
CDCL(T)

Automated Reasoning II

Max Planck Institute for Informatics

13th June 2017

Introduction CDCL(T) Calculus Properties of CDCL(T) Implementation and Improvements Conclusion

Outline

Introduction

CDCL(T) Calculus

Properties of CDCL(T)

Implementation and Improvements

Conclusion

13th June 2017 2/29

Introduction CDCL(T) Calculus Properties of CDCL(T) Implementation and Improvements Conclusion

Introduction
Aim: decide satisfiability of a (quantifier-free) first-order formula
with respect to a background theory

– e.g. linear (real/integer) arithmetic, equality and uninterpreted
functions, arrays, bitvectors, etc.

Example (Linear Integer Arithmetic)

(2x − 2y ≤ 1)∧
((−2x + 2y ≤ 1) ∨ ⊥)∧
(¬(2x − 2y ≤ 1) ∨ (−2x − 2y ≤ −1))∧
((2x + 2y ≤ 3) ∨ (−2x + 2y ≥ 2))

Problem: Many decision procedures for theories (e.g. simplex)
can only decide consistency of a conjunction of literals

13th June 2017 3/29

Introduction CDCL(T) Calculus Properties of CDCL(T) Implementation and Improvements Conclusion

Introduction
Aim: decide satisfiability of a (quantifier-free) first-order formula
with respect to a background theory

– e.g. linear (real/integer) arithmetic, equality and uninterpreted
functions, arrays, bitvectors, etc.

Example (Linear Integer Arithmetic)

(2x − 2y ≤ 1)∧
((−2x + 2y ≤ 1) ∨ ⊥)∧
(¬(2x − 2y ≤ 1) ∨ (−2x − 2y ≤ −1))∧
((2x + 2y ≤ 3) ∨ (−2x + 2y ≥ 2))

Problem: Many decision procedures for theories (e.g. simplex)
can only decide consistency of a conjunction of literals

13th June 2017 3/29

Introduction CDCL(T) Calculus Properties of CDCL(T) Implementation and Improvements Conclusion

Introduction
Aim: decide satisfiability of a (quantifier-free) first-order formula
with respect to a background theory

– e.g. linear (real/integer) arithmetic, equality and uninterpreted
functions, arrays, bitvectors, etc.

Example (Linear Integer Arithmetic)

(2x − 2y ≤ 1)∧
((−2x + 2y ≤ 1) ∨ ⊥)∧
(¬(2x − 2y ≤ 1) ∨ (−2x − 2y ≤ −1))∧
((2x + 2y ≤ 3) ∨ (−2x + 2y ≥ 2))

Problem: Many decision procedures for theories (e.g. simplex)
can only decide consistency of a conjunction of literals

13th June 2017 3/29

Introduction CDCL(T) Calculus Properties of CDCL(T) Implementation and Improvements Conclusion

Lifting T -Reasoning to Arbitrary
Boolean Structures
Definition (T -Solver)
Let T be a theory. A T -solver is a procedure for deciding
T -consistency of a conjunction of T -literals.

Lifting to arbitrary boolean structure:
1. Given T -formula φ, transform φ into equivalent φ′ in DNF.
2. φ′ is T -consistent iff φ′ = (L1 ∧ · · · ∧ Ln) ∨ φ′′ and L1 ∧ · · · ∧ Ln is
T -consistent

Drawback: potential expontential explosion during
DNF-transformation
Idea: Use SAT-Solver to enumerate (some/sufficiently many)
disjuncts

13th June 2017 4/29

Introduction CDCL(T) Calculus Properties of CDCL(T) Implementation and Improvements Conclusion

Lifting T -Reasoning to Arbitrary
Boolean Structures
Definition (T -Solver)
Let T be a theory. A T -solver is a procedure for deciding
T -consistency of a conjunction of T -literals.

Lifting to arbitrary boolean structure:
1. Given T -formula φ, transform φ into equivalent φ′ in DNF.
2. φ′ is T -consistent iff φ′ = (L1 ∧ · · · ∧ Ln) ∨ φ′′ and L1 ∧ · · · ∧ Ln is
T -consistent

Drawback: potential expontential explosion during
DNF-transformation
Idea: Use SAT-Solver to enumerate (some/sufficiently many)
disjuncts

13th June 2017 4/29

Introduction CDCL(T) Calculus Properties of CDCL(T) Implementation and Improvements Conclusion

Notation
Associate with each T -atom A a propositional variable
atr(A) = PA and lift atr to T -formulas.

Example (Propositional Abstractions)

atr (¬(2x − 2y ≤ 1) ∨ (−2x − 2y ≤ −1))

=¬P(2x−2y≤1) ∨ P(−2x−2y≤−1)

=¬P1 ∨ P2

Definition (Entailments)
Let φ and ψ be T -formulas.
φ |= ψ iff each (propositional) model of atr(φ) is also a model of
atr(ψ);
φ |=T ψ iff each T -model of φ is also a T -model of ψ.

13th June 2017 5/29

Introduction CDCL(T) Calculus Properties of CDCL(T) Implementation and Improvements Conclusion

Notation
Associate with each T -atom A a propositional variable
atr(A) = PA and lift atr to T -formulas.

Example (Propositional Abstractions)

atr (¬(2x − 2y ≤ 1) ∨ (−2x − 2y ≤ −1))

=¬P(2x−2y≤1) ∨ P(−2x−2y≤−1)

=¬P1 ∨ P2

Definition (Entailments)
Let φ and ψ be T -formulas.
φ |= ψ iff each (propositional) model of atr(φ) is also a model of
atr(ψ);
φ |=T ψ iff each T -model of φ is also a T -model of ψ.

13th June 2017 5/29

Introduction CDCL(T) Calculus Properties of CDCL(T) Implementation and Improvements Conclusion

Notation (Cont.)

Example (Entailments)

(¬(2x − 2y ≤ 1) ∨ (−2x − 2y ≤ −1)) ∧ (2x − 2y ≤ 1)

|= (−2x − 2y ≤ −1)

(2x − 2y ≤ 1) ∧ (2x − 2y ≥ 3) |=T ⊥
(2x − 2y ≤ 1) ∧ (2x − 2y ≥ 3) 6|= ⊥

Proposition (Property of Entailments)
Let T be a theory. Then

|=⊆|=T

13th June 2017 6/29

Introduction CDCL(T) Calculus Properties of CDCL(T) Implementation and Improvements Conclusion

Notation (Cont.)

Example (Entailments)

(¬(2x − 2y ≤ 1) ∨ (−2x − 2y ≤ −1)) ∧ (2x − 2y ≤ 1)

|= (−2x − 2y ≤ −1)

(2x − 2y ≤ 1) ∧ (2x − 2y ≥ 3) |=T ⊥
(2x − 2y ≤ 1) ∧ (2x − 2y ≥ 3) 6|= ⊥

Proposition (Property of Entailments)
Let T be a theory. Then

|=⊆|=T

13th June 2017 6/29

Introduction CDCL(T) Calculus Properties of CDCL(T) Implementation and Improvements Conclusion

Naive Architecture

SAT solver theory solver

UNSAT SAT

M |= N

M |=T ⊥

13th June 2017 7/29

Introduction CDCL(T) Calculus Properties of CDCL(T) Implementation and Improvements Conclusion

Example (Linear Integer Arithmetic)

C1 = L1

C2 = L2

C3 = ¬L1 ∨ L3

C4 = L4 ∨ L5

C5 = ¬M1

C6 = ¬M2

C7 = ¬M3

M1 = L1L2L3L4L5

M2 = L1L2L3L4¬L5

M3 = L1L2L3¬L4L5

←[

(2x − 2y ≤ 1)

(−2x + 2y ≤ 1)

¬(2x − 2y ≤ 1) ∨ (−2x − 2y ≤ −1)

(2x + 2y ≤ 3) ∨ (−2x + 2y ≥ 2)

x

y

-1 0 1 2

-1

0

1

2

−2
x
+
2y
≤ 1

2x
− 2

y
≤ 1

−
2x−

2y ≤ −
1

2x
+
2y ≤

3

13th June 2017 8/29

Introduction CDCL(T) Calculus Properties of CDCL(T) Implementation and Improvements Conclusion

Example (Linear Integer Arithmetic)

C1 = L1

C2 = L2

C3 = ¬L1 ∨ L3

C4 = L4 ∨ L5

C5 = ¬M1

C6 = ¬M2

C7 = ¬M3

M1 = L1L2L3L4L5

M2 = L1L2L3L4¬L5

M3 = L1L2L3¬L4L5

←[

(2x − 2y ≤ 1)

(−2x + 2y ≤ 1)

¬(2x − 2y ≤ 1) ∨ (−2x − 2y ≤ −1)

