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Introduction
Aim: decide satisfiability of a (quantifier-free) first-order formula
with respect to a background theory

– e.g. linear (real/integer) arithmetic, equality and uninterpreted
functions, arrays, bitvectors, etc.

Example (Linear Integer Arithmetic)

(2x − 2y ≤ 1)∧
((−2x + 2y ≤ 1) ∨ ⊥)∧
(¬(2x − 2y ≤ 1) ∨ (−2x − 2y ≤ −1))∧
((2x + 2y ≤ 3) ∨ (−2x + 2y ≥ 2))

Problem: Many decision procedures for theories (e.g. simplex)
can only decide consistency of a conjunction of literals
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Lifting T -Reasoning to Arbitrary
Boolean Structures
Definition (T -Solver)
Let T be a theory. A T -solver is a procedure for deciding
T -consistency of a conjunction of T -literals.

Lifting to arbitrary boolean structure:
1. Given T -formula φ, transform φ into equivalent φ′ in DNF.
2. φ′ is T -consistent iff φ′ = (L1 ∧ · · · ∧ Ln) ∨ φ′′ and L1 ∧ · · · ∧ Ln is
T -consistent

Drawback: potential expontential explosion during
DNF-transformation
Idea: Use SAT-Solver to enumerate (some/sufficiently many)
disjuncts
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Notation
Associate with each T -atom A a propositional variable
atr(A) = PA and lift atr to T -formulas.

Example (Propositional Abstractions)

atr (¬(2x − 2y ≤ 1) ∨ (−2x − 2y ≤ −1))

=¬P(2x−2y≤1) ∨ P(−2x−2y≤−1)

=¬P1 ∨ P2

Definition (Entailments)
Let φ and ψ be T -formulas.
φ |= ψ iff each (propositional) model of atr(φ) is also a model of
atr(ψ);
φ |=T ψ iff each T -model of φ is also a T -model of ψ.
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Notation (Cont.)

Example (Entailments)

(¬(2x − 2y ≤ 1) ∨ (−2x − 2y ≤ −1)) ∧ (2x − 2y ≤ 1)

|= (−2x − 2y ≤ −1)

(2x − 2y ≤ 1) ∧ (2x − 2y ≥ 3) |=T ⊥
(2x − 2y ≤ 1) ∧ (2x − 2y ≥ 3) 6|= ⊥

Proposition (Property of Entailments)
Let T be a theory. Then

|=⊆|=T
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Naive Architecture

SAT solver theory solver

UNSAT SAT

M |= N

M |=T ⊥
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Example (Linear Integer Arithmetic)

C1 = L1

C2 = L2

C3 = ¬L1 ∨ L3

C4 = L4 ∨ L5

C5 = ¬M1

C6 = ¬M2

C7 = ¬M3

M1 = L1L2L3L4L5

M2 = L1L2L3L4¬L5

M3 = L1L2L3¬L4L5

←[

(2x − 2y ≤ 1)

(−2x + 2y ≤ 1)

¬(2x − 2y ≤ 1) ∨ (−2x − 2y ≤ −1)

(2x + 2y ≤ 3) ∨ (−2x + 2y ≥ 2)

x

y

-1 0 1 2

-1

0

1

2

−2
x
+
2y
≤ 1

2x
− 2

y
≤ 1

−
2x−

2y ≤ −
1

2x
+
2y ≤

3
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Tighter Collaboration between SAT
and Theory Solver

Generate “small” T -conflict clauses
Incrementality
Detect T -inconsistencies early
T -propagations
Case splits by learning additional clauses
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Problem State

( M︸︷︷︸
trail

; N︸︷︷︸
problem clauses

; U︸︷︷︸
learned clauses

; T︸︷︷︸
T -learned clauses

; k︸︷︷︸
decision level

; D︸︷︷︸
conflict

)

(ε; N; ∅; ∅; 0;>) is the start state for some clause set N
(M; N; U; T ; k ;>) is a final state where N is T -satisfiable if M |=

N, M 6|=T ⊥ and all literals from N ∪ U ∪ T are
defined in M.

