

CDCL(T)

Automated Reasoning II

Max Planck Institute for Informatics

13th June 2017

Outline

[Introduction](#page-2-0)

[CDCL\(T\) Calculus](#page-20-0)

[Properties of CDCL\(T\)](#page-45-0)

[Implementation and Improvements](#page-59-0)

[Conclusion](#page-64-0)

Introduction

- Aim: decide satisfiability of a (quantifier-free) first-order formula with respect to a background theory
	- e.g. linear (real/integer) arithmetic, equality and uninterpreted functions, arrays, bitvectors, etc.

Example (Linear Integer Arithmetic)

(2*x* − 2*y* ≤ 1)∧ ((−2*x* + 2*y* ≤ 1) ∨ ⊥) ∧ (¬(2*x* − 2*y* ≤ 1) ∨ (−2*x* − 2*y* ≤ −1)) ∧ ((2*x* + 2*y* ≤ 3) ∨ (−2*x* + 2*y* ≥ 2))

Problem: Many decision procedures for theories (e.g. simplex) can only decide consistency of a conjunction of literals

Introduction

- Aim: decide satisfiability of a (quantifier-free) first-order formula with respect to a background theory
	- e.g. linear (real/integer) arithmetic, equality and uninterpreted functions, arrays, bitvectors, etc.

Example (Linear Integer Arithmetic)

$$
(2x - 2y \le 1) \land ((-2x + 2y \le 1) \lor \bot) \land (\neg(2x - 2y \le 1) \lor (-2x - 2y \le -1)) \land ((2x + 2y \le 3) \lor (-2x + 2y \ge 2))
$$

Problem: Many decision procedures for theories (e.g. simplex) can only decide consistency of a conjunction of literals

Introduction

- Aim: decide satisfiability of a (quantifier-free) first-order formula with respect to a background theory
	- e.g. linear (real/integer) arithmetic, equality and uninterpreted functions, arrays, bitvectors, etc.

Example (Linear Integer Arithmetic)

$$
(2x - 2y \le 1) \land ((-2x + 2y \le 1) \lor \bot) \land (\neg(2x - 2y \le 1) \lor (-2x - 2y \le -1)) \land ((2x + 2y \le 3) \lor (-2x + 2y \ge 2))
$$

Problem: Many decision procedures for theories (e.g. simplex) can only decide consistency of a conjunction of literals

[Introduction](#page-2-0) [CDCL\(T\) Calculus](#page-20-0) [Properties of CDCL\(T\)](#page-45-0) [Implementation and Improvements](#page-59-0) [Conclusion](#page-64-0) Ω

Lifting τ -Reasoning to Arbitrary Boolean Structures

Definition (T -Solver)

Let T be a theory. A T -solver is a procedure for deciding τ -consistency of a conjunction of τ -literals.

■ Lifting to arbitrary boolean structure:

- 1. Given $\mathcal T$ -formula ϕ , transform ϕ into equivalent ϕ' in DNF.
- 2. ϕ' is \mathcal{T} -consistent iff $\phi' = (L_1 \land \cdots \land L_n) \lor \phi''$ and $L_1 \land \cdots \land L_n$ is τ -consistent
- Drawback: potential expontential explosion during DNF-transformation
- Idea: Use SAT-Solver to enumerate (some/sufficiently many) disjuncts

[Introduction](#page-2-0) [CDCL\(T\) Calculus](#page-20-0) [Properties of CDCL\(T\)](#page-45-0) [Implementation and Improvements](#page-59-0) [Conclusion](#page-64-0) Ω

Lifting τ -Reasoning to Arbitrary Boolean Structures

Definition (T -Solver)

Let T be a theory. A T -solver is a procedure for deciding τ -consistency of a conjunction of τ -literals.

- Lifting to arbitrary boolean structure:
	- 1. Given $\mathcal T$ -formula ϕ , transform ϕ into equivalent ϕ' in DNF.
	- 2. ϕ' is \mathcal{T} -consistent iff $\phi' = (L_1 \land \cdots \land L_n) \lor \phi''$ and $L_1 \land \cdots \land L_n$ is τ -consistent
- Drawback: potential expontential explosion during DNF-transformation
- Idea: Use SAT-Solver to enumerate (some/sufficiently many) disjuncts

Notation

Associate with each $\mathcal T$ -atom A a propositional variable $\text{atr}(A) = P_A$ and lift atr to T-formulas.

Example (Propositional Abstractions)

$$
atr (\neg (2x - 2y \le 1) \vee (-2x - 2y \le -1))
$$

= $\neg P_{(2x-2y \le 1)} \vee P_{(-2x-2y \le -1)}$
= $\neg P_1 \vee P_2$

Let ϕ and ψ be T-formulas.

- $\blacksquare \phi \models \psi$ iff each (propositional) model of atr(ϕ) is also a model of
- $\blacksquare \phi \models_{\mathcal{T}} \psi$ iff each \mathcal{T} -model of ϕ is also a \mathcal{T} -model of ψ .

Notation

Associate with each τ -atom A a propositional variable $\text{atr}(A) = P_A$ and lift atr to T-formulas.

Example (Propositional Abstractions)

$$
atr (\neg (2x - 2y \le 1) \vee (-2x - 2y \le -1))
$$

= $\neg P_{(2x-2y \le 1)} \vee P_{(-2x-2y \le -1)}$
= $\neg P_1 \vee P_2$

Definition (Entailments)

Let ϕ and ψ be $\mathcal T$ -formulas.

- $\bullet \models \psi$ iff each (propositional) model of atr(ϕ) is also a model of atr (ψ) ;
- $\bullet \models_{\mathcal{T}} \psi$ iff each \mathcal{T} -model of ϕ is also a \mathcal{T} -model of ψ .

Notation (Cont.)

Example (Entailments)

$$
(\neg (2x - 2y \le 1) \lor (-2x - 2y \le -1)) \land (2x - 2y \le 1) \\
 \qquad \qquad \models (-2x - 2y \le -1) \\
 (2x - 2y \le 1) \land (2x - 2y \ge 3) \models \tau \perp \\
 (2x - 2y \le 1) \land (2x - 2y \ge 3) \not \models \perp
$$

Proposition (Property of Entailments)

Let T be a theory. Then

Notation (Cont.)

Example (Entailments)

$$
(\neg (2x - 2y \le 1) \lor (-2x - 2y \le -1)) \land (2x - 2y \le 1) \\
 \qquad \qquad \models (-2x - 2y \le -1) \\
 (2x - 2y \le 1) \land (2x - 2y \ge 3) \models \tau \perp \\
 (2x - 2y \le 1) \land (2x - 2y \ge 3) \not \models \perp
$$

Proposition (Property of Entailments)

Let T be a theory. Then

$$
\models\subseteq\models\tau
$$

Naive Architecture

 \leftarrow

 $C_1 = L_1$ $C_2 = L_2$ $C_3 = -L_1 \vee L_3$ $C_4 = L_4 \vee L_5$ $C_5 = \neg M_1$ $C_6 = \neg M_2$ $C_7 = \neg M_3$

$$
(2x - 2y \le 1)
$$

\n
$$
(-2x + 2y \le 1)
$$

\n
$$
\neg(2x - 2y \le 1) \lor (-2x - 2y \le -1)
$$

\n
$$
(2x + 2y \le 3) \lor (-2x + 2y \ge 2)
$$

 $M_1 = L_1L_2L_3L_4L_5$ $M_2 = L_1L_2L_3L_4 - L_5$ $M_3 = L_1L_2L_3 - L_4L_5$

 $C_1 = L_1$ $C_2 = L_2$ $C_3 = \neg L_1 \vee L_3$ $C_4 = L_4 \vee L_5$ $C_5 = \neg M_1$ $C_6 = \neg M_2$ $C_7 = \neg M_3$ \leftarrow (2*x* − 2*y* ≤ 1) (−2*x* + 2*y* ≤ 1) ¬(2*x* − 2*y* ≤ 1) ∨ (−2*x* − 2*y* ≤ −1) (2*x* + 2*y* ≤ 3) ∨ (−2*x* + 2*y* ≥ 2)

 $M_1 = L_1L_2L_3L_4L_5$ $M_2 = L_1 L_2 L_3 L_4 - L_5$ $M_3 = L_1 L_2 L_3 - L_4 L_5$

 \leftarrow

 $C_1 = L_1$ $C_2 = L_2$ $C_3 = \neg L_1 \vee L_3$ $C_4 = L_4 \vee L_5$ $C_5 = \neg M_1$ $C_6 = \neg M_2$ $C_7 = \neg M_3$

$$
(2x - 2y \le 1)
$$

\n
$$
(-2x + 2y \le 1)
$$

\n
$$
\neg(2x - 2y \le 1) \lor (-2x - 2y \le -1)
$$

\n
$$
(2x + 2y \le 3) \lor (-2x + 2y \ge 2)
$$

 $M_1 = L_1L_2L_3L_4L_5$ $M_2 = L_1L_2L_3L_4 - L_5$ $M_3 = L_1L_2L_3 - L_4L_5$

$C_1 = L_1$	$(2x - 2y \le 1)$
$C_2 = L_2$	$(-2x + 2y \le 1)$
$C_3 = -L_1 \vee L_3$	$-(2x - 2y \le 1) \vee (-2x - 2y \le -1)$
$C_4 = L_4 \vee L_5$	$(2x + 2y \le 3) \vee (-2x + 2y \ge 2)$
$C_5 = -M_1$	
$C_6 = -M_2$	
$C_7 = -M_3$	

