
2.6. NORMAL FORMS 39

Proof. A 
onsequen
e of the proof of Theorem 2.5.6

Consider the example tableau shown in Figure 2.5. The open �rst bran
h


orresponds to the valuation A = fP;R;:Qg whi
h is a model of the formula

:[(P ^ :(Q _ :R))! (Q ^ R)℄.

2.6 Normal Forms

In order to 
he
k the status of a formula � via truth tables, the truth table


ontains a 
olumn for the subformulas of � and all valuations for its variables.

Any shape of � is �ne in order to generate the respe
tive truth table. For the

superposition 
al
ulus (Se
tion 2.8) and the CDCL (Con
i
t Driven Clause

Learning) 
al
ulus (Se
tion 2.10) I introdu
e in the next two se
tions, the shape

of � is restri
ted. Both 
al
uli a

ept only 
onjun
tions of disjun
tions of literals,

a parti
ular normal form. It is 
alled Clause Normal Form or simply CNF. The

purpose of this se
tion is to show that an arbitrary formula � 
an be e�e
tively

transformed into an equivalent formula in CNF.

De�nition 2.6.1 (CNF, DNF). A formula is in 
onjun
tive normal form (CNF)

or 
lause normal form if it is a 
onjun
tion of disjun
tions of literals, or in other

words, a 
onjun
tion of 
lauses.

A formula is in disjun
tive normal form (DNF), if it is a disjun
tion of


onjun
tions of literals.

So a CNF has the form

V

i

W

j

L

j

and a DNF the form

W

i

V

j

L

j

where L

j

are literals. A disjun
tion of literals L

1

; : : : ; L

n

is 
alled a 
lause.

T

Although CNF and DNF are de�ned in almost any text book on au-

tomated reasoning, the de�nitions in the literature di�er with respe
t

to the \border" 
ases: (i) are 
omplementary literals permitted in a


lause? (ii) are dupli
ated literals permitted in a 
lause? (iii) are empty dis-

jun
tions/
onjun
tions permitted? For the above De�nition 2.6.1 the answer is

\yes" to all three questions. A 
lause 
ontaining 
omplementary literals is valid,

as in P _ Q _ :P . Dupli
ate literals may o

ur, as in P _ Q _ P . The empty

disjun
tion is ? and the empty 
onjun
tion >, i.e., the empty disjun
tion is

always false while the empty 
onjun
tion is always true.

Che
king the validity of CNF formulas or the unsatis�ability of DNF formu-

las is easy: (i) a formula in CNF is valid, if and only if ea
h of its disjun
tions


ontains a pair of 
omplementary literals P and :P , (ii) 
onversely, a formula

in DNF is unsatis�able, if and only if ea
h of its 
onjun
tions 
ontains a pair of


omplementary literals P and :P (see Exer
ise 2.12).

C

On the other hand, 
he
king the unsatis�ability of CNF formulas or

the validity of DNF formulas is 
oNP-
omplete. For any propositional

formula � there is an equivalent formula in CNF and DNF and I will

prove this below by a
tually providing an e�e
tive pro
edure for the transforma-

tion. However, also be
ause of the above 
omment on validity and satis�ability



40 CHAPTER 2. PROPOSITIONAL LOGIC


he
king for CNF and DNF formulas, respe
tively, the transformation is 
ostly.

In general, a CNF or DNF of a formula � is exponentially larger than � as long

as the normal forms need to be logi
ally equivalent. If this is not needed, then

by the introdu
tion of fresh propositional variables, CNF or DNF normal forms

for � 
an be 
omputed in linear time in the size of �. More 
on
rete, given a for-

mula � instead of 
he
king validity the unsatis�ability of :� 
an be 
onsidered.

Then the linear time CNF normal form algorithm (see Se
tion ??) 
omputes a

satis�ability preserving formula, i.e., the linear time CNF of :� is unsatis�able

i� :� is.

Proposition 2.6.2. For every formula there is an equivalent formula in CNF

and also an equivalent formula in DNF.

Proof. See the rewrite systems)

BCNF

, and)

ACNF

below and the lemmata on

their properties.

2.6.1 Basi
 CNF/DNF Transformation

The below algorithm b
nf is a basi
 algorithm for transforming any propositional

formula into CNF, or DNF if rule PushDisj is repla
ed by PushConj.

Algorithm 2: b
nf(�)

Input : A propositional formula �.

Output: A propositional formula  equivalent to � in CNF.