(M; N; U; T ; k ;⊥) is a final state, where N has no T -model
(M; N; U; T ; k ;>) is an intermediate model search state if not all

literals from N ∪U ∪T are defined in M, M 6|= N
or M |=T ⊥

(M; N; U; T ; k ; D) is a backtracking state if D 6∈ {>,⊥}
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CDCL(T) Calculus –
Propositional Reasoning

Decide (M; N; U; T ; k ;>) ⇒CDCL(T ) (MLk+1; N; U; T ; k + 1;>)

provided L is undefined in M and L ∈ lits(N ∪ U ∪ T ).

Propagate (M; N; U; T ; k ;>) ⇒CDCL(T ) (MLC∨L; N; U; T ; k ;>)

provided C ∨ L ∈ (N ∪ U ∪ T ), M |= ¬C and L is undefined in M.

Conflict (M; N; U; T ; k ;>) ⇒CDCL(T ) (M; N; U; T ; k ; D)

provided D ∈ (N ∪ U ∪ T ) and M |= ¬D.
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CDCL(T) Calculus –
Propositional Reasoning (Cont.)

Skip (ML; N; U; T ; k ; D) ⇒CDCL(T ) (M; N; U; T ; k ; D)

provided comp(L) 6∈ D and D 6∈ {>,⊥}.

Resolve (MLC∨L; N; U; T ; k ; D ∨ comp(L)) ⇒CDCL(T )
(M; N; U; T ; k ; D ∨ C)

provided D and L are of the same level or D = ⊥.

Backtrack (M1K i+1M2; N; U; T ; k ; D ∨ L) ⇒CDCL(T )
(M1LD∨L; N; U ∪ {D ∨ L}; T ; i ;>)

provided L is of level k and D is of level i where i < k .
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CDCL(T) Calculus –
Theory Reasoning

T -Conflict (M; N; U; T ; k ;>) ⇒CDCL(T ) (M; N; U; T ; k ′; D)

provided M |= L1, . . . ,Ln (i.e. L1, . . . ,Ln occur in M),
L1 ∧ · · · ∧ Ln |=T ⊥ and D = comp(L1) ∨ · · · ∨ comp(Ln) and D is
of level k ′.

T -
Propagate (M; N; U; T ; k ;>) ⇒CDCL(T ) (MLC∨L; N; U; T ; k ;>)

provided M |= L1, . . . ,Ln (i.e. L1, . . . ,Ln occur in M),
L1 ∧ · · · ∧ Ln |=T L and L ∈ lits(N ∪ U ∪ T ), L is undefined in M
and C = comp(L1) ∨ · · · ∨ comp(Ln).
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Example (Linear Integer Arithmetic)

L1 ∨ L2 = (x ≥ 5) ∨ (x ≤ 3)

¬L1 ∨ L3 ∨ L4 = ¬(x ≤ 5) ∨ (y ≥ 7) ∨ (y ≤ 4)

¬L1 ∨ L5 ∨ L6 = ¬(x ≥ 5) ∨ (y ≤ 6) ∨ (x + y ≤ 4)

(ε; N; ∅; ∅; 0;>)

⇒Decide
CDCL(T ) (L1

1; N; ∅; ∅; 1;>)

⇒T -Propagate
CDCL(T ) (L1

1¬L¬L1∨¬L2
2 ; N; ∅; ∅; 1;>)

⇒Decide
CDCL(T ) (L1

1¬L¬L1∨¬L2
2 L2

3; N; ∅; ∅; 2;>)

⇒T -Propagate
CDCL(T ) (L1

1¬L¬L1∨¬L2
2 L2

3¬L¬L3∨¬L5
5 ; N; ∅; ∅; 2;>)

⇒Propagate
CDCL(T ) (L1

1¬L¬L1∨¬L2
2 L2

3¬L¬L3∨¬L5
5 L¬L1∨L5∨L6

6 ; N; ∅; ∅; 2;>)
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Example (Cont.)(Linear Integer Arithmetic)