 $M_1 = L_1L_2L_3L_4L_5$ $M_2 = L_1L_2L_3L_4 - L_5$ $M_3 = L_1L_2L_3 - L_4L_5$

 \leftarrow

 $C_1 = L_1$ $C_2 = L_2$ $C_3 = \neg L_1 \vee L_3$ $C_4 = L_4 \vee L_5$ $C_5 = \neg M_1$ $C_6 = \neg M_2$ $C_7 = \neg M_3$

 $M_1 = L_1L_2L_3L_4L_5$ $M_2 = L_1 L_2 L_3 L_4 - L_5$ $M_3 = L_1 L_2 L_3 - L_4 L_5$

(2*x* − 2*y* ≤ 1) $(-2x + 2y < 1)$ ¬(2*x* − 2*y* ≤ 1) ∨ (−2*x* − 2*y* ≤ −1) (2*x* + 2*y* ≤ 3) ∨ (−2*x* + 2*y* ≥ 2)

 \leftarrow

 $C_1 = L_1$ $C_2 = L_2$ $C_3 = \neg L_1 \vee L_3$ $C_4 = L_4 \vee L_5$ $C_5 = \neg M_1$ $C_6 = \neg M_2$ $C_7 = \neg M_3$

$$
(2x-2y \le 1)
$$

\n
$$
(-2x+2y \le 1)
$$

\n
$$
\neg(2x-2y \le 1) \lor (-2x-2y \le -1)
$$

\n
$$
(2x+2y \le 3) \lor (-2x+2y \ge 2)
$$

 $M_1 = L_1L_2L_3L_4L_5$ $M_2 = L_1L_2L_3L_4 - L_5$ $M_3 = L_1L_2L_3 - L_4L_5$

$$
C_1 = L_1
$$
\n
$$
C_2 = L_2
$$
\n
$$
C_3 = -L_1 \vee L_3
$$
\n
$$
C_4 = L_4 \vee L_5
$$
\n
$$
C_5 = -M_1
$$
\n
$$
C_6 = -M_2
$$
\n
$$
C_7 = -M_3
$$
\n(2x + 2y \le 1)\n
$$
C_8 = -M_2
$$
\n
$$
C_9 = -M_3
$$

 $M_1 = L_1L_2L_3L_4L_5$ $M_2 = L_1L_2L_3L_4 \neg L_5$ $M_3 = L_1L_2L_3 - L_4L_5$

Tighter Collaboration between SAT and Theory Solver

- Generate "small" τ -conflict clauses
- Incrementality $\mathcal{L}_{\mathcal{A}}$
- Detect τ -inconsistencies early
- \blacksquare τ -propagations
- Case splits by learning additional clauses

Problem State

 $(\epsilon; N; \emptyset; \emptyset; O; \top)$ is the start state for some clause set *N*
(*M*; *N*; *U*; *T*; *k*; \top) is a final state where *N* is *T*-satisfiable is a final state where N is τ -satisfiable if $M \models$ *N*, *M* $\nvdash \tau \perp$ and all literals from *N* ∪ *U* ∪ *T* are defined in *M*. $(M; N; U; T; k; \perp)$ is a final state, where *N* has no \mathcal{T} -model $(M; N; U; T; k; \top)$ is an intermediate model search state if $\overline{}$ *is an intermediate model search state if not all* literals from $N ∪ U ∪ T$ are defined in $M, M \not\models N$ or $M \models_{\mathcal{T}} \bot$

 $(M; N; U; T; k; D)$ is a backtracking state if $D \notin \{T, \perp\}$

13th June 2017 10/29

Problem State

$$
(\epsilon; N; \emptyset; \emptyset; 0; \top) \newline (M; N; U; T; k; \top) \newline (M; N; U; T; k; \bot) \newline (M; N; U; T; k; \bot) \newline (M; N; U; T; k; \top) \newline (M; N; U; T; k; \top) \newline (M; N; U; T; k; D) \newline (M; N; U; T; k; D)
$$

(; *N*; ∅; ∅; 0; >) is the start state for some clause set *N* ${\mathsf s}$ a final state where N is ${\mathcal T}$ -satisfiable if $M \models$ *N, M* $\nvDash_{\tau} \bot$ and all literals from $N \cup U \cup T$ are defined in *M*.

(*M*; *N*; *U*; *T*; *k*; ⊥) is a final state, where *N* has no T -model (*M*; *N*; *U*; *T*; *k*; >) is an intermediate model search state if not all i terals from N ∪ U ∪ T are defined in $M,$ $M \not\models N$ d r $M \models_{\mathcal{T}} \bot$

(*M*; *N*; *U*; *T*; *k*; *D*) is a backtracking state if *D* 6∈ {>, ⊥}

[Introduction](#page-2-0) [CDCL\(T\) Calculus](#page-20-0) [Properties of CDCL\(T\)](#page-45-0) [Implementation and Improvements](#page-59-0) [Conclusion](#page-64-0)

0 0000000 0 000000000 00000 000 000

CDCL(T) Calculus – Propositional Reasoning

 $\textbf{Decide} \quad (M; N; U; T; k; \top) \Rightarrow_{\textbf{CDCL}(\mathcal{T})} (M L^{k+1}; N; U; T; k+1; \top)$ provided *L* is undefined in *M* and $L \in \text{lits}(N \cup U \cup T)$.

Propagate $(M; N; U; T; k; \top) \Rightarrow_{\text{CDCL}(\mathcal{T})} (ML^{C \vee L}; N; U; T; k; \top)$ provided $C \vee L \in (N \cup U \cup T)$, $M \models \neg C$ and *L* is undefined in M.

Conflict $(M; N; U; T; k; T) \Rightarrow$ CDCL(T) $(M; N; U; T; k; D)$ provided $D \in (N \cup U \cup T)$ and $M \models \neg D$.

CDCL(T) Calculus – Propositional Reasoning (Cont.)

Skip $(ML; N; U; T; k; D) \Rightarrow_{CDCL(T)} (M; N; U; T; k; D)$ provided comp(*L*) \notin *D* and $D \notin \{\top, \bot\}.$

Resolve $(ML^{C\vee L}; N; U; T; k; D ∨ comp(L)) ⇒$ CDCL(τ) (*M*; *N*; *U*; *T*; *k*; *D* ∨ *C*)

provided *D* and *L* are of the same level or $D = \perp$.

Backtrack $(M_1K^{i+1}M_2; N; U; T; k; D \vee L) \Rightarrow$ cDCL(τ) $(M_1L^{D \vee L}; N; U \cup {D \vee L}; T; i; T)$

provided *L* is of level *k* and *D* is of level *i* where *i* < *k*.

[Introduction](#page-2-0) [CDCL\(T\) Calculus](#page-20-0) [Properties of CDCL\(T\)](#page-45-0) [Implementation and Improvements](#page-59-0) [Conclusion](#page-64-0)

CDCL(T) Calculus – Theory Reasoning

 $\mathcal{T}\text{-}\textbf{Conflict} \quad (M; N; U; T; k; \top) \Rightarrow_{\text{CDCL}(\mathcal{T})} (M; N; U; T; k'; D)$ provided $M \models L_1, \ldots, L_n$ (i.e. L_1, \ldots, L_n occur in M), $L_1 \wedge \cdots \wedge L_n \models_T \bot$ and $D = \text{comp}(L_1) \vee \cdots \vee \text{comp}(L_n)$ and *D* is of level *k* 0 .

T **- Propagate** (*M*; *^N*; *^U*; *^T*; *^k*; >) [⇒]CDCL(^T) (*MLC*∨*^L* ; *N*; *U*; *T*; *k*; >) provided $M \models L_1, \ldots, L_n$ (i.e. L_1, \ldots, L_n occur in M), *L*₁ ∧ · · · ∧ *L*_{*n*} \models τ *L* and *L* ∈ lits($N \cup U \cup T$), *L* is undefined in *M* and $C = \text{comp}(L_1) \vee \cdots \vee \text{comp}(L_n)$.

CDCL(T) Calculus – Theory Reasoning

 $\mathcal{T}\text{-}\textbf{Conflict} \quad (M; N; U; T; k; \top) \Rightarrow_{\text{CDCL}(\mathcal{T})} (M; N; U; T; k'; D)$ provided $M \models L_1, \ldots, L_n$ (i.e. L_1, \ldots, L_n occur in M), $L_1 \wedge \cdots \wedge L_n \models \tau \perp$ and $D = \text{comp}(L_1) \vee \cdots \vee \text{comp}(L_n)$ and *D* is of level *k* 0 .