(2x + 2y ≤ 3) ∨ (−2x + 2y ≥ 2)

x

y

-1 0 1 2

-1

0

1

2

−2
x
+
2y
≤ 1

2x
− 2

y
≤ 1

−
2x−

2y ≤ −
1

2x
+
2y ≤

3

13th June 2017 8/29

Introduction CDCL(T) Calculus Properties of CDCL(T) Implementation and Improvements Conclusion

Example (Linear Integer Arithmetic)

C1 = L1

C2 = L2

C3 = ¬L1 ∨ L3

C4 = L4 ∨ L5

C5 = ¬M1

C6 = ¬M2

C7 = ¬M3

M1 = L1L2L3L4L5

M2 = L1L2L3L4¬L5

M3 = L1L2L3¬L4L5

←[

(2x − 2y ≤ 1)

(−2x + 2y ≤ 1)

¬(2x − 2y ≤ 1) ∨ (−2x − 2y ≤ −1)

(2x + 2y ≤ 3) ∨ (−2x + 2y ≥ 2)

x

y

-1 0 1 2

-1

0

1

2

−2
x
+
2y
≤ 1

2x
− 2

y
≤ 1

−
2x−

2y ≤ −
1

2x
+
2y ≤

3

13th June 2017 8/29

Introduction CDCL(T) Calculus Properties of CDCL(T) Implementation and Improvements Conclusion

Example (Linear Integer Arithmetic)

C1 = L1

C2 = L2

C3 = ¬L1 ∨ L3

C4 = L4 ∨ L5

C5 = ¬M1

C6 = ¬M2

C7 = ¬M3

M1 = L1L2L3L4L5

M2 = L1L2L3L4¬L5

M3 = L1L2L3¬L4L5

←[

(2x − 2y ≤ 1)

(−2x + 2y ≤ 1)

¬(2x − 2y ≤ 1) ∨ (−2x − 2y ≤ −1)

(2x + 2y ≤ 3) ∨ (−2x + 2y ≥ 2)

x

y

-1 0 1 2

-1

0

1

2

−2
x
+
2y
≤ 1

2x
− 2

y
≤ 1

−
2x−

2y ≤ −
1

2x
+
2y ≤

3

13th June 2017 8/29

Introduction CDCL(T) Calculus Properties of CDCL(T) Implementation and Improvements Conclusion

Example (Linear Integer Arithmetic)

C1 = L1

C2 = L2

C3 = ¬L1 ∨ L3

C4 = L4 ∨ L5

C5 = ¬M1

C6 = ¬M2

C7 = ¬M3

M1 = L1L2L3L4L5

M2 = L1L2L3L4¬L5

M3 = L1L2L3¬L4L5

←[

(2x − 2y ≤ 1)

(−2x + 2y ≤ 1)

¬(2x − 2y ≤ 1) ∨ (−2x − 2y ≤ −1)

(2x + 2y ≤ 3) ∨ (−2x + 2y ≥ 2)

x

y

-1 0 1 2

-1

0

1

2

−2
x
+
2y
≤ 1

2x
− 2

y
≤ 1

−
2x−

2y ≤ −
1

2x
+
2y ≤

3

13th June 2017 8/29

Introduction CDCL(T) Calculus Properties of CDCL(T) Implementation and Improvements Conclusion

Example (Linear Integer Arithmetic)

C1 = L1

C2 = L2

C3 = ¬L1 ∨ L3

C4 = L4 ∨ L5

C5 = ¬M1

C6 = ¬M2

C7 = ¬M3

M1 = L1L2L3L4L5

M2 = L1L2L3L4¬L5

M3 = L1L2L3¬L4L5

←[

(2x − 2y ≤ 1)

(−2x + 2y ≤ 1)

¬(2x − 2y ≤ 1) ∨ (−2x − 2y ≤ −1)

(2x + 2y ≤ 3) ∨ (−2x + 2y ≥ 2)

x

y

-1 0 1 2

-1

0

1

2

−2
x
+
2y
≤ 1

2x
− 2

y
≤ 1

−
2x−

2y ≤ −
1

2x
+
2y ≤

3

13th June 2017 8/29

Introduction CDCL(T) Calculus Properties of CDCL(T) Implementation and Improvements Conclusion

Example (Linear Integer Arithmetic)

C1 = L1

C2 = L2

C3 = ¬L1 ∨ L3

C4 = L4 ∨ L5

C5 = ¬M1

C6 = ¬M2

C7 = ¬M3

M1 = L1L2L3L4L5

M2 = L1L2L3L4¬L5

M3 = L1L2L3¬L4L5

←[

(2x − 2y ≤ 1)

(−2x + 2y ≤ 1)

¬(2x − 2y ≤ 1) ∨ (−2x − 2y ≤ −1)

(2x + 2y ≤ 3) ∨ (−2x + 2y ≥ 2)

x

y

-1 0 1 2

-1

0

1

2

−2
x
+
2y
≤ 1

2x
− 2

y
≤ 1

−
2x−

2y ≤ −
1

2x
+
2y ≤

3

13th June 2017 8/29

Introduction CDCL(T) Calculus Properties of CDCL(T) Implementation and Improvements Conclusion

Tighter Collaboration between SAT
and Theory Solver

Generate “small” T -conflict clauses
Incrementality
Detect T -inconsistencies early
T -propagations
Case splits by learning additional clauses

13th June 2017 9/29

Introduction CDCL(T) Calculus Properties of CDCL(T) Implementation and Improvements Conclusion

Problem State

(M︸︷︷︸
trail

; N︸︷︷︸
problem clauses

; U︸︷︷︸
learned clauses

; T︸︷︷︸
T -learned clauses

; k︸︷︷︸
decision level

; D︸︷︷︸
conflict

)

(ε; N; ∅; ∅; 0;>) is the start state for some clause set N
(M; N; U; T ; k ;>) is a final state where N is T -satisfiable if M |=

N, M 6|=T ⊥ and all literals from N ∪ U ∪ T are
defined in M.

(M; N; U; T ; k ;⊥) is a final state, where N has no T -model
(M; N; U; T ; k ;>) is an intermediate model search state if not all

literals from N ∪U ∪T are defined in M, M 6|= N
or M |=T ⊥

(M; N; U; T ; k ; D) is a backtracking state if D 6∈ {>,⊥}

13th June 2017 10/29

Introduction CDCL(T) Calculus Properties of CDCL(T) Implementation and Improvements Conclusion

Problem State

(M︸︷︷︸
trail

; N︸︷︷︸
problem clauses

; U︸︷︷︸
learned clauses

; T︸︷︷︸
T -learned clauses

; k︸︷︷︸
decision level

; D︸︷︷︸
conflict

)

(ε; N; ∅; ∅; 0;>) is the start state for some clause set N
(M; N; U; T ; k ;>) is a final state where N is T -satisfiable if M |=

N, M 6|=T ⊥ and all literals from N ∪ U ∪ T are
defined in M.

(M; N; U; T ; k ;⊥) is a final state, where N has no T -model
(M; N; U; T ; k ;>) is an intermediate model search state if not all

literals from N ∪U ∪T are defined in M, M 6|= N
or M |=T ⊥

(M; N; U; T ; k ; D) is a backtracking state if D 6∈ {>,⊥}

13th June 2017 10/29

Introduction CDCL(T) Calculus Properties of CDCL(T) Implementation and Improvements Conclusion

CDCL(T) Calculus –
Propositional Reasoning

Decide (M; N; U; T ; k ;>) ⇒CDCL(T) (MLk+1; N; U; T ; k + 1;>)

provided L is undefined in M and L ∈ lits(N ∪ U ∪ T).

Propagate (M; N; U; T ; k ;>) ⇒CDCL(T) (MLC∨L; N; U; T ; k ;>)

provided C ∨ L ∈ (N ∪ U ∪ T), M |= ¬C and L is undefined in M.

Conflict (M; N; U; T ; k ;>) ⇒CDCL(T) (M; N; U; T ; k ; D)

provided D ∈ (N ∪ U ∪ T) and M |= ¬D.

13th June 2017 11/29

Introduction CDCL(T) Calculus Properties of CDCL(T) Implementation and Improvements Conclusion

CDCL(T) Calculus –
Propositional Reasoning (Cont.)

Skip (ML; N; U; T ; k ; D) ⇒CDCL(T) (M; N; U; T ; k ; D)

provided comp(L) 6∈ D and D 6∈ {>,⊥}.

Resolve (MLC∨L; N; U; T ; k ; D ∨ comp(L)) ⇒CDCL(T)
(M; N; U; T ; k ; D ∨ C)

provided D and L are of the same level or D = ⊥.