L1 ∨ L2 = (x ≥ 5) ∨ (x ≤ 3)

¬L1 ∨ L3 ∨ L4 = ¬(x ≤ 5) ∨ (y ≥ 7) ∨ (y ≤ 4)

¬L1 ∨ L5 ∨ L6 = ¬(x ≥ 5) ∨ (y ≤ 6) ∨ (x + y ≤ 4)

⇒T -Conflict
CDCL(T ) (L1

1¬L¬L1∨¬L2
2 L2

3¬L¬L3∨¬L5
5 L¬L1∨L5∨L6

6 ; N; ∅; ∅;
2;¬L1 ∨ ¬L3 ∨ ¬L6)

⇒Resolve∗

CDCL(T ) (L1
1¬L¬L1∨¬L2

2 L2
3; N; ∅; ∅; 2;¬L1 ∨ ¬L3)

⇒Backtrack
CDCL(T ) (L1

1¬L¬L1∨¬L2
2 ¬L¬L1∨¬L3

3 ; N; {¬L1 ∨ ¬L3}; ∅; 1;>)

⇒Propagate
CDCL(T ) (L1

1¬L¬L1∨¬L2
2 ¬L¬L1∨¬L3

3 L¬L1∨L3∨L4
4 ; N; {¬L1 ∨ ¬L3}; ∅; 1;>)

⇒T -Propagate
CDCL(T ) (L1

1¬L¬L1∨¬L2
2 ¬L¬L1∨¬L3

3 L¬L1∨L3∨L4
4 L¬L4∨L5

5 ; N;

{¬L1 ∨ ¬L3}; ∅; 1;>)

⇒Decide
CDCL(T ) (L1

1¬L¬L1∨¬L2
2 ¬L¬L1∨¬L3

3 L¬L1∨L3∨L4
4 L¬L4∨L5

5 ¬L2
6; N;

{¬L1 ∨ ¬L3}; ∅; 2;>)
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1¬L¬L1∨¬L2

2 L2
3; N; ∅; ∅; 2;¬L1 ∨ ¬L3)

⇒Backtrack
CDCL(T ) (L1

1¬L¬L1∨¬L2
2 ¬L¬L1∨¬L3

3 ; N; {¬L1 ∨ ¬L3}; ∅; 1;>)

⇒Propagate
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{¬L1 ∨ ¬L3}; ∅; 1;>)
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2 ¬L¬L1∨¬L3

3 L¬L1∨L3∨L4
4 L¬L4∨L5

5 ¬L2
6; N;

{¬L1 ∨ ¬L3}; ∅; 2;>)
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CDCL(T) Calculus –
Splitting on Demand

Problem: Solvers for many theories need to do case splits
Idea: Use SAT Solver for case splits

– Encode splits as clauses,
– Reuse advanced backtracking techniques of CDCL for free,
– Avoid re-implementing them in (several) theory solvers.

T -Learn (M; N; U; T ; k ;>) ⇒CDCL(T ) (M; N; U; T ]T ′; k ;>)

provided (N ∪ U ∪ T ) |=T T ′, T ′ ∩ (N ∪ U ∪ T ) = ∅, T ′ is finite.

Potential disadvantages: may introduce a huge number of
clauses that are used infrequently

T -Forget (M; N; U; T ]T ′; k ; D) ⇒CDCL(T ) (M; N; U; T ; k ; D)

provided D 6∈ {>,⊥}, T ′ 6= ∅ and
atoms(M) ⊆ atoms(N ∪ U ∪ T ).
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Example (Linear Integer Arithmetic)

L1 = (2x − 2y ≤ 1)

L2 = (−2x + 2y ≤ 1)

¬L1 ∨ L3 = ¬(2x − 2y ≤ 1) ∨ (−2x − 2y ≤ −1)

L4 ∨ L5 = (2x + 2y ≤ 3) ∨ (−2x + 2y ≥ 2)

(ε; N; ∅; ∅; 0;>)

⇒Propagate
CDCL(T ) (LL1

1 ; N; ∅; ∅; 0;>)