 τ -
Propagate $\mathsf{Propagate}$ $(M; N; U; T; k; \top) \Rightarrow_{\mathsf{CDCL}(\mathcal{T})} (ML^{C \vee L}; N; U; T; k; \top)$ provided $M \models L_1, \ldots, L_n$ (i.e. L_1, \ldots, L_n occur in *M*), *L*₁ ∧ · · · ∧ *L*_{*n*} \models τ *L* and *L* ∈ lits(*N* ∪ *U* ∪ *T*), *L* is undefined in *M* and $C = \text{comp}(L_1) \vee \cdots \vee \text{comp}(L_n)$.

$$
L_1 \vee L_2 = (x \ge 5) \vee (x \le 3)
$$

\n
$$
\neg L_1 \vee L_3 \vee L_4 = \neg (x \le 5) \vee (y \ge 7) \vee (y \le 4)
$$

\n
$$
\neg L_1 \vee L_5 \vee L_6 = \neg (x \ge 5) \vee (y \le 6) \vee (x + y \le 4)
$$

$$
L_1 \vee L_2 = (x \ge 5) \vee (x \le 3)
$$
\n
$$
\neg L_1 \vee L_3 \vee L_4 = \neg (x \le 5) \vee (y \ge 7) \vee (y \le 4)
$$
\n
$$
\neg L_1 \vee L_5 \vee L_6 = \neg (x \ge 5) \vee (y \le 6) \vee (x + y \le 4)
$$
\n
$$
(\epsilon; N; \emptyset; \emptyset; 0; \top)
$$
\n
$$
\Rightarrow \text{Decide}
$$
\n
$$
L_1, N; \emptyset; \emptyset; 1; \top
$$
\n
$$
\Rightarrow \text{CDCL}(\mathcal{T})
$$
\n
$$
L_1^1, N; \emptyset; \emptyset; 1; \top
$$
\n
$$
\Rightarrow \text{CDCL}(\mathcal{T})
$$
\n
$$
L_1^1, L_2^{-L_1 \vee \neg L_2}; N; \emptyset; \emptyset; 1; \top
$$
\n
$$
\Rightarrow \text{Decide}
$$
\n
$$
L_1^1, L_2^{-L_1 \vee \neg L_2} L_3^2; N; \emptyset; \emptyset; 2; \top
$$
\n
$$
\Rightarrow \text{CDCL}(\mathcal{T})
$$
\n
$$
L_1^1, L_2^{-L_1 \vee \neg L_2} L_3^2, N; \emptyset; \emptyset; 2; \top
$$
\n
$$
\Rightarrow \text{CDCL}(\mathcal{T})
$$
\n
$$
L_1^1, L_2^{-L_1 \vee \neg L_2} L_3^2, L_3^{-L_3 \vee \neg L_5}; N; \emptyset; \emptyset; 2; \top
$$
\n
$$
\Rightarrow \text{CDCL}(\mathcal{T})
$$
\n
$$
L_1^1, L_2^{-L_1 \vee \neg L_2} L_3^2, L_3^{-L_3 \vee \neg L_5} L_6^{-L_1 \vee L_5 \vee L_6}; N; \emptyset; \emptyset; 2; \top
$$

$$
L_1 \vee L_2 = (x \ge 5) \vee (x \le 3)
$$
\n
$$
\neg L_1 \vee L_3 \vee L_4 = \neg (x \le 5) \vee (y \ge 7) \vee (y \le 4)
$$
\n
$$
\neg L_1 \vee L_5 \vee L_6 = \neg (x \ge 5) \vee (y \le 6) \vee (x + y \le 4)
$$
\n
$$
(\epsilon; N; \emptyset; \emptyset; 0; \top)
$$
\n
$$
\Rightarrow \text{Decide}
$$
\n
$$
L_1, N; \emptyset; \emptyset; 1; \top
$$
\n
$$
\Rightarrow \text{CDCL}(\mathcal{T})
$$
\n
$$
L_1^1, N; \emptyset; \emptyset; 1; \top
$$
\n
$$
\Rightarrow \text{CDCL}(\mathcal{T})
$$
\n
$$
L_1^1, L_2^{-L_1 \vee -L_2}; N; \emptyset; \emptyset; 1; \top
$$
\n
$$
\Rightarrow \text{Decide}
$$
\n
$$
L_1^1, L_2^{-L_1 \vee -L_2} L_3^2; N; \emptyset; \emptyset; 2; \top
$$
\n
$$
\Rightarrow \text{CDCL}(\mathcal{T})
$$
\n
$$
L_1^1, L_2^{-L_1 \vee -L_2} L_3^2, N; \emptyset; \emptyset; 2; \top
$$
\n
$$
\Rightarrow \text{CDCL}(\mathcal{T})
$$
\n
$$
L_1^1, L_2^{-L_1 \vee -L_2} L_3^2, L_3^{-L_3 \vee -L_5}; N; \emptyset; \emptyset; 2; \top
$$
\n
$$
\Rightarrow \text{CDCL}(\mathcal{T})
$$
\n
$$
L_1^1, L_2^{-L_1 \vee -L_2} L_3^2, L_3^{-L_3 \vee -L_5} L_6^{-L_1 \vee L_5 \vee L_6}; N; \emptyset; \emptyset; 2; \top
$$

[Introduction](#page-2-0) [CDCL\(T\) Calculus](#page-20-0) [Properties of CDCL\(T\)](#page-45-0) [Implementation and Improvements](#page-59-0) [Conclusion](#page-64-0)
00000000 0000000000 000000 000000 000

Example (Cont.)(Linear Integer Arithmetic)

$$
L_1 \vee L_2 = (x \ge 5) \vee (x \le 3)
$$

\n
$$
\neg L_1 \vee L_3 \vee L_4 = \neg (x \le 5) \vee (y \ge 7) \vee (y \le 4)
$$

\n
$$
\neg L_1 \vee L_5 \vee L_6 = \neg (x \ge 5) \vee (y \le 6) \vee (x + y \le 4)
$$

 $(L_1^1 \neg L_2^{-L_1 \vee \neg L_2} \neg L_3^{-L_1 \vee \neg L_3}; N; \{\neg L_1 \vee \neg L_3\}; \emptyset; 1; \top)$

 $(L_1^1 \neg L_2^{-L_1 \vee \neg L_2} \neg L_3^{-L_1 \vee -L_3} L_4^{-L_1 \vee L_3 \vee L_4} L_5^{-L_4 \vee L_5} \neg L_6^2; N;$

 $(L_1^1 \neg L_2^{-L_1 \vee \neg L_2} \neg L_3^{-L_1 \vee \neg L_3} L_4^{-L_1 \vee L_3 \vee L_4} L_5^{-L_4 \vee L_5}; N;$

 $(L_1^1 \neg L_2^{-L_1 \vee \neg L_2} \neg L_3^{-L_1 \vee -L_3} L_4^{-L_1 \vee L_3 \vee L_4}; N: \{\neg L_1 \vee \neg L_3\}; \emptyset; 1; \top)$

$$
\Rightarrow \text{CDOCL}(\mathcal{T}) \qquad (L_1^1 \neg L_2^{-L_1 \vee \neg L_2} L_3^2 \neg L_5^{-L_3 \vee \neg L_5} L_6^{-L_1 \vee L_5 \vee L_6}; \mathbf{N}; \emptyset; \emptyset; \\
2; \neg L_1 \vee \neg L_3 \vee \neg L_6) \\
\Rightarrow \text{Resolve}^* \qquad (L_1^1 \neg L_2^{-L_1 \vee \neg L_2} L_3^2; \mathbb{N}; \emptyset; \emptyset; 2; \neg L_1 \vee \neg L_3)
$$

 \Rightarrow Resolve*
CDCL(τ)

 \Rightarrow Backtrack
CDCL(τ)

 $\{-L_1 \vee \neg L_3\}; \emptyset; \mathbf{1}; \top$

[Introduction](#page-2-0) [CDCL\(T\) Calculus](#page-20-0) [Properties of CDCL\(T\)](#page-45-0) [Implementation and Improvements](#page-59-0) [Conclusion](#page-64-0)
00000000 000000000 0000000 000000 000

$$
L_1 \vee L_2 = (x \ge 5) \vee (x \le 3)
$$

\n
$$
\neg L_1 \vee L_3 \vee L_4 = \neg (x \le 5) \vee (y \ge 7) \vee (y \le 4)
$$

\n
$$
\neg L_1 \vee L_5 \vee L_6 = \neg (x \ge 5) \vee (y \le 6) \vee (x + y \le 4)
$$

$$
\Rightarrow \text{Conflict}_{\text{CDCL}(7)} \qquad (L_1^1 \neg L_2^{-L_1 \vee \neg L_2} L_3^2 \neg L_5^{-L_3 \vee \neg L_5} L_6^{-L_1 \vee L_5 \vee L_6}; N; \emptyset; \emptyset; \\
2; \neg L_1 \vee \neg L_3 \vee \neg L_6) \n\Rightarrow \text{Resolve*}_{\text{CDCL}(7)} \qquad (L_1^1 \neg L_2^{-L_1 \vee \neg L_2} L_3^2; N; \emptyset; \emptyset; 2; \neg L_1 \vee \neg L_3) \n\Rightarrow \text{Backtrack}_{\text{CDCL}(7)} \qquad (L_1^1 \neg L_2^{-L_1 \vee \neg L_2} \neg L_3^{-L_1 \vee \neg L_3}; N; \{-L_1 \vee \neg L_3\}; \emptyset; 1; T) \n\Rightarrow \text{Propggate}_{\text{CDCL}(7)} \qquad (L_1^1 \neg L_2^{-L_1 \vee \neg L_2} \neg L_3^{-L_1 \vee \neg L_3}; N; \{-L_1 \vee L_3 \vee L_4; N; \{-L_1 \vee \neg L_3\}; \emptyset; 1; T) \n\Rightarrow \text{Propggate}_{\text{CDCL}(7)} \qquad (L_1^1 \neg L_2^{-L_1 \vee \neg L_2} \neg L_3^{-L_1 \vee \neg L_3} L_4^{-L_1 \vee L_3 \vee L_4} L_5^{-L_4 \vee L_5}; N; \{-L_1 \vee \neg L_3\}; \emptyset; 1; T) \n\Rightarrow \text{Decide}_{\text{CDCL}(7)} \qquad (L_1^1 \neg L_2^{-L_1 \vee \neg L_2} \neg L_3^{-L_1 \vee \neg L_3} L_4^{-L_1 \vee L_3 \vee L_4} L_5^{-L_4 \vee L_5} \neg L_6^2; N; \{-L_1 \vee \neg L_3\}; \emptyset; 2; T) \n\text{In the matrix matrix, is either}
$$
\n13th June 2017