1 whilerule (ElimEquiv(�)) do ;

2 ;

3 whilerule (ElimImp(�)) do ;

4 ;

5 whilerule (ElimTB1(�),: : :,ElimTB6(�)) do ;

6 ;

7 whilerule (PushNeg1(�),: : :,PushNeg3(�)) do ;

8 ;

9 whilerule (PushDisj(�)) do ;

10 ;

11 return �;

In the sequel I study only the CNF version of the algorithm. All properties

hold in an analogous way for the DNF version. To start an informal analysis of

the algorithm, 
onsider the following example CNF transformation.

Example 2.6.3. Consider the formula :((P _ Q) $ (P ! (Q ^ >))) and the

appli
ation of )

BCNF

depi
ted in Figure 2.7. Already for this simple formula

the CNF transformation via )

BCNF

be
omes quite messy. Note that the CNF

result in Figure 2.7 is still highly redundant. If I remove all disjun
tions that

are trivially true, be
ause they 
ontain a propositional literal and its negation,

the result be
omes



2.6. NORMAL FORMS 41

ElimEquiv �[(�$  )℄

p

)

BCNF

�[(�!  ) ^ ( ! �)℄

p

ElimImp �[(�!  )℄

p

)

BCNF

�[(:� _  )℄

p

PushNeg1 �[:(� _  )℄

p

)

BCNF

�[(:� ^ : )℄

p

PushNeg2 �[:(� ^  )℄

p

)

BCNF

�[(:� _ : )℄

p

PushNeg3 �[::�℄

p

)

BCNF

�[�℄

p

PushDisj �[(�

1

^ �

2

) _  ℄

p

)

BCNF

�[(�

1

_  ) ^ (�

2

_  )℄

p

PushConj �[(�

1

_ �

2

) ^  ℄

p

)

BDNF

�[(�

1

^  ) _ (�

2

^  )℄

p

ElimTB1

�[(� ^ >)℄

p

)

BCNF

�[�℄

p

ElimTB2

�[(� ^ ?)℄

p

)

BCNF

�[?℄

p

ElimTB3

�[(� _ >)℄

p

)

BCNF

�[>℄

p

ElimTB4

�[(� _ ?)℄

p

)

BCNF

�[�℄

p

ElimTB5

�[:?℄

p

)

BCNF

�[>℄

p

ElimTB6

�[:>℄

p

)

BCNF

�[?℄

p

Figure 2.6: Basi
 CNF/DNF Transformation Rules

(P _ :Q) _ (:Q _ :P ) ^ (:Q _ :Q)

now elimination of dupli
ate literals beauti�es the third 
lause and the overall

formula into

(P _ :Q) _ (:Q _ :P ) ^ :Q.

Now let's inspe
t this formula a little 
loser. Any valuation satisfying the formula

must set A(Q) = 0, be
ause of the third 
lause. But then the �rst two 
lauses

are already satis�ed. The formula 6= Q subsumes the formulas P _ :Q and

:Q _ :P in this sense. The notion of subsumption will be dis
ussed in detail

for 
lauses in Se
tion 2.7.

So it is eventually equivalent to

:Q.

The 
orre
tness of the result is obvious by looking at the original formula and

doing a 
ase analysis. For any valuation A with A(Q) = 1 the two parts of the

equivalen
e be
ome true, independently of P , so the overall formula is false.

For A(Q) = 0, for any value of P , the truth values of the two sides of the

equivalen
e are di�erent, so the equivalen
e be
omes false and hen
e the overall

formula true.

After proving )

BCNF


orre
t and terminating, in the su

eeding se
tion I

will present an algorithm)

ACNF

that a
tually generates :Q out of :((P _Q)$

(P ! (Q^>))) and does this without generating the mess of formulas )

BCNF

does. Please re
all that the above rules apply modulo 
ommutativity of _, ^,

e.g., the rule ElimTB1 is both appli
able to the formulas � ^ > and > ^ �.



42 CHAPTER 2. PROPOSITIONAL LOGIC

:((P _Q)$ (P ! (Q ^ >)))

)

Step 1

BCNF

:([(P _Q)! (P ! (Q ^ >))℄ ^ [(P ! (Q ^ >))! (P _Q)℄)

)

Step 2

BCNF

:([:(P _Q) _ (P ! (Q ^ >))℄ ^ [(P ! (Q ^ >))! (P _Q)℄)

)

Step 2

BCNF

:([:(P _Q) _ (P ! (Q ^ >))℄ ^ [:(P ! (Q ^ >)) _ (P _Q)℄)

)

Step 2

BCNF

:([:(P _Q) _ (P ! (Q ^ >))℄ ^ [:(:P _ (Q ^ >)) _ (P _Q)℄)

)

Step 2

BCNF

:([:(P _Q) _ (:P _ (Q ^>))℄ ^ [:(:P _ (Q ^>)) _ (P _Q)℄)

)