⇒Propagate*
CDCL(T ) (LL1

1 L¬L1∨L3
3 LL2

2 ; N; ∅; ∅; 0;>)

⇒T -Propagate
CDCL(T ) (LL1

1 L¬L1∨L3
3 LL2

2 (¬L5)¬L2∨¬L5 ; N; ∅; ∅; 0;>)

⇒Propagate
CDCL(T ) (LL1

1 L¬L1∨L3
3 LL2

2 (¬L5)¬L2∨¬L5 LL5∨L4
4 ; N; ∅; ∅; 0;>)
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Example (Cont.)

x

y

-1 0 1 2
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0

1

2

−2
x
+
2y
≤ 1

2x
− 2

y
≤ 1

−
2x−

2y ≤ −
1

2x
+
2y ≤

3

L6 ∨ L7 = (x ≤ 0) ∨ (x ≥ 1)

⇒T -Learn
CDCL(T ) (LL1

1 L¬L1∨L3
3 LL2

2 (¬L5)¬L2∨¬L5 LL5∨L4
4 ; N; ∅; {L6 ∨ L7}; 0;>)
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Example (Cont.)

⇒Decide
CDCL(T ) (LL1

1 L¬L1∨L3
3 LL2

2 (¬L5)¬L2∨¬L5 LL5∨L4
4 L1

6; N; ∅; {L6 ∨ L7}; 1;>)

⇒T -Conflict
CDCL(T ) (LL1

1 L¬L1∨L3
3 LL2

2 (¬L5)¬L2∨¬L5 LL5∨L4
4 L1

6;

N; ∅; {L6 ∨ L7}; 1;¬L2 ∨ ¬L3 ∨ ¬L6)

⇒Backtrack
CDCL(T ) (LL1

1 L¬L1∨L3
3 LL2

2 (¬L5)¬L2∨¬L5 LL5∨L4
4 (¬L6)¬L2∨¬L3∨¬L6 ;

N; {¬L2 ∨ ¬L3 ∨ ¬L6}; {L6 ∨ L7}; 0;>)

⇒Propagate
CDCL(T ) (LL1

1 L¬L1∨L3
3 LL2

2 (¬L5)¬L2∨¬L5 LL5∨L4
4 (¬L6)¬L2∨¬L3∨¬L6 LL6∨L7

7 ;

N; {¬L2 ∨ ¬L3 ∨ ¬L6}; {L6 ∨ L7}; 0;>)

⇒T -Conflict
CDCL(T ) (LL1

1 L¬L1∨L3
3 LL2

2 (¬L5)¬L2∨¬L5 LL5∨L4
4 (¬L6)¬L2∨¬L3∨¬L6 LL6∨L7

7 ;

N; {¬L2 ∨ ¬L3 ∨ ¬L6}; {L6 ∨ L7}; 0;¬L1 ∨ ¬L4 ∨ ¬L7)

⇒Resolve*
CDCL(T ) (ε; N; {¬L2 ∨ ¬L3 ∨ ¬L6}; {L6 ∨ L7}; 0;⊥)
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Lemma (Invariants I)

Let (ε; N0; ∅; ∅; 0;>)⇒∗CDCL(T ) (M; N; U; T ; k ; D). Then:
1. N = N0;

2. M is (propositionally) consistent, i.e. it does not contain a literal
L as well as comp(L);

3. M does not contain the same literal twice;
4. Decision literal annotations are ordered in a strictly increasing

manner on the trail and k is equal to the maximal annotation
unless D 6∈ {>,⊥} in which case k is greater or equal to the
maximal level on the trail and equal to the level of D;

Proof.
Induction on the length of the derivation.
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Lemma (Invariants II)
Let (ε; N0; ∅; ∅; 0;>)⇒∗CDCL(T ) (M; N; U; T ; k ; D). Then:

1. both if M = M1LC∨LM2 then M1 |= ¬C, and if D 6∈ {⊥,>} then
M |= ¬D;

2. N |=T (U ∪ T ), N |=T D and if M = M1LC∨LM2 then
N |=T C ∨ L.

3. lits(D) ⊆ lits(N ∪ U ∪ T ), lits(M) ⊆ lits(N ∪ U ∪ T ) and if
M = M1LC∨LM2 then lits(C ∨ L) ⊆ lits(N ∪ U ∪ T ).