[Introduction](#page-2-0) [CDCL\(T\) Calculus](#page-20-0) [Properties of CDCL\(T\)](#page-45-0) [Implementation and Improvements](#page-59-0) [Conclusion](#page-64-0)
00000000 000000000 0000000 000000 000

$$
L_1 \vee L_2 = (x \ge 5) \vee (x \le 3)
$$

\n
$$
\neg L_1 \vee L_3 \vee L_4 = \neg (x \le 5) \vee (y \ge 7) \vee (y \le 4)
$$

\n
$$
\neg L_1 \vee L_5 \vee L_6 = \neg (x \ge 5) \vee (y \le 6) \vee (x + y \le 4)
$$

$$
\Rightarrow \frac{\mathcal{T}\text{-conflict}}{\text{CDCL}(\mathcal{T})} \qquad (L_1^1 \neg L_2^{-L_1 \vee \neg L_2} L_3^2 \neg L_5^{-L_3 \vee \neg L_5} L_6^{-L_1 \vee L_5 \vee L_6}; N; \emptyset; \emptyset; \emptyset; \n2; \neg L_1 \vee \neg L_3 \vee \neg L_6) \n\Rightarrow \frac{\text{Resolve*}}{\text{CDCL}(\mathcal{T})} \qquad (L_1^1 \neg L_2^{-L_1 \vee \neg L_2} L_3^2; N; \emptyset; \emptyset; 2; \neg L_1 \vee \neg L_3) \n\Rightarrow \frac{\text{Backtrack}}{\text{CDCL}(\mathcal{T})} \qquad (L_1^1 \neg L_2^{-L_1 \vee \neg L_2} \neg L_3^{-L_1 \vee \neg L_3}; N; \{\neg L_1 \vee \neg L_3\}; \emptyset; 1; \top) \n\Rightarrow \frac{\text{Propagate}}{\text{CDCL}(\mathcal{T})} \qquad (L_1^1 \neg L_2^{-L_1 \vee \neg L_2} \neg L_3^{-L_1 \vee \neg L_3} L_4^{-L_1 \vee L_3 \vee L_4}; N; \{\neg L_1 \vee \neg L_3\}; \emptyset; 1; \top) \n\Rightarrow \frac{\mathcal{T}\text{-Propagate}}{\text{CDCL}(\mathcal{T})} \qquad (L_1^1 \neg L_2^{-L_1 \vee \neg L_2} \neg L_3^{-L_1 \vee \neg L_3} L_4^{-L_1 \vee L_3 \vee L_4} L_5^{-L_4 \vee L_5}; N; \n\{\neg L_1 \vee \neg L_3\}; \emptyset; 1; \top) \n\Rightarrow \frac{\text{Decide}}{\text{CDCL}(\mathcal{T})} \qquad (L_1^1 \neg L_2^{-L_1 \vee \neg L_2} \neg L_3^{-L_1 \vee \neg L_3} L_4^{-L_1 \vee L_3 \vee L_4} L_5^{-L_4 \vee L_5}; N; \n\{\neg L_1 \vee \neg L_3\}; \emptyset; 1; \top) \n\Rightarrow \frac{\text{Decide}}{\text{CDCL}(\mathcal{T})} \qquad (L_1^1 \neg L
$$

[Introduction](#page-2-0) [CDCL\(T\) Calculus](#page-20-0) [Properties of CDCL\(T\)](#page-45-0) [Implementation and Improvements](#page-59-0) [Conclusion](#page-64-0)
00000000 000000000 0000000 000000 000

$$
L_1 \vee L_2 = (x \ge 5) \vee (x \le 3)
$$

\n
$$
\neg L_1 \vee L_3 \vee L_4 = \neg (x \le 5) \vee (y \ge 7) \vee (y \le 4)
$$

\n
$$
\neg L_1 \vee L_5 \vee L_6 = \neg (x \ge 5) \vee (y \le 6) \vee (x + y \le 4)
$$

\n
$$
\Rightarrow_{\text{CDCL}(\mathcal{T})}^{\mathcal{T}\text{-Conflict}}
$$

\n
$$
(L_1^1 \neg L_2^{-L_1 \vee -L_2} L_3^2 \neg L_5^{-L_3 \vee \neg L_5} L_6^{-L_1 \vee L_5 \vee L_6}; N; \emptyset; \emptyset;
$$

CDCL(T) 2; ¬*L*¹ ∨ ¬*L*³ ∨ ¬*L*6) ⇒Resolve[∗] ¬*L*1∨¬*L*² 1 2 (*L* ¹¬*L L* ; *N*; ∅; ∅; 2; ¬*L*¹ ∨ ¬*L*3) CDCL(T) 3 2 [⇒]Backtrack 1 ¬*L*1∨¬*L*² ¬*L*1∨¬*L*³ (*L* ¹¬*L* ² ¬*L* ; *N*; {¬*L*¹ ∨ ¬*L*3}; ∅; 1; >) CDCL(T) 3 Propagate 1 ¬*L*1∨¬*L*² ¬*L*1∨¬*L*³ ¬*L*1∨*L*3∨*L*⁴ (*L* ¹¬*L* ² ¬*L L* ; *N*; {¬*L*¹ ∨ ¬*L*3}; ∅; 1; >) ⇒ CDCL(T) 3 4 T -Propagate 1 ¬*L*1∨¬*L*² ¬*L*1∨¬*L*³ ¬*L*1∨*L*3∨*L*⁴ ¬*L*4∨*L*⁵ (*L* ¹¬*L* ² ¬*L L L* ; *N*; ⇒ CDCL(T) 3 4 5 {¬*L*¹ ∨ ¬*L*3}; ∅; 1; >) ¬*L*1∨¬*L*³ ¬*L*1∨*L*3∨*L*⁴ [⇒]Decide 1 ¬*L*1∨¬*L*² ¬*L*4∨*L*⁵ 2 (*L* ¹¬*L* ² ¬*L L L* ⁵ ¬*L* ; *N*; CDCL(T) 6 3 4 {¬*L*¹ ∨ ¬*L*3}; ∅; 2; >) 13th June 2017 15/29

CDCL(T) Calculus – Splitting on Demand

- Problem: Solvers for many theories need to do case splits
- Idea: Use SAT Solver for case splits
	- Encode splits as clauses,
	- Reuse advanced backtracking techniques of CDCL for free,
	- Avoid re-implementing them in (several) theory solvers.

 \mathcal{T} **-Learn** (*M*; *N*; *U*; *T*; *k*; \top) \Rightarrow $_{\text{CDCL}(\mathcal{T})}$ (*M*; *N*; *U*; *T* \oplus *T'*; *k*; \top) provided $(N \cup U \cup T) \models_{\mathcal{T}} T', T' \cap (N \cup U \cup T) = \emptyset$, T' is finite.

■ Potential disadvantages: may introduce a huge number of clauses that are used infrequently

 $\mathcal{T}\text{-}\mathsf{Forget}$ $(M; N; U; \mathcal{T} \oplus \mathcal{T}'; k; D) \Rightarrow_{\text{CDCL}(\mathcal{T})} (M; N; U; \mathcal{T}; k; D)$ provided $D \not\in \{\top, \bot\},\ T' \neq \emptyset$ and atoms(*M*) ⊆ atoms($N \cup U \cup T$).
TTTTPTI max planetk^{institut}

CDCL(T) Calculus – Splitting on Demand

- Problem: Solvers for many theories need to do case splits
- Idea: Use SAT Solver for case splits
	- Encode splits as clauses,
	- Reuse advanced backtracking techniques of CDCL for free,
	- Avoid re-implementing them in (several) theory solvers.

 \mathcal{T} **-Learn** (*M*; *N*; *U*; *T*; *k*; \top) \Rightarrow $_{\text{CDCL}(\mathcal{T})}$ (*M*; *N*; *U*; *T* \oplus *T'*; *k*; \top) provided $(N \cup U \cup T) \models_{\mathcal{T}} T', T' \cap (N \cup U \cup T) = \emptyset$, T' is finite.