Backtrack (M1K i+1M2; N; U; T ; k ; D ∨ L) ⇒CDCL(T)
(M1LD∨L; N; U ∪ {D ∨ L}; T ; i ;>)

provided L is of level k and D is of level i where i < k .

13th June 2017 12/29

Introduction CDCL(T) Calculus Properties of CDCL(T) Implementation and Improvements Conclusion

CDCL(T) Calculus –
Theory Reasoning

T -Conflict (M; N; U; T ; k ;>) ⇒CDCL(T) (M; N; U; T ; k ′; D)

provided M |= L1, . . . ,Ln (i.e. L1, . . . ,Ln occur in M),
L1 ∧ · · · ∧ Ln |=T ⊥ and D = comp(L1) ∨ · · · ∨ comp(Ln) and D is
of level k ′.

T -
Propagate (M; N; U; T ; k ;>) ⇒CDCL(T) (MLC∨L; N; U; T ; k ;>)

provided M |= L1, . . . ,Ln (i.e. L1, . . . ,Ln occur in M),
L1 ∧ · · · ∧ Ln |=T L and L ∈ lits(N ∪ U ∪ T), L is undefined in M
and C = comp(L1) ∨ · · · ∨ comp(Ln).

13th June 2017 13/29

Introduction CDCL(T) Calculus Properties of CDCL(T) Implementation and Improvements Conclusion

CDCL(T) Calculus –
Theory Reasoning

T -Conflict (M; N; U; T ; k ;>) ⇒CDCL(T) (M; N; U; T ; k ′; D)

provided M |= L1, . . . ,Ln (i.e. L1, . . . ,Ln occur in M),
L1 ∧ · · · ∧ Ln |=T ⊥ and D = comp(L1) ∨ · · · ∨ comp(Ln) and D is
of level k ′.

T -
Propagate (M; N; U; T ; k ;>) ⇒CDCL(T) (MLC∨L; N; U; T ; k ;>)

provided M |= L1, . . . ,Ln (i.e. L1, . . . ,Ln occur in M),
L1 ∧ · · · ∧ Ln |=T L and L ∈ lits(N ∪ U ∪ T), L is undefined in M
and C = comp(L1) ∨ · · · ∨ comp(Ln).

13th June 2017 13/29

Introduction CDCL(T) Calculus Properties of CDCL(T) Implementation and Improvements Conclusion

Example (Linear Integer Arithmetic)

L1 ∨ L2 = (x ≥ 5) ∨ (x ≤ 3)

¬L1 ∨ L3 ∨ L4 = ¬(x ≤ 5) ∨ (y ≥ 7) ∨ (y ≤ 4)

¬L1 ∨ L5 ∨ L6 = ¬(x ≥ 5) ∨ (y ≤ 6) ∨ (x + y ≤ 4)

(ε; N; ∅; ∅; 0;>)

⇒Decide
CDCL(T) (L1

1; N; ∅; ∅; 1;>)

⇒T -Propagate
CDCL(T) (L1

1¬L¬L1∨¬L2
2 ; N; ∅; ∅; 1;>)

⇒Decide
CDCL(T) (L1

1¬L¬L1∨¬L2
2 L2

3; N; ∅; ∅; 2;>)

⇒T -Propagate
CDCL(T) (L1

1¬L¬L1∨¬L2
2 L2

3¬L¬L3∨¬L5
5 ; N; ∅; ∅; 2;>)

⇒Propagate
CDCL(T) (L1

1¬L¬L1∨¬L2
2 L2

3¬L¬L3∨¬L5
5 L¬L1∨L5∨L6

6 ; N; ∅; ∅; 2;>)

13th June 2017 14/29

Introduction CDCL(T) Calculus Properties of CDCL(T) Implementation and Improvements Conclusion

Example (Linear Integer Arithmetic)

L1 ∨ L2 = (x ≥ 5) ∨ (x ≤ 3)

¬L1 ∨ L3 ∨ L4 = ¬(x ≤ 5) ∨ (y ≥ 7) ∨ (y ≤ 4)

¬L1 ∨ L5 ∨ L6 = ¬(x ≥ 5) ∨ (y ≤ 6) ∨ (x + y ≤ 4)

(ε; N; ∅; ∅; 0;>)

⇒Decide
CDCL(T) (L1

1; N; ∅; ∅; 1;>)

⇒T -Propagate
CDCL(T) (L1

1¬L¬L1∨¬L2
2 ; N; ∅; ∅; 1;>)

⇒Decide
CDCL(T) (L1

1¬L¬L1∨¬L2
2 L2

3; N; ∅; ∅; 2;>)

⇒T -Propagate
CDCL(T) (L1

1¬L¬L1∨¬L2
2 L2

3¬L¬L3∨¬L5
5 ; N; ∅; ∅; 2;>)

⇒Propagate
CDCL(T) (L1

1¬L¬L1∨¬L2
2 L2

3¬L¬L3∨¬L5
5 L¬L1∨L5∨L6

6 ; N; ∅; ∅; 2;>)

13th June 2017 14/29

Introduction CDCL(T) Calculus Properties of CDCL(T) Implementation and Improvements Conclusion

Example (Linear Integer Arithmetic)

L1 ∨ L2 = (x ≥ 5) ∨ (x ≤ 3)

¬L1 ∨ L3 ∨ L4 = ¬(x ≤ 5) ∨ (y ≥ 7) ∨ (y ≤ 4)

¬L1 ∨ L5 ∨ L6 = ¬(x ≥ 5) ∨ (y ≤ 6) ∨ (x + y ≤ 4)

(ε; N; ∅; ∅; 0;>)

⇒Decide
CDCL(T) (L1

1; N; ∅; ∅; 1;>)

⇒T -Propagate
CDCL(T) (L1

1¬L¬L1∨¬L2
2 ; N; ∅; ∅; 1;>)

⇒Decide
CDCL(T) (L1

1¬L¬L1∨¬L2
2 L2

3; N; ∅; ∅; 2;>)

⇒T -Propagate
CDCL(T) (L1

1¬L¬L1∨¬L2
2 L2

3¬L¬L3∨¬L5
5 ; N; ∅; ∅; 2;>)

⇒Propagate
CDCL(T) (L1

1¬L¬L1∨¬L2
2 L2

3¬L¬L3∨¬L5
5 L¬L1∨L5∨L6

6 ; N; ∅; ∅; 2;>)

13th June 2017 14/29

Introduction CDCL(T) Calculus Properties of CDCL(T) Implementation and Improvements Conclusion

Example (Cont.)(Linear Integer Arithmetic)

L1 ∨ L2 = (x ≥ 5) ∨ (x ≤ 3)

¬L1 ∨ L3 ∨ L4 = ¬(x ≤ 5) ∨ (y ≥ 7) ∨ (y ≤ 4)

¬L1 ∨ L5 ∨ L6 = ¬(x ≥ 5) ∨ (y ≤ 6) ∨ (x + y ≤ 4)

⇒T -Conflict
CDCL(T) (L1

1¬L¬L1∨¬L2
2 L2

3¬L¬L3∨¬L5
5 L¬L1∨L5∨L6

6 ; N; ∅; ∅;
2;¬L1 ∨ ¬L3 ∨ ¬L6)

⇒Resolve∗

CDCL(T) (L1
1¬L¬L1∨¬L2

2 L2
3; N; ∅; ∅; 2;¬L1 ∨ ¬L3)

⇒Backtrack
CDCL(T) (L1

1¬L¬L1∨¬L2
2 ¬L¬L1∨¬L3

3 ; N; {¬L1 ∨ ¬L3}; ∅; 1;>)

⇒Propagate
CDCL(T) (L1

1¬L¬L1∨¬L2
2 ¬L¬L1∨¬L3

3 L¬L1∨L3∨L4
4 ; N; {¬L1 ∨ ¬L3}; ∅; 1;>)

⇒T -Propagate
CDCL(T) (L1

1¬L¬L1∨¬L2
2 ¬L¬L1∨¬L3

3 L¬L1∨L3∨L4
4 L¬L4∨L5

5 ; N;

{¬L1 ∨ ¬L3}; ∅; 1;>)

⇒Decide
CDCL(T) (L1

1¬L¬L1∨¬L2
2 ¬L¬L1∨¬L3

3 L¬L1∨L3∨L4
4 L¬L4∨L5

5 ¬L2
6; N;

{¬L1 ∨ ¬L3}; ∅; 2;>)
13th June 2017 15/29

Introduction CDCL(T) Calculus Properties of CDCL(T) Implementation and Improvements Conclusion

Example (Cont.)(Linear Integer Arithmetic)

L1 ∨ L2 = (x ≥ 5) ∨ (x ≤ 3)

¬L1 ∨ L3 ∨ L4 = ¬(x ≤ 5) ∨ (y ≥ 7) ∨ (y ≤ 4)