4. U and T are finite if N0 is finite;

Proof.
Induction on the length of the derivation.
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Soundness

Proposition (Soundness)

Let (ε; N0; ∅; ∅; 0;>)⇒∗CDCL(T ) (M; N; U; T ; k ; D) be terminal.
Then exactly one of the following holds:

1. D = ⊥ and N0 is T -unsatisfiable;
2. D = > and N0 is T -satisfiable.

What about termination?
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Strategy and Learning Clauses
Twice

Definition (Weakly Reasonable Strategy)
A strategy is called weakly reasonable if Propagate is preferred
over Decide.

Lemma (Learning Twice)
CDCL(T ) never learns the same clause twice with Backtrack
when using a weakly reasonable strategy.

T -Learn can introduce an infinite number of new literals.
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Consider the clause set given by

L1 = (0 ≤ x − 1) L2 = (x ≤ 0)

Let Ki = (x ≤ i) for i ∈ N.

(ε; N; ∅; ∅; 0;>)

⇒Propagate
CDCL(T ) (LL1

1 ; N; ∅; ∅; 0;>)

⇒Propagate
CDCL(T ) (LL1

1 LL2
2 ; N; ∅; ∅; 0;>)

⇒T -Learn
CDCL(T )(L

L1
1 LL2

2 ; N; ∅; {K1 ∨ ¬K1}; 0;>)

⇒Decide
CDCL(T )(L

L1
1 LL2

2 K 1
1 ; N; ∅; {K1 ∨ ¬K1}; 1;>)

⇒∗CDCL(T ) . . .

⇒T -Learn
CDCL(T )(L

L1
1 LL2

2 K 1
1 · · ·K i−1

i−1 ; N; ∅; {K1 ∨ ¬K1, . . . ,Ki ∨ ¬Ki}; i − 1;>)

⇒Decide
CDCL(T )(L

L1
1 LL2

2 K 1
1 · · ·K i−1

i−1 K i
i ; N; ∅; {K1 ∨ ¬K1, . . . ,Ki ∨ ¬Ki}; i ;>)
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Termination of CDCL(T)
Straight-forward fix by [Barrett et al., 2006]:

Theorem (Termination)

Let L(N) be a finite set.
Then CDCL(T ) terminates when using a weakly reasonable
strategy such that whenever T -learning the clauses in T ′,
atoms(T ′) ⊆ L(atoms(N)) holds.

Proof.
The well-founded measure

µ′(M; N; U; T ; D) =

{
(3n − |U|,1,n − |M|,3n − |T |) if D = >
(3n − |U|,0, |M|, |T |) otherwise

for n = |L(atoms(N))| is decreased by each rule.
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Strategy for CDCL(LRA)

Conflict

Propagate

T -Conflict,
T -Propagate,
T -Learn

Decide

preferred over

preferred over

preferred over

In general: trade-off between pruning of propositional search and
computational cost of theory solver calls
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Improvements

Layered theory solvers and incomplete checks (e.g. for LIA:
relaxation over the reals)
Lazy computation of T -explanations
Restart, Forget
Preprocessing

– Normalization of T -atoms
– Static learning

Redundancy
– SAT-level redundancy
– LIA/LRA-specific redundancy
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Interface

Frequent T -solver calls with similar trails
Support efficient addition and removal of T -literals (incremental
and backtrackable T -solver)

CDCL(T) Theory Solver
modification of trail

T -conflict/T -learned clauses,
T -propagations,

explanations
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Conclusion

CDCL(T ): by far most widely used calculus to decide
satisfiability of (quantifier-free) formulas w.r.t. a background
theory
CDCL(T ) lifts theory solvers for conjunctions of literals to
(quantifier-free) formulas of an arbitrary structure
CDCL(T ) extends propositional CDCL with rules for theory
reasoning based on the current trail
Splitting on demand can be used to avoid case splits in theory
solvers
In practice: trade-off between pruning of propositional search
and computational cost of theory solver calls
Motivates incremental theory solvers
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Termination of CDCL(T) with
Weaker Assumptions