■ Potential disadvantages: may introduce a huge number of clauses that are used infrequently

 \mathcal{T} **-Forget** (*M*; *N*; *U*; $\mathcal{T} \uplus \mathcal{T}'$; *k*; *D*) \Rightarrow cDCL(\mathcal{T}) (*M*; *N*; *U*; \mathcal{T} ; *k*; *D*) provided $D \not\in \{\top, \bot\}, T' \neq \emptyset$ and atoms(*M*) ⊆ atoms(*N* ∪ *U* ∪ *T*).
■■■■■■ ■ ■ ana panatk institut 13th June 2017 16/29

$$
L_1 = (2x - 2y \le 1)
$$

\n
$$
L_2 = (-2x + 2y \le 1)
$$

\n
$$
-L_1 \vee L_3 = \neg(2x - 2y \le 1) \vee (-2x - 2y \le -1)
$$

\n
$$
L_4 \vee L_5 = (2x + 2y \le 3) \vee (-2x + 2y \ge 2)
$$

$$
(\epsilon; N; \emptyset; 0; T)
$$
\n
$$
\Rightarrow \text{Propagate} \qquad (L_1^{L_1}; N; \emptyset; \emptyset; 0; T)
$$
\n
$$
\Rightarrow \text{Propagate} \qquad (L_1^{L_1} \cdot N; \emptyset; \emptyset; 0; T)
$$
\n
$$
\Rightarrow \text{Topcycle}(T) \qquad (L_1^{L_1} L_3^{-L_1 \vee L_3} L_2^{L_2}; N; \emptyset; \emptyset; 0; T)
$$
\n
$$
\Rightarrow \text{CDCL}(T) \qquad (L_1^{L_1} L_3^{-L_1 \vee L_3} L_2^{L_2} (\neg L_5)^{-L_2 \vee \neg L_5}; N; \emptyset; \emptyset; 0; T)
$$
\n
$$
\Rightarrow \text{Propagate} \qquad (L_1^{L_1} L_3^{-L_1 \vee L_3} L_2^{L_2} (\neg L_5)^{-L_2 \vee \neg L_5} L_4^{L_5 \vee L_4}; N; \emptyset; \emptyset; 0; T)
$$
\n**ITID 1 max characteristic hasitive 17/29**

\n**13th June 2017 17/29**

Example (Linear Integer Arithmetic)

$$
L_1 = (2x - 2y \le 1)
$$

\n
$$
L_2 = (-2x + 2y \le 1)
$$

\n
$$
-L_1 \vee L_3 = \neg(2x - 2y \le 1) \vee (-2x - 2y \le -1)
$$

\n
$$
L_4 \vee L_5 = (2x + 2y \le 3) \vee (-2x + 2y \ge 2)
$$

Example (Linear Integer Arithmetic)

$$
L_1 = (2x - 2y \le 1)
$$

\n
$$
L_2 = (-2x + 2y \le 1)
$$

\n
$$
-L_1 \vee L_3 = \neg(2x - 2y \le 1) \vee (-2x - 2y \le -1)
$$

\n
$$
L_4 \vee L_5 = (2x + 2y \le 3) \vee (-2x + 2y \ge 2)
$$

(; *N*; ∅; ∅; 0; >) ⇒ Propagate CDCL(T) (*L L*1 1 ; *N*; ∅; ∅; 0; >) ⇒ Propagate* CDCL(T) (*L L*1 1 *L* ¬*L*1∨*L*³ 3 *L L*2 2 ; *N*; ∅; ∅; 0; >) ⇒ T -Propagate CDCL(T) (*L L*1 1 *L* ¬*L*1∨*L*³ 3 *L L*2 2 (¬*L*5) ¬*L*2∨¬*L*⁵ ; *N*; ∅; ∅; 0; >) ⇒ Propagate CDCL(T) (*L L*1 1 *L* ¬*L*1∨*L*³ 3 *L L*2 2 (¬*L*5) [¬]*L*2∨¬*L*⁵ *L L*5∨*L*⁴ 4 ; *N*; ∅; ∅; 0; >) 13th June 2017 17/29

 $L_6 \vee L_7 = (x \le 0) \vee (x \ge 1)$

⇒^{T-Learn} (L^L¹ L^{-L₁∨L₃)} 3 *L L*2 2 (¬*L*5) [¬]*L*2∨¬*L*⁵ *L L*5∨*L*⁴ 4 ; *N*; ∅; {*L*⁶ ∨ *L*7}; 0; >)

 $L_6 \vee L_7 = (x \le 0) \vee (x \ge 1)$

⇒^{T-Learn} (L^L¹ L^{-L₁∨L₃)} 3 *L L*2 2 (¬*L*5) [¬]*L*2∨¬*L*⁵ *L L*5∨*L*⁴ 4 ; *N*; ∅; {*L*⁶ ∨ *L*7}; 0; >)

 $L_6 \vee L_7 = (x \le 0) \vee (x \ge 1)$

⇒^{T-Learn} (L^L¹ L^{-L₁∨L₃)} 3 *L L*2 2 (¬*L*5) [¬]*L*2∨¬*L*⁵ *L L*5∨*L*⁴ 4 ; *N*; ∅; {*L*⁶ ∨ *L*7}; 0; >) max planck institut
informatik 13th June 2017 18/29I U U

 $L_6 \vee L_7 = (x \le 0) \vee (x \ge 1)$

⇒^{T-Learn} (L^L¹L₃^{VL₃)} $\mathcal{L}_1^{-L_1\vee L_3}L_2^{L_2}(\neg L_5)^{\neg L_2\vee\neg L_5}L_4^{L_5\vee L_4}; \mathcal{N}; \emptyset; \{L_6 \vee L_7\}; 0; \top$

⇒ Decide
\n⇒ CDCL(*T*)
$$
(L_1^L + L_3^{-L_1 \vee L_3} L_2^{L_2} (-L_5)^{-L_2 \vee \neg L_5} L_4^{L_5 \vee L_4} L_6^1; N; \emptyset; \{L_6 \vee L_7\}; 1; T)
$$

\n⇒ *T*-conflict $(L_1^L + L_3^{-L_1 \vee L_3} L_2^{L_2} (-L_5)^{-L_2 \vee \neg L_5} L_4^{L_5 \vee L_4} L_6^1;$
\n $N; \emptyset; \{L_6 \vee L_7\}; 1; \neg L_2 \vee \neg L_3 \vee \neg L_6)$
\n⇒ Backtrack $(L_1^L + L_3^{-L_1 \vee L_3} L_2^{L_2} (-L_5)^{-L_2 \vee \neg L_5} L_4^{L_5 \vee L_4} (-L_6)^{-L_2 \vee \neg L_3 \vee \neg L_6};$
\n $N; \{\neg L_2 \vee \neg L_3 \vee \neg L_6\}; \{L_6 \vee L_7\}; 0; T)$
\n⇒ Propagate $(L_1^L + L_3^{-L_1 \vee L_3} L_2^L (-L_5)^{-L_2 \vee \neg L_5} L_4^{L_5 \vee L_4} (-L_6)^{-L_2 \vee \neg L_3 \vee \neg L_6} L_7^{L_6 \vee L_7};$
\n $N; \{\neg L_2 \vee \neg L_3 \vee \neg L_6\}; \{L_6 \vee L_7\}; 0; T\}$
\n⇒ T-conflict $(L_1^L + L_3^{-L_1 \vee L_3} L_2^L (-L_5)^{-L_2 \vee \neg L_5} L_4^{L_5 \vee L_4} (-L_6)^{-L_2 \vee \neg L_3 \vee \neg L_6} L_7^{L_6 \vee L_7};$
\n $N; \{-L_2 \vee \neg L_3 \vee \neg L_6\}; \{L_6 \vee L_7\}; 0; T\}$
\n⇒ Resolve* *(c)* <

⇒
$$
\frac{Decide}{CDCL(\mathcal{T})} \quad (L_1^{L_1} L_3^{-L_1 \vee L_3} L_2^{L_2} (\neg L_5)^{-L_2 \vee \neg L_5} L_4^{L_5 \vee L_4} L_6^1; N; \emptyset; \{L_6 \vee L_7\}; 1; \top)
$$
\n⇒
$$
\frac{\mathcal{T}\text{-conflict}}{CDCL(\mathcal{T})} \quad (L_1^{L_1} L_3^{-L_1 \vee L_3} L_2^{L_2} (\neg L_5)^{-L_2 \vee \neg L_5} L_4^{L_5 \vee L_4} L_6^1;
$$
\nN; $\emptyset; \{L_6 \vee L_7\}; 1; \neg L_2 \vee \neg L_3 \vee \neg L_6)$ \n⇒
$$
\frac{\text{Backtrack}}{\text{CDCL}(\mathcal{T})} \quad (L_1^{L_1} L_3^{-L_1 \vee L_3} L_2^{L_2} (\neg L_5)^{-L_2 \vee \neg L_5} L_4^{L_5 \vee L_4} (\neg L_6)^{-L_2 \vee \neg L_3 \vee \neg L_6};
$$
\nN; $\{\neg L_2 \vee \neg L_3 \vee \neg L_6\}; \{L_6 \vee L_7\}; 0; \top$ \n⇒
$$
\frac{\text{Propagate}}{\text{CDCL}(\mathcal{T})} \quad (L_1^{L_1} L_3^{-L_1 \vee L_3} L_2^{L_2} (\neg L_5)^{-L_2 \vee \neg L_5} L_4^{L_5 \vee L_4} (\neg L_6)^{-L_2 \vee \neg L_3 \vee \neg L_6} L_7^{L_6 \vee L_7};
$$
\nN; $\{\neg L_2 \vee \neg L_3 \vee \neg L_6\}; \{L_6 \vee L_7\}; 0; \top$ \n⇒
$$
\frac{\mathcal{T}\text{-conflict}}{\text{CDCL}(\mathcal{T})} \quad (L_1^{L_1} L_3^{-L_1 \vee L_3} L_2^{L_2} (\neg L_5)^{-L_2 \vee \neg L_5} L_4^{L_5 \vee L_4} (\neg L_6)^{-L_2 \vee \neg L_3 \vee \neg L_6} L_7^{L
$$

 Ω

Lemma (Invariants I)

Let
$$
(\epsilon; N_0; \emptyset; \emptyset; 0; T) \Rightarrow^*_{\text{CDCL}(\mathcal{T})} (M; N; U; T; k; D)
$$
. Then:
1. $N = N_0;$

- 2. *M* is (propositionally) consistent, i.e. it does not contain a literal *L* as well as comp(*L*);
- 3. *M* does not contain the same literal twice;
- 4. Decision literal annotations are ordered in a strictly increasing manner on the trail and *k* is equal to the maximal annotation unless $D \notin \{\top, \bot\}$ in which case *k* is greater or equal to the maximal level on the trail and equal to the level of *D*;

Proof.