¬L1 ∨ L5 ∨ L6 = ¬(x ≥ 5) ∨ (y ≤ 6) ∨ (x + y ≤ 4)

⇒T -Conflict
CDCL(T) (L1

1¬L¬L1∨¬L2
2 L2

3¬L¬L3∨¬L5
5 L¬L1∨L5∨L6

6 ; N; ∅; ∅;
2;¬L1 ∨ ¬L3 ∨ ¬L6)

⇒Resolve∗

CDCL(T) (L1
1¬L¬L1∨¬L2

2 L2
3; N; ∅; ∅; 2;¬L1 ∨ ¬L3)

⇒Backtrack
CDCL(T) (L1

1¬L¬L1∨¬L2
2 ¬L¬L1∨¬L3

3 ; N; {¬L1 ∨ ¬L3}; ∅; 1;>)

⇒Propagate
CDCL(T) (L1

1¬L¬L1∨¬L2
2 ¬L¬L1∨¬L3

3 L¬L1∨L3∨L4
4 ; N; {¬L1 ∨ ¬L3}; ∅; 1;>)

⇒T -Propagate
CDCL(T) (L1

1¬L¬L1∨¬L2
2 ¬L¬L1∨¬L3

3 L¬L1∨L3∨L4
4 L¬L4∨L5

5 ; N;

{¬L1 ∨ ¬L3}; ∅; 1;>)

⇒Decide
CDCL(T) (L1

1¬L¬L1∨¬L2
2 ¬L¬L1∨¬L3

3 L¬L1∨L3∨L4
4 L¬L4∨L5

5 ¬L2
6; N;

{¬L1 ∨ ¬L3}; ∅; 2;>)
13th June 2017 15/29

Introduction CDCL(T) Calculus Properties of CDCL(T) Implementation and Improvements Conclusion

Example (Cont.)(Linear Integer Arithmetic)

L1 ∨ L2 = (x ≥ 5) ∨ (x ≤ 3)

¬L1 ∨ L3 ∨ L4 = ¬(x ≤ 5) ∨ (y ≥ 7) ∨ (y ≤ 4)

¬L1 ∨ L5 ∨ L6 = ¬(x ≥ 5) ∨ (y ≤ 6) ∨ (x + y ≤ 4)

⇒T -Conflict
CDCL(T) (L1

1¬L¬L1∨¬L2
2 L2

3¬L¬L3∨¬L5
5 L¬L1∨L5∨L6

6 ; N; ∅; ∅;
2;¬L1 ∨ ¬L3 ∨ ¬L6)

⇒Resolve∗

CDCL(T) (L1
1¬L¬L1∨¬L2

2 L2
3; N; ∅; ∅; 2;¬L1 ∨ ¬L3)

⇒Backtrack
CDCL(T) (L1

1¬L¬L1∨¬L2
2 ¬L¬L1∨¬L3

3 ; N; {¬L1 ∨ ¬L3}; ∅; 1;>)

⇒Propagate
CDCL(T) (L1

1¬L¬L1∨¬L2
2 ¬L¬L1∨¬L3

3 L¬L1∨L3∨L4
4 ; N; {¬L1 ∨ ¬L3}; ∅; 1;>)

⇒T -Propagate
CDCL(T) (L1

1¬L¬L1∨¬L2
2 ¬L¬L1∨¬L3

3 L¬L1∨L3∨L4
4 L¬L4∨L5

5 ; N;

{¬L1 ∨ ¬L3}; ∅; 1;>)

⇒Decide
CDCL(T) (L1

1¬L¬L1∨¬L2
2 ¬L¬L1∨¬L3

3 L¬L1∨L3∨L4
4 L¬L4∨L5

5 ¬L2
6; N;

{¬L1 ∨ ¬L3}; ∅; 2;>)
13th June 2017 15/29

Introduction CDCL(T) Calculus Properties of CDCL(T) Implementation and Improvements Conclusion

Example (Cont.)(Linear Integer Arithmetic)

L1 ∨ L2 = (x ≥ 5) ∨ (x ≤ 3)

¬L1 ∨ L3 ∨ L4 = ¬(x ≤ 5) ∨ (y ≥ 7) ∨ (y ≤ 4)

¬L1 ∨ L5 ∨ L6 = ¬(x ≥ 5) ∨ (y ≤ 6) ∨ (x + y ≤ 4)

⇒T -Conflict
CDCL(T) (L1

1¬L¬L1∨¬L2
2 L2

3¬L¬L3∨¬L5
5 L¬L1∨L5∨L6

6 ; N; ∅; ∅;
2;¬L1 ∨ ¬L3 ∨ ¬L6)

⇒Resolve∗

CDCL(T) (L1
1¬L¬L1∨¬L2

2 L2
3; N; ∅; ∅; 2;¬L1 ∨ ¬L3)

⇒Backtrack
CDCL(T) (L1

1¬L¬L1∨¬L2
2 ¬L¬L1∨¬L3

3 ; N; {¬L1 ∨ ¬L3}; ∅; 1;>)

⇒Propagate
CDCL(T) (L1

1¬L¬L1∨¬L2
2 ¬L¬L1∨¬L3

3 L¬L1∨L3∨L4
4 ; N; {¬L1 ∨ ¬L3}; ∅; 1;>)

⇒T -Propagate
CDCL(T) (L1

1¬L¬L1∨¬L2
2 ¬L¬L1∨¬L3

3 L¬L1∨L3∨L4
4 L¬L4∨L5

5 ; N;

{¬L1 ∨ ¬L3}; ∅; 1;>)

⇒Decide
CDCL(T) (L1

1¬L¬L1∨¬L2
2 ¬L¬L1∨¬L3

3 L¬L1∨L3∨L4
4 L¬L4∨L5

5 ¬L2
6; N;

{¬L1 ∨ ¬L3}; ∅; 2;>)
13th June 2017 15/29

Introduction CDCL(T) Calculus Properties of CDCL(T) Implementation and Improvements Conclusion

CDCL(T) Calculus –
Splitting on Demand

Problem: Solvers for many theories need to do case splits
Idea: Use SAT Solver for case splits

– Encode splits as clauses,
– Reuse advanced backtracking techniques of CDCL for free,
– Avoid re-implementing them in (several) theory solvers.

T -Learn (M; N; U; T ; k ;>) ⇒CDCL(T) (M; N; U; T]T ′; k ;>)

provided (N ∪ U ∪ T) |=T T ′, T ′ ∩ (N ∪ U ∪ T) = ∅, T ′ is finite.

Potential disadvantages: may introduce a huge number of
clauses that are used infrequently

T -Forget (M; N; U; T]T ′; k ; D) ⇒CDCL(T) (M; N; U; T ; k ; D)

provided D 6∈ {>,⊥}, T ′ 6= ∅ and
atoms(M) ⊆ atoms(N ∪ U ∪ T).

13th June 2017 16/29

Introduction CDCL(T) Calculus Properties of CDCL(T) Implementation and Improvements Conclusion

CDCL(T) Calculus –
Splitting on Demand

Problem: Solvers for many theories need to do case splits
Idea: Use SAT Solver for case splits

– Encode splits as clauses,
– Reuse advanced backtracking techniques of CDCL for free,
– Avoid re-implementing them in (several) theory solvers.

T -Learn (M; N; U; T ; k ;>) ⇒CDCL(T) (M; N; U; T]T ′; k ;>)

provided (N ∪ U ∪ T) |=T T ′, T ′ ∩ (N ∪ U ∪ T) = ∅, T ′ is finite.

Potential disadvantages: may introduce a huge number of
clauses that are used infrequently

T -Forget (M; N; U; T]T ′; k ; D) ⇒CDCL(T) (M; N; U; T ; k ; D)

provided D 6∈ {>,⊥}, T ′ 6= ∅ and
atoms(M) ⊆ atoms(N ∪ U ∪ T).

