either an equivalence or disjunctive
in ¢ then p is an obvious position (ii) if ¢|,, is a conjunctive formula in ¢, ¢|,
is a disjunctive formula in ¢ and for all positions r with p < r < pg the formula
é|r is not a conjunctive formula then pg is an obvious position. A formula ¢|,
is conjunctive in ¢ if ¢|, is a conjunction and pol(¢,p) € {0,1} or ¢|, is a
disjunction or implication and pol(¢,p) € {0,—1}. Analogously, a formula ¢|,
is disjunctive in ¢ if ¢|, is a disjunction or implication and pol(¢,p) € {0,1} or
é|p is a conjunction and pol(¢,p) € {0,—1}.

Consider as an example the formula

[=(=PV(QAR))] = [PA(-Q < —R)]

The before mentioned polarity dependent transformations for equivalences
are realized by the following two rules:

ElimEquivl x[(¢ < ¢¥)], =acne X[(¢ =) A (W = 9],
provided pol(x,p) € {0,1}

ElimEquiv2 x[(¢ <> ¢¥)], =acne X[(@ A Q) V (=d A=),
provided pol(x,p) = —1

~(PVQ) & (P = (QAT)))

SheRe S(PVQ) 5 (P = Q))

=rRe “(PVQ)A(P = Q) V(=(PVQ)A=(P = Q)

SRR S(PVQ)A(-PV Q) V (<(PV Q) A=(=P V Q)))
ShorR? (P A=Q)V (P A=Q) A ((PVQ)V (P VQ))

S NoRR 8 (APVP)A(-PV-Q)A(~QVP)A(-QV-Q)A(PVQV-PVQ)

Figure 2.8: Example Advanced CNF Transformation

2.6.3 Renaming Optimized for small CNF

Here T suggest to rename a subformula if the eventual number of generated
clauses by benf decreases after renaming [5, 16]. The below function ac computes