 Ω

Lemma (Invariants I)

Let
$$
(\epsilon; N_0; \emptyset; \emptyset; 0; T) \Rightarrow^*_{\text{CDCL}(\mathcal{T})} (M; N; U; T; k; D)
$$
. Then:
1. $N = N_0;$

- 2. *M* is (propositionally) consistent, i.e. it does not contain a literal *L* as well as comp(*L*);
- 3. *M* does not contain the same literal twice;
- 4. Decision literal annotations are ordered in a strictly increasing manner on the trail and *k* is equal to the maximal annotation unless $D \notin \{\top, \bot\}$ in which case *k* is greater or equal to the maximal level on the trail and equal to the level of *D*;

Proof.

Induction on the length of the derivation.

Lemma (Invariants II)

Let (*∈*; *N*₀; Ǿ; Ǿ; Ó; ⊤̀) ⇒ $*_{\mathsf{CDCL}(\mathcal{T})}$ (*M*; *N*; *U*; *T*; *k*; *D*). Then:

- 1. both if $M = M_1 L^{C \vee L} M_2$ then $M_1 \models \neg C$, and if $D \not\in \{\bot, \top\}$ then $M \models \neg D;$
- 2. $N \models_{\mathcal{T}} (U \cup T)$, $N \models_{\mathcal{T}} D$ and if $M = M_1 L^{C \vee L} M_2$ then *N* \models *⊤ C* $∨$ *L*.
- 3. lits(D) ⊂ lits($N \cup U \cup T$), lits(M) ⊂ lits($N \cup U \cup T$) and if $M = M_1 L^{C \vee L} M_2$ then lits $(C \vee L) \subseteq$ lits $(N \cup U \cup T)$.
- 4. *U* and *T* are finite if N_0 is finite;

Proof.

Lemma (Invariants II)

Let (*∈*; *N*₀; Ǿ; Ǿ; Ó; ⊤̀) ⇒ $*_{\mathsf{CDCL}(\mathcal{T})}$ (*M*; *N*; *U*; *T*; *k*; *D*). Then:

- 1. both if $M = M_1 L^{C \vee L} M_2$ then $M_1 \models \neg C$, and if $D \not\in \{\bot, \top\}$ then $M \models \neg D;$
- 2. $N \models_{\mathcal{T}} (U \cup T)$, $N \models_{\mathcal{T}} D$ and if $M = M_1 L^{C \vee L} M_2$ then *N* \models *⊤ C* $∨$ *L*.
- 3. lits(*D*) ⊂ lits($N \cup U \cup T$), lits(*M*) ⊂ lits($N \cup U \cup T$) and if $M = M_1 L^{C \vee L} M_2$ then lits $(C \vee L) \subseteq$ lits $(N \cup U \cup T)$.
- 4. *U* and *T* are finite if N_0 is finite;

Proof.

Induction on the length of the derivation.

Soundness

Proposition (Soundness)

Let $(\epsilon; N_0; \emptyset; \emptyset; 0; \top) \Rightarrow^*_{\mathsf{CDCL}(\mathcal{T})} (\mathsf{M}; \mathsf{N}; \mathsf{U}; \mathsf{T}; \mathsf{k}; \mathsf{D})$ be terminal. Then exactly one of the following holds:

- 1. $D = \perp$ and N_0 is τ -unsatisfiable;
- 2. $D = \top$ and N_0 is τ -satisfiable.

What about termination?

Soundness

Proposition (Soundness)

Let $(\epsilon; N_0; \emptyset; \emptyset; 0; \top) \Rightarrow^*_{\mathsf{CDCL}(\mathcal{T})} (\mathsf{M}; \mathsf{N}; \mathsf{U}; \mathsf{T}; \mathsf{k}; \mathsf{D})$ be terminal. Then exactly one of the following holds:

- 1. $D = \perp$ and N_0 is τ -unsatisfiable;
- 2. $D = \top$ and N_0 is τ -satisfiable.

What about termination?

Definition (Weakly Reasonable Strategy)

A strategy is called *weakly reasonable* if Propagate is preferred over Decide.

Lemma (Learning Twice)

 $\mathsf{CDCL}(\mathcal{T})$ never learns the same clause twice with Backtrack when using a weakly reasonable strategy.

 T -Learn can introduce an infinite number of new literals.

Definition (Weakly Reasonable Strategy)

A strategy is called *weakly reasonable* if Propagate is preferred over Decide.

Lemma (Learning Twice)

 $CDCL(\mathcal{T})$ never learns the same clause twice with Backtrack when using a weakly reasonable strategy.

 T -Learn can introduce an infinite number of new literals.

Definition (Weakly Reasonable Strategy)

A strategy is called *weakly reasonable* if Propagate is preferred over Decide.

Lemma (Learning Twice)

 $CDCL(\mathcal{T})$ never learns the same clause twice with Backtrack when using a weakly reasonable strategy.

 τ -Learn can introduce an infinite number of new literals.

$$
L_1 = (0 \leq x - 1) \qquad L_2 = (x \leq 0)
$$
\nLet $K_i = (x \leq i)$ for $i \in \mathbb{N}$.
\n
$$
(\epsilon; N; \emptyset; \emptyset; 0; \top)
$$
\n
$$
\Rightarrow \text{Propagate}_{CDCL(\mathcal{T})}^{Propagate}(L_1^{L_1}; N; \emptyset; \emptyset; 0; \top)
$$
\n
$$
\Rightarrow \text{Propagate}_{CDCL(\mathcal{T})}^{Propagate}(L_1^{L_1}L_2^{L_2}; N; \emptyset; \emptyset; 0; \top)
$$
\n
$$
\Rightarrow \text{F-Learn}_{CDCL(\mathcal{T})}(L_1^{L_1}L_2^{L_2}; N; \emptyset; \{K_1 \vee \neg K_1\}; 0; \top)
$$
\n
$$
\Rightarrow \text{Decide}_{CDCL(\mathcal{T})}(L_1^{L_1}L_2^{L_2}K_1^1; N; \emptyset; \{K_1 \vee \neg K_1\}; 1; \top)
$$
\n
$$
\Rightarrow \text{CDCL}(\mathcal{T}) \cdots
$$
\n
$$
\Rightarrow \text{C-DEL}(\mathcal{T}) \cdots
$$
\n
$$
\Rightarrow \text{C-UL}(\mathcal{T}) \cd
$$

 \Rightarrow $\frac{\text{Decide}}{\text{CDCL}(\mathcal{T})} (\mathcal{L}_{1}^{\mathcal{L}_{1}} \mathcal{L}_{2}^{\mathcal{L}_{2}} \mathcal{K}_{1}^{\mathcal{1}} \cdots \mathcal{K}_{i-1}^{\mathcal{i}-1})$ *i*−1 *K i i* ; *N*; ∅; {*K*¹ ∨ ¬*K*1, . . . , *Kⁱ* ∨ ¬*Ki*}; *i*; >)

Consider the clause set given by

 $L_1 = (0 \le x - 1)$ $L_2 = (x \le 0)$ Let $K_i = (x \leq i)$ for $i \in \mathbb{N}$. $(\epsilon; \mathcal{N}; \emptyset; \emptyset; \mathsf{0}; \mathsf{T})$ \Rightarrow Propagate
 \Rightarrow CDCL(τ) $\frac{\text{Propagate}}{\text{CDCL}(\mathcal{T})}(\mathcal{L}_1^{\mathcal{L}_1}; \mathcal{N}; \emptyset; \emptyset; 0; \top)$ \Rightarrow Propagate
 \Rightarrow CDCL(τ) CDCL(T) (*L L*1 1 *L L*2 2 ; *N*; ∅; ∅; 0; >) ⇒CDCL(7)(L^{L1}1 L^{L₂}; N; Ø; {K₁ ∨ ¬K₁}; 0; ⊤) \Rightarrow $\frac{\text{Decide}}{\text{CDCL}(\mathcal{T})} (\mathcal{L}_{1}^{\mathcal{L}_{1}} \mathcal{L}_{2}^{\mathcal{L}_{2}} \mathcal{K}_{1}^{1}; N; \emptyset; \{K_{1} \vee \neg K_{1}\}; 1; \top)$ $\Rightarrow_{\mathsf{CDCL}(\mathcal{T})}^* \ldots$ \Rightarrow $\overline{{\rm CDCL}(\mathcal{T})}(\overline{L^{L_1}_1L^{L_2}_2K_1^1\cdots K_{i-1}^{i-1}})$ *i*−1 ; *N*; ∅; {*K*¹ ∨ ¬*K*1, . . . , *Kⁱ* ∨ ¬*Ki*}; *i* − 1; >) \Rightarrow $\frac{\text{Decide}}{\text{CDCL}(\mathcal{T})} (\mathcal{L}_{1}^{\mathcal{L}_{1}} \mathcal{L}_{2}^{\mathcal{L}_{2}} \mathcal{K}_{1}^{\mathcal{1}} \cdots \mathcal{K}_{i-1}^{\mathcal{i}-1})$ *i*−1 *K i i* ; *N*; ∅; {*K*¹ ∨ ¬*K*1, . . . , *Kⁱ* ∨ ¬*Ki*}; *i*; >)