13th June 2017 16/29

Introduction CDCL(T) Calculus Properties of CDCL(T) Implementation and Improvements Conclusion

Example (Linear Integer Arithmetic)

L1 = (2x − 2y ≤ 1)

L2 = (−2x + 2y ≤ 1)

¬L1 ∨ L3 = ¬(2x − 2y ≤ 1) ∨ (−2x − 2y ≤ −1)

L4 ∨ L5 = (2x + 2y ≤ 3) ∨ (−2x + 2y ≥ 2)

(ε; N; ∅; ∅; 0;>)

⇒Propagate
CDCL(T) (LL1

1 ; N; ∅; ∅; 0;>)

⇒Propagate*
CDCL(T) (LL1

1 L¬L1∨L3
3 LL2

2 ; N; ∅; ∅; 0;>)

⇒T -Propagate
CDCL(T) (LL1

1 L¬L1∨L3
3 LL2

2 (¬L5)¬L2∨¬L5 ; N; ∅; ∅; 0;>)

⇒Propagate
CDCL(T) (LL1

1 L¬L1∨L3
3 LL2

2 (¬L5)¬L2∨¬L5 LL5∨L4
4 ; N; ∅; ∅; 0;>)

13th June 2017 17/29

Introduction CDCL(T) Calculus Properties of CDCL(T) Implementation and Improvements Conclusion

Example (Linear Integer Arithmetic)

L1 = (2x − 2y ≤ 1)

L2 = (−2x + 2y ≤ 1)

¬L1 ∨ L3 = ¬(2x − 2y ≤ 1) ∨ (−2x − 2y ≤ −1)

L4 ∨ L5 = (2x + 2y ≤ 3) ∨ (−2x + 2y ≥ 2)

(ε; N; ∅; ∅; 0;>)

⇒Propagate
CDCL(T) (LL1

1 ; N; ∅; ∅; 0;>)

⇒Propagate*
CDCL(T) (LL1

1 L¬L1∨L3
3 LL2

2 ; N; ∅; ∅; 0;>)

⇒T -Propagate
CDCL(T) (LL1

1 L¬L1∨L3
3 LL2

2 (¬L5)¬L2∨¬L5 ; N; ∅; ∅; 0;>)

⇒Propagate
CDCL(T) (LL1

1 L¬L1∨L3
3 LL2

2 (¬L5)¬L2∨¬L5 LL5∨L4
4 ; N; ∅; ∅; 0;>)

13th June 2017 17/29

Introduction CDCL(T) Calculus Properties of CDCL(T) Implementation and Improvements Conclusion

Example (Linear Integer Arithmetic)

L1 = (2x − 2y ≤ 1)

L2 = (−2x + 2y ≤ 1)

¬L1 ∨ L3 = ¬(2x − 2y ≤ 1) ∨ (−2x − 2y ≤ −1)

L4 ∨ L5 = (2x + 2y ≤ 3) ∨ (−2x + 2y ≥ 2)

(ε; N; ∅; ∅; 0;>)

⇒Propagate
CDCL(T) (LL1

1 ; N; ∅; ∅; 0;>)

⇒Propagate*
CDCL(T) (LL1

1 L¬L1∨L3
3 LL2

2 ; N; ∅; ∅; 0;>)

⇒T -Propagate
CDCL(T) (LL1

1 L¬L1∨L3
3 LL2

2 (¬L5)¬L2∨¬L5 ; N; ∅; ∅; 0;>)

⇒Propagate
CDCL(T) (LL1

1 L¬L1∨L3
3 LL2

2 (¬L5)¬L2∨¬L5 LL5∨L4
4 ; N; ∅; ∅; 0;>)

13th June 2017 17/29

Introduction CDCL(T) Calculus Properties of CDCL(T) Implementation and Improvements Conclusion

Example (Cont.)

x

y

-1 0 1 2

-1

0

1

2

−2
x
+
2y
≤ 1

2x
− 2

y
≤ 1

−
2x−

2y ≤ −
1

2x
+
2y ≤

3

L6 ∨ L7 = (x ≤ 0) ∨ (x ≥ 1)

⇒T -Learn
CDCL(T) (LL1

1 L¬L1∨L3
3 LL2

2 (¬L5)¬L2∨¬L5 LL5∨L4
4 ; N; ∅; {L6 ∨ L7}; 0;>)

13th June 2017 18/29

Introduction CDCL(T) Calculus Properties of CDCL(T) Implementation and Improvements Conclusion

Example (Cont.)

x

y

-1 0 1 2

-1

0

1

2

−2
x
+
2y
≤ 1

2x
− 2

y
≤ 1

−
2x−

2y ≤ −
1

2x
+
2y ≤

3

L6 ∨ L7 = (x ≤ 0) ∨ (x ≥ 1)

⇒T -Learn
CDCL(T) (LL1

1 L¬L1∨L3
3 LL2

2 (¬L5)¬L2∨¬L5 LL5∨L4
4 ; N; ∅; {L6 ∨ L7}; 0;>)

13th June 2017 18/29

Introduction CDCL(T) Calculus Properties of CDCL(T) Implementation and Improvements Conclusion

Example (Cont.)

x

y

-1 0 1 2

-1

0

1

2

−2
x
+
2y
≤ 1

2x
− 2

y
≤ 1

−
2x−

2y ≤ −
1

2x
+
2y ≤

3

L6 ∨ L7 = (x ≤ 0) ∨ (x ≥ 1)

⇒T -Learn
CDCL(T) (LL1

1 L¬L1∨L3
3 LL2

2 (¬L5)¬L2∨¬L5 LL5∨L4
4 ; N; ∅; {L6 ∨ L7}; 0;>)

13th June 2017 18/29

Introduction CDCL(T) Calculus Properties of CDCL(T) Implementation and Improvements Conclusion

Example (Cont.)

x

y

-1 0 1 2

-1

0

1

2

−2
x
+
2y
≤ 1

2x
− 2

y
≤ 1

−
2x−

2y ≤ −
1

2x
+
2y ≤

3

L6 ∨ L7 = (x ≤ 0) ∨ (x ≥ 1)

⇒T -Learn
CDCL(T) (LL1

1 L¬L1∨L3
3 LL2

2 (¬L5)¬L2∨¬L5 LL5∨L4
4 ; N; ∅; {L6 ∨ L7}; 0;>)

13th June 2017 18/29

Introduction CDCL(T) Calculus Properties of CDCL(T) Implementation and Improvements Conclusion

Example (Cont.)

⇒Decide
CDCL(T) (LL1

1 L¬L1∨L3
3 LL2

2 (¬L5)¬L2∨¬L5 LL5∨L4
4 L1

6; N; ∅; {L6 ∨ L7}; 1;>)

⇒T -Conflict
CDCL(T) (LL1

1 L¬L1∨L3
3 LL2

2 (¬L5)¬L2∨¬L5 LL5∨L4
4 L1

6;

N; ∅; {L6 ∨ L7}; 1;¬L2 ∨ ¬L3 ∨ ¬L6)

⇒Backtrack
CDCL(T) (LL1

1 L¬L1∨L3
3 LL2

2 (¬L5)¬L2∨¬L5 LL5∨L4
4 (¬L6)¬L2∨¬L3∨¬L6 ;

N; {¬L2 ∨ ¬L3 ∨ ¬L6}; {L6 ∨ L7}; 0;>)

⇒Propagate
CDCL(T) (LL1

1 L¬L1∨L3
3 LL2

2 (¬L5)¬L2∨¬L5 LL5∨L4
4 (¬L6)¬L2∨¬L3∨¬L6 LL6∨L7

7 ;

N; {¬L2 ∨ ¬L3 ∨ ¬L6}; {L6 ∨ L7}; 0;>)

⇒T -Conflict
CDCL(T) (LL1

1 L¬L1∨L3
3 LL2

2 (¬L5)¬L2∨¬L5 LL5∨L4
4 (¬L6)¬L2∨¬L3∨¬L6 LL6∨L7

7 ;

N; {¬L2 ∨ ¬L3 ∨ ¬L6}; {L6 ∨ L7}; 0;¬L1 ∨ ¬L4 ∨ ¬L7)

⇒Resolve*
CDCL(T) (ε; N; {¬L2 ∨ ¬L3 ∨ ¬L6}; {L6 ∨ L7}; 0;⊥)

13th June 2017 19/29

Introduction CDCL(T) Calculus Properties of CDCL(T) Implementation and Improvements Conclusion

Example (Cont.)

⇒Decide
CDCL(T) (LL1

1 L¬L1∨L3
3 LL2

2 (¬L5)¬L2∨¬L5 LL5∨L4
4 L1

6; N; ∅; {L6 ∨ L7}; 1;>)

⇒T -Conflict
CDCL(T) (LL1

1 L¬L1∨L3
3 LL2

2 (¬L5)¬L2∨¬L5 LL5∨L4
4 L1

6;

N; ∅; {L6 ∨ L7}; 1;¬L2 ∨ ¬L3 ∨ ¬L6)

⇒Backtrack
CDCL(T) (LL1

1 L¬L1∨L3
3 LL2

2 (¬L5)¬L2∨¬L5 LL5∨L4
4 (¬L6)¬L2∨¬L3∨¬L6 ;

N; {¬L2 ∨ ¬L3 ∨ ¬L6}; {L6 ∨ L7}; 0;>)

⇒Propagate
CDCL(T) (LL1

1 L¬L1∨L3
3 LL2

2 (¬L5)¬L2∨¬L5 LL5∨L4
4 (¬L6)¬L2∨¬L3∨¬L6 LL6∨L7

7 ;

N; {¬L2 ∨ ¬L3 ∨ ¬L6}; {L6 ∨ L7}; 0;>)

⇒T -Conflict
CDCL(T) (LL1

1 L¬L1∨L3
3 LL2

2 (¬L5)¬L2∨¬L5 LL5∨L4
4 (¬L6)¬L2∨¬L3∨¬L6 LL6∨L7

7 ;

N; {¬L2 ∨ ¬L3 ∨ ¬L6}; {L6 ∨ L7}; 0;¬L1 ∨ ¬L4 ∨ ¬L7)

⇒Resolve*
CDCL(T) (ε; N; {¬L2 ∨ ¬L3 ∨ ¬L6}; {L6 ∨ L7}; 0;⊥)

13th June 2017 19/29

Introduction CDCL(T) Calculus Properties of CDCL(T) Implementation and Improvements Conclusion

Example (Cont.)