Step 3

BCNF

:([:(P _Q) _ (:P _Q)℄ ^ [:(:P _Q) _ (P _Q)℄)

)

Step 4

BCNF

:([(:P ^ :Q) _ (:P _Q)℄ ^ [:(:P _Q) _ (P _Q)℄)

)

Step 4

BCNF

:([(:P ^ :Q) _ (:P _Q)℄ ^ [(::P ^ :Q) _ (P _Q)℄)

)

Step 4

BCNF

:([(:P ^ :Q) _ (:P _Q)℄ ^ [(::P ^ :Q) _ (P _Q)℄)

)

�;Step 4

BCNF

[(::P _::Q)^ (::P ^:Q)℄_ [(:::P _::Q)^ (:P ^:Q)℄

)

�;Step 4

BCNF

[(P _Q) ^ (P ^ :Q)℄ _ [(:P _Q) ^ (:P ^ :Q)℄

)

�;Step 5

BCNF

(P _Q_:P _Q)^ (P _Q_:P )^ (P _Q_:Q)^ (P _:P _

Q) ^ (P _ :P ) ^ (P _ :Q) ^ (:Q _ :P _Q) ^ (:Q _ :P ) ^ (:Q _ :Q)

Figure 2.7: Example Basi
 CNF Transformation

I Figure 2.1 
ontains more potential for simpli�
ation. For example, the

idempoten
y equivalen
es (�^�) $ �, (�_�) $ � 
an be turned into

simpli�
ation rules by applying them left to right. However, the way they are

stated they 
an only be applied in 
ase of identi
al subformulas. The formula

(P _Q)^ (Q_P ) does this way not redu
e to (Q_P ). A solution is to 
onsider

identity modulo 
ommutativity. But then identity modulo 
ommutativity and

asso
iativity (AC) as in ((P _Q)_R)^ (Q_ (R_P ) is still not dete
ted. On the

other hand, in pra
ti
e, 
he
king identity modulo AC is often too expensive. An

elegant way out of this situation is to implement AC 
onne
tives like _ or ^ with


exible arity, to normalize nested o

urren
es of the 
onne
tives, and �nally to

sort the arguments using some total ordering. Applying this to ((P _Q)_R)^

(Q_ (R_ P ) with ordering R > P > Q the result is (Q_P _R)^ (Q_ P _R).

Now 
omplete AC simpli�
ation is ba
k at the 
ost of 
he
king for identi
al

subformulas. Note that in an appropriate implementation, the normalization

and ordering pro
ess is only done on
e at the start and then normalization and

argument ordering is kept as an invariant.

2.6.2 Advan
ed CNF Transformation

The simple algorithm for CNF transformation Algorithm 2 
an be improved in

various ways: (i) more aggressive formula simpli�
ation, (ii) renaming, (iii) po-

larity dependant transformations. The before studied Example 2.6.3 serves al-

ready as a ni
e motivation for (i) and (iii). Firstly, removing > from the formula

:((P _Q)$ (P ! (Q^>))) �rst and not at the end of the algorithm obviously

shortens the overall pro
ess. Se
ondly, if the equivalen
e is repla
ed polarity

dependant, i.e., using the equivalen
e (� $  )$ (� ^  ) _ (:� ^ : ) and not



2.6. NORMAL FORMS 43

the one used in rule ElimEquiv applied before, a lot of redundan
y generated

by )

BCNF

is prevented. In general, if  [�

1

$ �

2

℄

p

and pol( ; p) = �1 then

for CNF transformation do  [(�

1

^ �

2

) _ (:�

1

^ :�

2

)℄

p

and if pol( ; p) = 1 do

 [(�

1

! �

2

) ^ (�

2

! �

1

)℄

p

Item (ii) 
an be motivated by a formula

P

1

$ (P

2

$ (P

3

$ (: : : (P

n�1

$ P

n

) : : :)))

where Algorithm 2 generates a CNF with 2

n


lauses out of this formula. The

way out of this problem is the introdu
tion of additional fresh propositional

variables that rename subformulas. The pri
e to pay is that a renamed formula

is not equivalent to the original formula due to the extra propositional variables,

but satis�ability preserving. A renamed formula for the above formula is

(P

1

$ (P

2

$ Q

1

)) ^ (Q

1

$ (P

3

$ Q

2

)) ^ : : :

where the Q

i

are additional, fresh propositional variables. The number of 
lauses

of the CNF of this formula is 4(n�1) where ea
h 
onjun
t (Q

i

$ (P

j

$ Q

i+1

))


ontributes four 
lauses.

Proposition 2.6.4. Let P be a propositional variable not o

urring in  [�℄

p

.