- \Rightarrow $\frac{\text{Decide}}{\text{CDCL}(\mathcal{T})} (\mathcal{L}_{1}^{\mathcal{L}_{1}} \mathcal{L}_{2}^{\mathcal{L}_{2}} \mathcal{K}_{1}^{1}; N; \emptyset; \{K_{1} \vee \neg K_{1}\}; 1; \top)$
- $\Rightarrow_{\mathsf{CDCL}(\mathcal{T})}^* \ldots$
- \Rightarrow $\frac{\mathcal{T}}{\text{CDCL}(\mathcal{T})}(\mathcal{L}_{1}^{\mathcal{L}_{1}}\mathcal{L}_{2}^{\mathcal{L}_{2}}\mathcal{K}_{1}^{1}\cdots\mathcal{K}_{i-1}^{i-1})$ *i*−1 ; *N*; ∅; {*K*¹ ∨ ¬*K*1, . . . , *Kⁱ* ∨ ¬*Ki*}; *i* − 1; >)
- \Rightarrow $\frac{\text{Decide}}{\text{CDCL}(\mathcal{T})} (\mathcal{L}_{1}^{\mathcal{L}_{1}} \mathcal{L}_{2}^{\mathcal{L}_{2}} \mathcal{K}_{1}^{1} \cdots \mathcal{K}_{i-1}^{i-1})$ *i*−1 *K i i* ; *N*; ∅; {*K*¹ ∨ ¬*K*1, . . . , *Kⁱ* ∨ ¬*Ki*}; *i*; >)

Termination of CDCL(T)

Straight-forward fix by [\[Barrett et al., 2006\]](#page-66-0):

Theorem (Termination)

Let $\mathcal{L}(N)$ be a finite set.

Then CDCL (T) terminates when using a weakly reasonable strategy such that whenever \mathcal{T} -learning the clauses in \mathcal{T}' , atoms $(T')\subseteq\mathcal{L}(\mathsf{atoms}(N))$ holds.

Proof.

The well-founded measure

$$
\mu'(M; N; U; T; D) = \begin{cases} (3^n - |U|, 1, n - |M|, 3^n - |T|) & \text{if } D = \top \\ (3^n - |U|, 0, |M|, |T|) & \text{otherwise} \end{cases}
$$

for $n = |\mathcal{L}(\text{atoms}(N))|$ is decreased by each rule.

Termination of CDCL(T)

Straight-forward fix by [\[Barrett et al., 2006\]](#page-66-0):

Theorem (Termination)

Let $\mathcal{L}(N)$ be a finite set.

Then CDCL(T) terminates when using a weakly reasonable strategy such that whenever \mathcal{T} -learning the clauses in \mathcal{T}' , atoms $(T')\subseteq\mathcal{L}(\mathsf{atoms}(N))$ holds.

Proof.

The well-founded measure

informatik

$$
\mu'(M; N; U; T; D) = \begin{cases} (3^n - |U|, 1, n - |M|, 3^n - |T|) & \text{if } D = \top \\ (3^n - |U|, 0, |M|, |T|) & \text{otherwise} \end{cases}
$$

for $n = |\mathcal{L}(\text{atoms}(N))|$ is decreased by each rule.

 T -Propagate, T -Learn Decide preferred over

In general: trade-off between pruning of propositional search and computational cost of theory solver calls

In general: trade-off between pruning of propositional search and computational cost of theory solver calls

Decide

Improvements

- **Layered theory solvers and incomplete checks (e.g. for LIA:** relaxation over the reals)
- **Lazy computation of** \mathcal{T} **-explanations**
- Restart, Forget
- **Preprocessing**
	- $-$ Normalization of T-atoms
	- Static learning
- Redundancy
	- SAT-level redundancy
	- LIA/LRA-specific redundancy

Improvements

- Layered theory solvers and incomplete checks (e.g. for LIA: relaxation over the reals)
- **Lazy computation of** \mathcal{T} **-explanations**
- Restart, Forget
- **Preprocessing**
	- $-$ Normalization of τ -atoms
	- Static learning
- Redundancy
	- SAT-level redundancy
	- LIA/LRA-specific redundancy

Interface

- Frequent τ -solver calls with similar trails
- Support efficient addition and removal of τ -literals (*incremental* and *backtrackable* T -solver)

Conclusion

- \blacksquare CDCL(T): by far most widely used calculus to decide satisfiability of (quantifier-free) formulas w.r.t. a background theory
- \blacksquare CDCL(T) lifts theory solvers for conjunctions of literals to (quantifier-free) formulas of an arbitrary structure
- \blacksquare CDCL(T) extends propositional CDCL with rules for theory reasoning based on the current trail
- Splitting on demand can be used to avoid case splits in theory solvers
- In practice: trade-off between pruning of propositional search and computational cost of theory solver calls
- Motivates incremental theory solvers

Conclusion

- \blacksquare CDCL(T): by far most widely used calculus to decide satisfiability of (quantifier-free) formulas w.r.t. a background theory
- \blacksquare CDCL(T) lifts theory solvers for conjunctions of literals to (quantifier-free) formulas of an arbitrary structure
- \blacksquare CDCL(T) extends propositional CDCL with rules for theory reasoning based on the current trail
- Splitting on demand can be used to avoid case splits in theory solvers
- In practice: trade-off between pruning of propositional search and computational cost of theory solver calls
- **Motivates incremental theory solvers**

References I

- 暈 Barrett, C., Conway, C. L., Deters, M., Hadarean, L., Jovanović, D., King, T., Reynolds, A., and Tinelli, C. (2011). *CVC4*, pages 171–177. Springer Berlin Heidelberg, Berlin, Heidelberg.
- E. Barrett, C., Fontaine, P., and Tinelli, C. (2016). The Satisfiability Modulo Theories Library (SMT-LIB). www.SMT-LIB.org.

E. Barrett, C., Nieuwenhuis, R., Oliveras, A., and Tinelli, C. (2006). *Splitting on Demand in SAT Modulo Theories*, pages 512–526. Springer Berlin Heidelberg, Berlin, Heidelberg.

References II

譶 Barrett, C. W., Sebastiani, R., Seshia, S. A., and Tinelli, C. (2009). Satisfiability modulo theories. In Biere, A., Heule, M., van Maaren, H., and Walsh, T., editors, *Handbook of Satisfiability*, pages 825–885. IOS Press.

量 Bozzano, M., Bruttomesso, R., Cimatti, A., Junttila, T. A., van Rossum, P., Schulz, S., and Sebastiani, R. (2005). MathSAT: Tight integration of SAT and mathematical decision procedures.

J. Autom. Reasoning, 35(1-3):265–293.

References III

記 Cimatti, A., Griggio, A., Schaafsma, B. J., and Sebastiani, R. (2013). *The MathSAT5 SMT Solver*, pages 93–107. Springer Berlin Heidelberg, Berlin, Heidelberg.

歸 Dutertre, B. and de Moura, L. (2006). *A Fast Linear-Arithmetic Solver for DPLL(T)*, pages 81–94. Springer Berlin Heidelberg, Berlin, Heidelberg.

量 Kroening, D. and Strichman, O. (2016). *Decision Procedures - An Algorithmic Point of View, Second Edition*. Texts in Theoretical Computer Science. An EATCS Series. Springer.

References IV

- 歸 Nieuwenhuis, R., Oliveras, A., and Tinelli, C. (2006). Solving SAT and SAT modulo theories: From an abstract davis–putnam–logemann–loveland procedure to dpll(*T*). *J. ACM*, 53(6):937–977.
- Sebastiani, R. (2007). 螶 Lazy satisability modulo theories. *JSAT*, 3(3-4):141–224.

Termination of CDCL(T) with Weaker Assumptions

Definition (Strongly Superset-Terminating Relations)

A strict ordering ≺ on P(*A*(Σ)) is called *strongly superset-terminating* if ≺ ∩ ⊃ is well-founded and for all $A, A', B \subseteq A(\Sigma)$,

1. if $A \preceq B$ and $B \subseteq A' \subseteq A$ then $A' \preceq B$;

2. if $A \preceq B$, $A' \preceq B$ and A , $A' \supseteq B$ then $(A \cup A') \preceq A$.

Let \prec be a strongly superset-terminating relation. Then CDCL(T) terminates when using a weakly reasonable strategy such that whenever $\mathcal T$ -learning the clauses in $\mathcal T',$ atoms $(T' \cup N \cup U)$ \preceq atoms $(N \cup U)$ holds.

Termination of CDCL(T) with Weaker Assumptions

Definition (Strongly Superset-Terminating Relations)

A strict ordering ≺ on P(*A*(Σ)) is called *strongly superset-terminating* if ≺ ∩ ⊃ is well-founded and for all $A, A', B \subseteq A(\Sigma)$,

1. if $A \preceq B$ and $B \subseteq A' \subseteq A$ then $A' \preceq B$;

2. if $A \preceq B$, $A' \preceq B$ and A , $A' \supseteq B$ then $(A \cup A') \preceq A$.