⇒Decide
CDCL(T) (LL1

1 L¬L1∨L3
3 LL2

2 (¬L5)¬L2∨¬L5 LL5∨L4
4 L1

6; N; ∅; {L6 ∨ L7}; 1;>)

⇒T -Conflict
CDCL(T) (LL1

1 L¬L1∨L3
3 LL2

2 (¬L5)¬L2∨¬L5 LL5∨L4
4 L1

6;

N; ∅; {L6 ∨ L7}; 1;¬L2 ∨ ¬L3 ∨ ¬L6)

⇒Backtrack
CDCL(T) (LL1

1 L¬L1∨L3
3 LL2

2 (¬L5)¬L2∨¬L5 LL5∨L4
4 (¬L6)¬L2∨¬L3∨¬L6 ;

N; {¬L2 ∨ ¬L3 ∨ ¬L6}; {L6 ∨ L7}; 0;>)

⇒Propagate
CDCL(T) (LL1

1 L¬L1∨L3
3 LL2

2 (¬L5)¬L2∨¬L5 LL5∨L4
4 (¬L6)¬L2∨¬L3∨¬L6 LL6∨L7

7 ;

N; {¬L2 ∨ ¬L3 ∨ ¬L6}; {L6 ∨ L7}; 0;>)

⇒T -Conflict
CDCL(T) (LL1

1 L¬L1∨L3
3 LL2

2 (¬L5)¬L2∨¬L5 LL5∨L4
4 (¬L6)¬L2∨¬L3∨¬L6 LL6∨L7

7 ;

N; {¬L2 ∨ ¬L3 ∨ ¬L6}; {L6 ∨ L7}; 0;¬L1 ∨ ¬L4 ∨ ¬L7)

⇒Resolve*
CDCL(T) (ε; N; {¬L2 ∨ ¬L3 ∨ ¬L6}; {L6 ∨ L7}; 0;⊥)

13th June 2017 19/29

Introduction CDCL(T) Calculus Properties of CDCL(T) Implementation and Improvements Conclusion

Lemma (Invariants I)

Let (ε; N0; ∅; ∅; 0;>)⇒∗CDCL(T) (M; N; U; T ; k ; D). Then:
1. N = N0;

2. M is (propositionally) consistent, i.e. it does not contain a literal
L as well as comp(L);

3. M does not contain the same literal twice;
4. Decision literal annotations are ordered in a strictly increasing

manner on the trail and k is equal to the maximal annotation
unless D 6∈ {>,⊥} in which case k is greater or equal to the
maximal level on the trail and equal to the level of D;

Proof.
Induction on the length of the derivation.

13th June 2017 20/29

Introduction CDCL(T) Calculus Properties of CDCL(T) Implementation and Improvements Conclusion

Lemma (Invariants I)

Let (ε; N0; ∅; ∅; 0;>)⇒∗CDCL(T) (M; N; U; T ; k ; D). Then:
1. N = N0;

2. M is (propositionally) consistent, i.e. it does not contain a literal
L as well as comp(L);

3. M does not contain the same literal twice;
4. Decision literal annotations are ordered in a strictly increasing

manner on the trail and k is equal to the maximal annotation
unless D 6∈ {>,⊥} in which case k is greater or equal to the
maximal level on the trail and equal to the level of D;

Proof.
Induction on the length of the derivation.

13th June 2017 20/29

Introduction CDCL(T) Calculus Properties of CDCL(T) Implementation and Improvements Conclusion

Lemma (Invariants II)
Let (ε; N0; ∅; ∅; 0;>)⇒∗CDCL(T) (M; N; U; T ; k ; D). Then:

1. both if M = M1LC∨LM2 then M1 |= ¬C, and if D 6∈ {⊥,>} then
M |= ¬D;

2. N |=T (U ∪ T), N |=T D and if M = M1LC∨LM2 then
N |=T C ∨ L.

3. lits(D) ⊆ lits(N ∪ U ∪ T), lits(M) ⊆ lits(N ∪ U ∪ T) and if
M = M1LC∨LM2 then lits(C ∨ L) ⊆ lits(N ∪ U ∪ T).

4. U and T are finite if N0 is finite;

Proof.
Induction on the length of the derivation.

13th June 2017 21/29

Introduction CDCL(T) Calculus Properties of CDCL(T) Implementation and Improvements Conclusion

Lemma (Invariants II)
Let (ε; N0; ∅; ∅; 0;>)⇒∗CDCL(T) (M; N; U; T ; k ; D). Then:

1. both if M = M1LC∨LM2 then M1 |= ¬C, and if D 6∈ {⊥,>} then
M |= ¬D;

2. N |=T (U ∪ T), N |=T D and if M = M1LC∨LM2 then
N |=T C ∨ L.

3. lits(D) ⊆ lits(N ∪ U ∪ T), lits(M) ⊆ lits(N ∪ U ∪ T) and if
M = M1LC∨LM2 then lits(C ∨ L) ⊆ lits(N ∪ U ∪ T).

4. U and T are finite if N0 is finite;

Proof.
Induction on the length of the derivation.

13th June 2017 21/29

Introduction CDCL(T) Calculus Properties of CDCL(T) Implementation and Improvements Conclusion

Soundness

Proposition (Soundness)

Let (ε; N0; ∅; ∅; 0;>)⇒∗CDCL(T) (M; N; U; T ; k ; D) be terminal.
Then exactly one of the following holds:

1. D = ⊥ and N0 is T -unsatisfiable;
2. D = > and N0 is T -satisfiable.

What about termination?

13th June 2017 22/29

Introduction CDCL(T) Calculus Properties of CDCL(T) Implementation and Improvements Conclusion

Soundness

Proposition (Soundness)

Let (ε; N0; ∅; ∅; 0;>)⇒∗CDCL(T) (M; N; U; T ; k ; D) be terminal.
Then exactly one of the following holds:

1. D = ⊥ and N0 is T -unsatisfiable;
2. D = > and N0 is T -satisfiable.

What about termination?

13th June 2017 22/29

Introduction CDCL(T) Calculus Properties of CDCL(T) Implementation and Improvements Conclusion

Strategy and Learning Clauses
Twice

Definition (Weakly Reasonable Strategy)
A strategy is called weakly reasonable if Propagate is preferred
over Decide.

Lemma (Learning Twice)
CDCL(T) never learns the same clause twice with Backtrack
when using a weakly reasonable strategy.

T -Learn can introduce an infinite number of new literals.

13th June 2017 23/29

Introduction CDCL(T) Calculus Properties of CDCL(T) Implementation and Improvements Conclusion

Strategy and Learning Clauses
Twice

Definition (Weakly Reasonable Strategy)
A strategy is called weakly reasonable if Propagate is preferred
over Decide.

Lemma (Learning Twice)
CDCL(T) never learns the same clause twice with Backtrack
when using a weakly reasonable strategy.

T -Learn can introduce an infinite number of new literals.

13th June 2017 23/29

Introduction CDCL(T) Calculus Properties of CDCL(T) Implementation and Improvements Conclusion

Strategy and Learning Clauses
Twice

Definition (Weakly Reasonable Strategy)
A strategy is called weakly reasonable if Propagate is preferred
over Decide.

Lemma (Learning Twice)
CDCL(T) never learns the same clause twice with Backtrack
when using a weakly reasonable strategy.

T -Learn can introduce an infinite number of new literals.

13th June 2017 23/29

Introduction CDCL(T) Calculus Properties of CDCL(T) Implementation and Improvements Conclusion

Consider the clause set given by

L1 = (0 ≤ x − 1) L2 = (x ≤ 0)

Let Ki = (x ≤ i) for i ∈ N.