1. If pol( ; p) = 1, then  [�℄

p

is satis�able if and only if  [P ℄

p

^ (P ! �) is

satis�able.

2. If pol( ; p) = �1, then  [�℄

p

is satis�able if and only if  [P ℄

p

^ (� ! P )

is satis�able.

3. If pol( ; p) = 0, then  [�℄

p

is satis�able if and only if  [P ℄

p

^ (P $ �) is

satis�able.

Proof. Exer
ise.

So depending on the formula  , the position p where the variable P is in-

trodu
ed de�nition of P is given by

def( ; p; P ) :=

8

<

:

(P !  j

p

) if pol( ; p) = 1

( j

p

! P ) if pol( ; p) = �1

(P $  j

p

) if pol( ; p) = 0

For renaming there are several 
hoi
es whi
h subformula to 
hoose. Ob-

viously, sin
e a formula has only linearly many subformulas, renaming every

subformula works [20, 17℄. Basi
ally this is what I show below. In the following

se
tion a renaming variant is introdu
ed that produ
es smallest CNFs.

SimpleRenaming � )

SimpRen

�[P

1

℄

p

1

[P

2

℄

p

2

: : : [P

n

℄

p

n

^ def(�; p

1

; P

1

) ^

: : : ^ def(�[P

1

℄

p

1

[P

2

℄

p

2

: : : [P

n�1

℄

p

n�1

; p

n

; P

n

)

provided fp

1

; : : : ; p

n

g � pos(�) and for all i; i+ j either p

i

k p

i+j

or p

i

> p

i+j

and the P

i

are di�erent and new to �



44 CHAPTER 2. PROPOSITIONAL LOGIC

A
tually, the rule SimpleRenaming does not provide an e�e
tive way to


ompute the set fp

1

; : : : ; p

n

g of positions in � to be renamed. Where are several


hoi
es. Following Plaisted and Greenbaum [17℄, the set 
ontains all positions

from � that do not point to a propositional variable or a negation symbol. In

addition, renaming position � does not make sense be
ause it would generate the

formula P ^ (P ! �) whi
h results in more 
lauses than just �. Choosing the

set of Plaisted and Greenbaum prevents the explosion in the number of 
lauses

during CNF transformation. But not all renamings are needed to this end.

A smaller set of positions from �, let's 
all it the set of obvious positions, is

still preventing the explosion and given by the rules: (i) if �j

p

is an equivalen
e

and there is a position q < p su
h that �j

q

is either an equivalen
e or disjun
tive

in � then p is an obvious position (ii) if �j

pq

is a 
onjun
tive formula in �, �j

p

is a disjun
tive formula in � and for all positions r with p < r < pq the formula

�j

r

is not a 
onjun
tive formula then pq is an obvious position. A formula �j

p

is 
onjun
tive in � if �j

p

is a 
onjun
tion and pol(�; p) 2 f0; 1g or �j

p

is a

disjun
tion or impli
ation and pol(�; p) 2 f0;�1g. Analogously, a formula �j

p

is disjun
tive in � if �j

p

is a disjun
tion or impli
ation and pol(�; p) 2 f0; 1g or

�j

p

is a 
onjun
tion and pol(�; p) 2 f0;�1g.

Consider as an example the formula

[:(:P _ (Q ^ R))℄! [P ^ (:Q$ :R)℄

The before mentioned polarity dependent transformations for equivalen
es

are realized by the following two rules:

ElimEquiv1 �[(�$  )℄

p

)

ACNF

�[(�!  ) ^ ( ! �)℄

p

provided pol(�; p) 2 f0; 1g

ElimEquiv2 �[(�$  )℄

p

)

ACNF

�[(� ^  ) _ (:� ^ : )℄

p

provided pol(�; p) = �1

:((P _Q)$ (P ! (Q ^ >)))

)

Step 1

ACNF

:((P _Q)$ (P ! Q))

)

Step 3

ACNF

:(((P _Q) ^ (P ! Q)) _ (:(P _Q) ^ :(P ! Q)))

)

�;Step 4

ACNF

:(((P _Q) ^ (:P _Q)) _ (:(P _Q) ^ :(:P _Q)))

)

�;Step 5

ACNF

((:P ^ :Q) _ (P ^ :Q)) ^ ((P _Q) _ (:P _Q))

)

�;Step 6

ACNF

(:P _P )^(:P _:Q)^(:Q_P )^(:Q_:Q)^(P _Q_:P _Q)

Figure 2.8: Example Advan
ed CNF Transformation

2.6.3 Renaming Optimized for small CNF

Here I suggest to rename a subformula if the eventual number of generated


lauses by b
nf de
reases after renaming [5, 16℄. The below fun
tion a
 
omputes