Theorem (Termination II)

Let \prec be a strongly superset-terminating relation. Then CDCL(T) terminates when using a weakly reasonable strategy such that whenever $\mathcal T$ -learning the clauses in $\mathcal T',$ $atoms(T' \cup N \cup U) \preceq atoms(N \cup U)$ holds.
Discussion

- Our criterion is equivalent to the one of [\[Barrett et al., 2006\]](#page-66-0) for deterministic theory solvers.
- Consider a procedure that first guesses a bound for an integer a variable and then refines it.
	- No *a priori* finite set of atoms of for T -learning
	- However, there is an appropriate strongly superset-terminating relation

Discussion

- Our criterion is equivalent to the one of [\[Barrett et al., 2006\]](#page-66-0) for deterministic theory solvers.
- Consider a procedure that first guesses a bound for an integer a variable and then refines it.
	- $-$ No *a priori* finite set of atoms of for T -learning
	- However, there is an appropriate strongly superset-terminating relation

max planck institut informatik

```
1 if (detected \mathcal{T}-Conflict) then<br>2 C = \mathcal{T}-Solver GetConflict
2 C = \mathcal{T}-Solver-GetConflict(S);<br>3 \mathcal{T}-Conflict'(S, C);
3 \mathcal{T}-Conflict'(S, C);<br>4 S = \text{Analyze}(S);
5 else if (detected T-Propagations) then<br>6 L_1, \ldots, L_n = T-Solver GetPropagations
6 L_1, \ldots, L_n = \mathcal{T}-Solver_GetPropagations(S);<br>7 \mathcal{T}-Propagate(S, L);
7 \mathcal{T}\text{-Propagate}(S, L);<br>8 \mathcal{T}\text{-Solver\_Asert}(L);
```

```
5 ifrule (Backtrack(S)) then
```
Algorithm 1: $CDCL(T)(S)$ **Input** : An initial state $(\epsilon; N; \emptyset; 0; \top)$. **Output:** A final state $S = (M; N; U; k; D)$, $D \in \{T, \perp\}$ 1 for $(L \in \text{atoms}(N))$ do
2 | T-Solver Inform(L): \mathcal{T} -Solver Inform (L) : ³ while (any rule applicable) do 4 ifrule $(Conflict(S))$ then $5 \mid S = \text{Analyze}(S);$ 6 else ifrule (Propagate (S)) then $\begin{array}{c|c} \n7 & \end{array}$ T-Solver_Assert(*L*); alse 9 \mathcal{T} -Solver IncompleteCheck $(M);$
10 $S =$ BeactTo \mathcal{T} -Solver (S) . 10 $S = \text{ReactTo}\mathcal{T}\text{-Solver}(S);$
if $(\mathcal{T}\text{-Solver failed or four})$ if (T-Solver failed or found model for M) then 12 **if** $(M \models N$ or complete check heuristic) then 13 $\begin{bmatrix} 1 \end{bmatrix}$ $\begin{bmatrix} \mathcal{T}\text{-Solver-CompleteCheck}(M); \\ S = \text{ReartTo}\mathcal{T}\text{-Solver}(S). \end{bmatrix}$ 14 $S = \text{ReactTo}\mathcal{T}\text{-Solver}(S);$
15 $\text{if } (\mathcal{T}\text{-Solver found model})$ 15 if $(T-Solver found model for M)$ then
16 if $return(S)$: $return(S)$: $17 \mid \cdot \cdot \cdot \cdot$ else 18 | | | Decide (S) ; 19 $\boxed{\mathcal{T}}$ -Solver-AddDecision(*L*);
20 $\mathcal{T}}$ -Solver-Assert(*L*): $\mathcal{T}\text{-}Solver_assert(L):$ 21 return (S) ;

Algorithm 2: ReactToT -Solver **Input** : A state $(M; N; U; k; \top)$. **Output:** A state $S = (M'; N; U'; k'; D), D \in \{\top, \bot\}$ 1 if (detected \mathcal{T} -Conflict) then
2 | $C = \mathcal{T}$ -Solver GetConflict 2 $C = \mathcal{T}$ -Solver-GetConflict(S);
3 \mathcal{T} -Conflict'(S, C); 3 $T\text{-Conflict'}(S, C);$
4 $S = \text{Analyze}(S);$ $S =$ Analyze (S) ; 5 else if (detected T-Propagations) then
 $\frac{1}{6}$ $\frac{1}{4}$ $\frac{1}{4}$ 6 $L_1, \ldots, L_n = \mathcal{T}$ -Solver-GetPropagations(S);
7 T-Propagate(S L): 7 \mathcal{T} -Propagate $(S, L);$
8 \mathcal{T} -Solver Assert $(L);$ $\mathcal{T}\text{-}Solver_Assert(L);$ **9 else if** (decided to learn clauses in T') then 10 $T' = \mathcal{T}$ -Solver_GetLearnedClauses(S); 11 $\mathcal{T}\text{-}\mathbf{Learn}(S,T')$; 12 return (S) :

max planck institut
informatik

Algorithm 1: $CDCL(T)(S)$ **Input** : An initial state $(\epsilon; N; \emptyset; 0; \top)$. **Output:** A final state $S = (M; N; U; k; D)$, $D \in \{T, \perp\}$ 1 for $(L \in \text{atoms}(N))$ do
2 | T-Solver Inform(L): \mathcal{T} -Solver Inform (L) : ³ while (any rule applicable) do 4 ifrule $(Conflict(S))$ then $5 \mid S = \text{Analyze}(S);$ 6 else ifrule (Propagate (S)) then $\begin{array}{c|c} \n7 & \end{array}$ T-Solver_Assert(*L*); alse 9 \mathcal{T} -Solver IncompleteCheck $(M);$
10 $S =$ BeactTo \mathcal{T} -Solver (S) . 10 $S = \text{ReactTo}\mathcal{T}\text{-Solver}(S);$
if $(\mathcal{T}\text{-Solver failed or four})$ if (T-Solver failed or found model for M) then 12 **if** $(M \models N$ or complete check heuristic) then 13 $\begin{bmatrix} 1 \end{bmatrix}$ $\begin{bmatrix} \mathcal{T}\text{-Solver-CompleteCheck}(M); \\ S = \text{ReartTo}\mathcal{T}\text{-Solver}(S). \end{bmatrix}$ 14 $S = \text{ReactTo}\mathcal{T}\text{-Solver}(S);$
15 $\text{if } (\mathcal{T}\text{-Solver found model})$ if $(\mathcal{T}\text{-}Solver found model for M)$ then 16 | | | | | $return(S)$; $17 \mid \cdot \cdot \cdot \cdot$ else 18 | | | Decide (S) ; 19 $\boxed{\mathcal{T}}$ -Solver-AddDecision(*L*);
20 $\mathcal{T}}$ -Solver-Assert(*L*): $\mathcal{T}\text{-}Solver_assert(L):$ 21 return (S) ;

max planck institut
informatik

Algorithm 2: ReactToT -Solver **Input** : A state $(M; N; U; k; \top)$. **Output:** A state $S = (M'; N; U'; k'; D), D \in \{\top, \bot\}$ 1 if (detected \mathcal{T} -Conflict) then
2 | $C = \mathcal{T}$ -Solver GetConflict 2 $C = \mathcal{T}$ -Solver-GetConflict(S);
3 \mathcal{T} -Conflict'(S, C); 3 $T\text{-Conflict'}(S, C);$
4 $S = \text{Analyze}(S);$ $S = \text{Analyze}(S);$ 5 else if (detected T-Propagations) then
 $\frac{1}{6}$ $\frac{1}{4}$ $\frac{1}{4}$ 6 $L_1, \ldots, L_n = \mathcal{T}$ -Solver-GetPropagations(S);
7 T-Propagate(S L): 7 \mathcal{T} -Propagate $(S, L);$
8 \mathcal{T} -Solver Assert $(L);$ $\mathcal{T}\text{-}Solver_Assert(L);$ **9 else if** (decided to learn clauses in T') then 10 $T' = \mathcal{T}$ -Solver_GetLearnedClauses(S); 11 $\mathcal{T}\text{-}\mathbf{Learn}(S,T')$; 12 return (S) :

Algorithm 3: Analyze (S) **Input** : A state $(M; N; U; k; D)$ with $D \notin \{T, \perp\}.$ **Output:** A state $S = (M'; N; U'; k'; D), D \in \{\top, \bot\}$ 1 whilerule $(Skip(S)$ or $Resolve(S))$ do $\overline{2}$ 3 if $(T$ -forget heuristic) then $\mathcal{T}\text{-}\mathbf{Forget}(S, N')$; 5 ifrule $(Backtrack(S))$ then \mathcal{T} -Solver.backtrack (k) : τ return(S):

Interface

- Incremental, backtrackable
	- Inform
	- AddDecision
	- Assert
	- Backtrack
	- CompleteCheck
	- IncompleteCheck
	- GetPropagations
	- GetReason
	- GetConflict
	- GetLearnedClauses

Interface

- Incremental, backtrackable
	- Inform
	- AddDecision
	- Assert
	- Backtrack
	- CompleteCheck
	- IncompleteCheck
	- GetPropagations
	- GetReason
	- GetConflict
	- GetLearnedClauses

Implementation – Architecture