(ε; N; ∅; ∅; 0;>)

⇒Propagate
CDCL(T) (LL1

1 ; N; ∅; ∅; 0;>)

⇒Propagate
CDCL(T) (LL1

1 LL2
2 ; N; ∅; ∅; 0;>)

⇒T -Learn
CDCL(T)(L

L1
1 LL2

2 ; N; ∅; {K1 ∨ ¬K1}; 0;>)

⇒Decide
CDCL(T)(L

L1
1 LL2

2 K 1
1 ; N; ∅; {K1 ∨ ¬K1}; 1;>)

⇒∗CDCL(T) . . .

⇒T -Learn
CDCL(T)(L

L1
1 LL2

2 K 1
1 · · ·K i−1

i−1 ; N; ∅; {K1 ∨ ¬K1, . . . ,Ki ∨ ¬Ki}; i − 1;>)

⇒Decide
CDCL(T)(L

L1
1 LL2

2 K 1
1 · · ·K i−1

i−1 K i
i ; N; ∅; {K1 ∨ ¬K1, . . . ,Ki ∨ ¬Ki}; i ;>)

⇒∗CDCL(T) . . .
13th June 2017 24/29

Introduction CDCL(T) Calculus Properties of CDCL(T) Implementation and Improvements Conclusion

Consider the clause set given by

L1 = (0 ≤ x − 1) L2 = (x ≤ 0)

Let Ki = (x ≤ i) for i ∈ N.

(ε; N; ∅; ∅; 0;>)

⇒Propagate
CDCL(T) (LL1

1 ; N; ∅; ∅; 0;>)

⇒Propagate
CDCL(T) (LL1

1 LL2
2 ; N; ∅; ∅; 0;>)

⇒T -Learn
CDCL(T)(L

L1
1 LL2

2 ; N; ∅; {K1 ∨ ¬K1}; 0;>)

⇒Decide
CDCL(T)(L

L1
1 LL2

2 K 1
1 ; N; ∅; {K1 ∨ ¬K1}; 1;>)

⇒∗CDCL(T) . . .

⇒T -Learn
CDCL(T)(L

L1
1 LL2

2 K 1
1 · · ·K i−1

i−1 ; N; ∅; {K1 ∨ ¬K1, . . . ,Ki ∨ ¬Ki}; i − 1;>)

⇒Decide
CDCL(T)(L

L1
1 LL2

2 K 1
1 · · ·K i−1

i−1 K i
i ; N; ∅; {K1 ∨ ¬K1, . . . ,Ki ∨ ¬Ki}; i ;>)

⇒∗CDCL(T) . . .
13th June 2017 24/29

Introduction CDCL(T) Calculus Properties of CDCL(T) Implementation and Improvements Conclusion

Consider the clause set given by

L1 = (0 ≤ x − 1) L2 = (x ≤ 0)

Let Ki = (x ≤ i) for i ∈ N.

(ε; N; ∅; ∅; 0;>)

⇒Propagate
CDCL(T) (LL1

1 ; N; ∅; ∅; 0;>)

⇒Propagate
CDCL(T) (LL1

1 LL2
2 ; N; ∅; ∅; 0;>)

⇒T -Learn
CDCL(T)(L

L1
1 LL2

2 ; N; ∅; {K1 ∨ ¬K1}; 0;>)

⇒Decide
CDCL(T)(L

L1
1 LL2

2 K 1
1 ; N; ∅; {K1 ∨ ¬K1}; 1;>)

⇒∗CDCL(T) . . .

⇒T -Learn
CDCL(T)(L

L1
1 LL2

2 K 1
1 · · ·K i−1

i−1 ; N; ∅; {K1 ∨ ¬K1, . . . ,Ki ∨ ¬Ki}; i − 1;>)

⇒Decide
CDCL(T)(L

L1
1 LL2

2 K 1
1 · · ·K i−1

i−1 K i
i ; N; ∅; {K1 ∨ ¬K1, . . . ,Ki ∨ ¬Ki}; i ;>)

⇒∗CDCL(T) . . .
13th June 2017 24/29

Introduction CDCL(T) Calculus Properties of CDCL(T) Implementation and Improvements Conclusion

Termination of CDCL(T)
Straight-forward fix by [Barrett et al., 2006]:

Theorem (Termination)

Let L(N) be a finite set.
Then CDCL(T) terminates when using a weakly reasonable
strategy such that whenever T -learning the clauses in T ′,
atoms(T ′) ⊆ L(atoms(N)) holds.

Proof.
The well-founded measure

µ′(M; N; U; T ; D) =

{
(3n − |U|,1,n − |M|,3n − |T |) if D = >
(3n − |U|,0, |M|, |T |) otherwise

for n = |L(atoms(N))| is decreased by each rule.
13th June 2017 25/29

Introduction CDCL(T) Calculus Properties of CDCL(T) Implementation and Improvements Conclusion

Termination of CDCL(T)
Straight-forward fix by [Barrett et al., 2006]:

Theorem (Termination)

Let L(N) be a finite set.
Then CDCL(T) terminates when using a weakly reasonable
strategy such that whenever T -learning the clauses in T ′,
atoms(T ′) ⊆ L(atoms(N)) holds.

Proof.
The well-founded measure

µ′(M; N; U; T ; D) =

{
(3n − |U|,1,n − |M|,3n − |T |) if D = >
(3n − |U|,0, |M|, |T |) otherwise

for n = |L(atoms(N))| is decreased by each rule.
13th June 2017 25/29

Introduction CDCL(T) Calculus Properties of CDCL(T) Implementation and Improvements Conclusion

Strategy for CDCL(LRA)

Conflict

Propagate

T -Conflict,
T -Propagate,
T -Learn

Decide

preferred over

preferred over

preferred over

In general: trade-off between pruning of propositional search and
computational cost of theory solver calls

13th June 2017 26/29

Introduction CDCL(T) Calculus Properties of CDCL(T) Implementation and Improvements Conclusion

Strategy for CDCL(LRA)

Conflict

Propagate

T -Conflict,
T -Propagate,
T -Learn

Decide

preferred over

preferred over

preferred over

In general: trade-off between pruning of propositional search and
computational cost of theory solver calls

13th June 2017 26/29

Introduction CDCL(T) Calculus Properties of CDCL(T) Implementation and Improvements Conclusion

Improvements

Layered theory solvers and incomplete checks (e.g. for LIA:
relaxation over the reals)
Lazy computation of T -explanations
Restart, Forget
Preprocessing

– Normalization of T -atoms
– Static learning

Redundancy
– SAT-level redundancy
– LIA/LRA-specific redundancy

13th June 2017 27/29

Introduction CDCL(T) Calculus Properties of CDCL(T) Implementation and Improvements Conclusion

Improvements

Layered theory solvers and incomplete checks (e.g. for LIA:
relaxation over the reals)
Lazy computation of T -explanations
Restart, Forget
Preprocessing

– Normalization of T -atoms
– Static learning

Redundancy
– SAT-level redundancy
– LIA/LRA-specific redundancy

13th June 2017 27/29

Introduction CDCL(T) Calculus Properties of CDCL(T) Implementation and Improvements Conclusion

Interface

Frequent T -solver calls with similar trails
Support efficient addition and removal of T -literals (incremental
and backtrackable T -solver)

CDCL(T) Theory Solver
modification of trail

T -conflict/T -learned clauses,
T -propagations,

explanations

13th June 2017 28/29

Introduction CDCL(T) Calculus Properties of CDCL(T) Implementation and Improvements Conclusion

Conclusion

CDCL(T): by far most widely used calculus to decide
satisfiability of (quantifier-free) formulas w.r.t. a background
theory
CDCL(T) lifts theory solvers for conjunctions of literals to
(quantifier-free) formulas of an arbitrary structure
CDCL(T) extends propositional CDCL with rules for theory
reasoning based on the current trail
Splitting on demand can be used to avoid case splits in theory
solvers
In practice: trade-off between pruning of propositional search
and computational cost of theory solver calls
Motivates incremental theory solvers

13th June 2017 29/29

Introduction CDCL(T) Calculus Properties of CDCL(T) Implementation and Improvements Conclusion

Conclusion

CDCL(T): by far most widely used calculus to decide
satisfiability of (quantifier-free) formulas w.r.t. a background
theory
CDCL(T) lifts theory solvers for conjunctions of literals to
(quantifier-free) formulas of an arbitrary structure
CDCL(T) extends propositional CDCL with rules for theory
reasoning based on the current trail
Splitting on demand can be used to avoid case splits in theory
solvers
In practice: trade-off between pruning of propositional search
and computational cost of theory solver calls
Motivates incremental theory solvers

13th June 2017 29/29

References I

Barrett, C., Conway, C. L., Deters, M., Hadarean, L.,
Jovanović, D., King, T., Reynolds, A., and Tinelli, C. (2011).
CVC4, pages 171–177.
Springer Berlin Heidelberg, Berlin, Heidelberg.