Definition (Strongly Superset-Terminating Relations)
A strict ordering ≺ on P(A(Σ)) is called strongly
superset-terminating if ≺ ∩ ⊃ is well-founded and for all
A,A′,B ⊆ A(Σ),

1. if A � B and B ⊆ A′ ⊆ A then A′ � B;

2. if A � B, A′ � B and A,A′ ⊇ B then (A ∪ A′) � A.

Theorem (Termination II)
Let ≺ be a strongly superset-terminating relation.
Then CDCL(T ) terminates when using a weakly reasonable
strategy such that whenever T -learning the clauses in T ′,
atoms(T ′ ∪ N ∪ U) � atoms(N ∪ U) holds.
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Discussion

Our criterion is equivalent to the one of [Barrett et al., 2006] for
deterministic theory solvers.
Consider a procedure that first guesses a bound for an integer
a variable and then refines it.

– No a priori finite set of atoms of for T -learning
– However, there is an appropriate strongly superset-terminating

relation
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Algorithm 1: CDCL(T )(S)

Input : An initial state (ε;N ; ∅; 0;>).
Output: A final state S = (M ;N ;U ; k;D),

D ∈ {>,⊥}
1 for (L ∈ atoms(N)) do
2 T -Solver Inform(L);
3 while (any rule applicable) do
4 ifrule (Conflict(S)) then
5 S = Analyze(S);
6 else ifrule (Propagate(S)) then
7 T -Solver Assert(L);
8 else
9 T -Solver IncompleteCheck(M);

10 S = ReactToT -Solver(S);
11 if (T -Solver failed or found model for M)

then
12 if (M |= N or complete check heuristic)

then
13 T -Solver CompleteCheck(M);
14 S = ReactToT -Solver(S);
15 if (T -Solver found model for M) then
16 return(S);

17 else
18 Decide(S);
19 T -Solver AddDecision(L);
20 T -Solver Assert(L);

21 return(S);

Algorithm 2: ReactToT -Solver

Input : A state (M ;N ;U ; k;>).
Output: A state S = (M ′;N ;U ′; k′;D), D ∈ {>,⊥}

1 if (detected T -Conflict) then
2 C = T -Solver GetConflict(S);
3 T -Conflict’(S,C);
4 S = Analyze(S);

5 else if (detected T -Propagations) then
6 L1, . . . , Ln = T -Solver GetPropagations(S);
7 T -Propagate(S,L);
8 T -Solver Assert(L);

9 else if (decided to learn clauses in T ′) then
10 T ′ = T -Solver GetLearnedClauses(S);
11 T -Learn(S, T ′);
12 return(S);

Algorithm 3: Analyze(S)

Input : A state (M ;N ;U ; k;D) with D 6∈ {>,⊥}.
Output: A state S = (M ′;N ;U ′; k′;D), D ∈ {>,⊥}

1 whilerule (Skip(S) or Resolve(S)) do
2 ;
3 if (T -forget heuristic) then
4 T -Forget(S,N ′);
5 ifrule (Backtrack(S)) then
6 T -Solver.backtrack(k);
7 return(S);
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Interface

Incremental, backtrackable
– Inform
– AddDecision
– Assert
– Backtrack
– CompleteCheck
– IncompleteCheck
– GetPropagations
– GetReason
– GetConflict
– GetLearnedClauses
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Implementation – Architecture

SMT-LIB

Parser

SMT-LIB
Simplifications

CNF
Transformation

Core
cdclla-Module

SPASS-SATT Simplex Solver

SAT/UNSAT

Formula

simplified and normalized Formula

Formula in CNF

backtrack level, conflict?

propagate, decide,
handle conflict,

new clause/variable

modification of trail

T -conflict/T -learned clauses,
T -propagations,

explanations
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