Barrett, C., Fontaine, P., and Tinelli, C. (2016).
The Satisfiability Modulo Theories Library (SMT-LIB).
www.SMT-LIB.org.

Barrett, C., Nieuwenhuis, R., Oliveras, A., and Tinelli, C.
(2006).
Splitting on Demand in SAT Modulo Theories, pages
512–526.
Springer Berlin Heidelberg, Berlin, Heidelberg.

13th June 2017 30/29

References II

Barrett, C. W., Sebastiani, R., Seshia, S. A., and Tinelli, C.
(2009).
Satisfiability modulo theories.
In Biere, A., Heule, M., van Maaren, H., and Walsh, T.,
editors, Handbook of Satisfiability, pages 825–885. IOS
Press.

Bozzano, M., Bruttomesso, R., Cimatti, A., Junttila, T. A., van
Rossum, P., Schulz, S., and Sebastiani, R. (2005).
MathSAT: Tight integration of SAT and mathematical decision
procedures.
J. Autom. Reasoning, 35(1-3):265–293.

13th June 2017 31/29

References III

Cimatti, A., Griggio, A., Schaafsma, B. J., and Sebastiani, R.
(2013).
The MathSAT5 SMT Solver, pages 93–107.
Springer Berlin Heidelberg, Berlin, Heidelberg.

Dutertre, B. and de Moura, L. (2006).
A Fast Linear-Arithmetic Solver for DPLL(T), pages 81–94.
Springer Berlin Heidelberg, Berlin, Heidelberg.

Kroening, D. and Strichman, O. (2016).
Decision Procedures - An Algorithmic Point of View, Second
Edition.
Texts in Theoretical Computer Science. An EATCS Series.
Springer.

13th June 2017 32/29

References IV

Nieuwenhuis, R., Oliveras, A., and Tinelli, C. (2006).
Solving SAT and SAT modulo theories: From an abstract
davis–putnam–logemann–loveland procedure to dpll(T).
J. ACM, 53(6):937–977.

Sebastiani, R. (2007).
Lazy satisability modulo theories.
JSAT, 3(3-4):141–224.

13th June 2017 33/29

Termination of CDCL(T) with
Weaker Assumptions

Definition (Strongly Superset-Terminating Relations)
A strict ordering ≺ on P(A(Σ)) is called strongly
superset-terminating if ≺ ∩ ⊃ is well-founded and for all
A,A′,B ⊆ A(Σ),

1. if A � B and B ⊆ A′ ⊆ A then A′ � B;

2. if A � B, A′ � B and A,A′ ⊇ B then (A ∪ A′) � A.

Theorem (Termination II)
Let ≺ be a strongly superset-terminating relation.
Then CDCL(T) terminates when using a weakly reasonable
strategy such that whenever T -learning the clauses in T ′,
atoms(T ′ ∪ N ∪ U) � atoms(N ∪ U) holds.

13th June 2017 34/29

Termination of CDCL(T) with
Weaker Assumptions

Definition (Strongly Superset-Terminating Relations)
A strict ordering ≺ on P(A(Σ)) is called strongly
superset-terminating if ≺ ∩ ⊃ is well-founded and for all
A,A′,B ⊆ A(Σ),

1. if A � B and B ⊆ A′ ⊆ A then A′ � B;

2. if A � B, A′ � B and A,A′ ⊇ B then (A ∪ A′) � A.

Theorem (Termination II)
Let ≺ be a strongly superset-terminating relation.
Then CDCL(T) terminates when using a weakly reasonable
strategy such that whenever T -learning the clauses in T ′,
atoms(T ′ ∪ N ∪ U) � atoms(N ∪ U) holds.

13th June 2017 34/29

Discussion

Our criterion is equivalent to the one of [Barrett et al., 2006] for
deterministic theory solvers.
Consider a procedure that first guesses a bound for an integer
a variable and then refines it.

– No a priori finite set of atoms of for T -learning
– However, there is an appropriate strongly superset-terminating

relation

13th June 2017 35/29

Discussion

Our criterion is equivalent to the one of [Barrett et al., 2006] for
deterministic theory solvers.
Consider a procedure that first guesses a bound for an integer
a variable and then refines it.

– No a priori finite set of atoms of for T -learning
– However, there is an appropriate strongly superset-terminating

relation

13th June 2017 35/29

Algorithm 1: CDCL(T)(S)

Input : An initial state (ε;N ; ∅; 0;>).
Output: A final state S = (M ;N ;U ; k;D),

D ∈ {>,⊥}
1 for (L ∈ atoms(N)) do
2 T -Solver Inform(L);
3 while (any rule applicable) do
4 ifrule (Conflict(S)) then
5 S = Analyze(S);
6 else ifrule (Propagate(S)) then
7 T -Solver Assert(L);
8 else
9 T -Solver IncompleteCheck(M);

10 S = ReactToT -Solver(S);
11 if (T -Solver failed or found model for M)

then
12 if (M |= N or complete check heuristic)

then
13 T -Solver CompleteCheck(M);
14 S = ReactToT -Solver(S);
15 if (T -Solver found model for M) then
16 return(S);

17 else
18 Decide(S);
19 T -Solver AddDecision(L);
20 T -Solver Assert(L);

21 return(S);

Algorithm 2: ReactToT -Solver

Input : A state (M ;N ;U ; k;>).
Output: A state S = (M ′;N ;U ′; k′;D), D ∈ {>,⊥}

1 if (detected T -Conflict) then
2 C = T -Solver GetConflict(S);
3 T -Conflict’(S,C);
4 S = Analyze(S);

5 else if (detected T -Propagations) then
6 L1, . . . , Ln = T -Solver GetPropagations(S);
7 T -Propagate(S,L);
8 T -Solver Assert(L);

9 else if (decided to learn clauses in T ′) then
10 T ′ = T -Solver GetLearnedClauses(S);
11 T -Learn(S, T ′);
12 return(S);

Algorithm 3: Analyze(S)

Input : A state (M ;N ;U ; k;D) with D 6∈ {>,⊥}.
Output: A state S = (M ′;N ;U ′; k′;D), D ∈ {>,⊥}

1 whilerule (Skip(S) or Resolve(S)) do
2 ;
3 if (T -forget heuristic) then
4 T -Forget(S,N ′);
5 ifrule (Backtrack(S)) then
6 T -Solver.backtrack(k);
7 return(S);

13th June 2017 36/29

Algorithm 1: CDCL(T)(S)

Input : An initial state (ε;N ; ∅; 0;>).
Output: A final state S = (M ;N ;U ; k;D),

D ∈ {>,⊥}
1 for (L ∈ atoms(N)) do
2 T -Solver Inform(L);
3 while (any rule applicable) do
4 ifrule (Conflict(S)) then
5 S = Analyze(S);
6 else ifrule (Propagate(S)) then
7 T -Solver Assert(L);
8 else
9 T -Solver IncompleteCheck(M);

10 S = ReactToT -Solver(S);
11 if (T -Solver failed or found model for M)

then
12 if (M |= N or complete check heuristic)

then
13 T -Solver CompleteCheck(M);
14 S = ReactToT -Solver(S);
15 if (T -Solver found model for M) then
16 return(S);

17 else
18 Decide(S);
19 T -Solver AddDecision(L);
20 T -Solver Assert(L);

21 return(S);

Algorithm 2: ReactToT -Solver

Input : A state (M ;N ;U ; k;>).
Output: A state S = (M ′;N ;U ′; k′;D), D ∈ {>,⊥}

1 if (detected T -Conflict) then
2 C = T -Solver GetConflict(S);
3 T -Conflict’(S,C);
4 S = Analyze(S);

5 else if (detected T -Propagations) then
6 L1, . . . , Ln = T -Solver GetPropagations(S);
7 T -Propagate(S,L);
8 T -Solver Assert(L);

9 else if (decided to learn clauses in T ′) then
10 T ′ = T -Solver GetLearnedClauses(S);
11 T -Learn(S, T ′);
12 return(S);

Algorithm 3: Analyze(S)

Input : A state (M ;N ;U ; k;D) with D 6∈ {>,⊥}.
Output: A state S = (M ′;N ;U ′; k′;D), D ∈ {>,⊥}

1 whilerule (Skip(S) or Resolve(S)) do
2 ;
3 if (T -forget heuristic) then
4 T -Forget(S,N ′);
5 ifrule (Backtrack(S)) then
6 T -Solver.backtrack(k);
7 return(S);

13th June 2017 36/29

Algorithm 1: CDCL(T)(S)

Input : An initial state (ε;N ; ∅; 0;>).
Output: A final state S = (M ;N ;U ; k;D),

D ∈ {>,⊥}
1 for (L ∈ atoms(N)) do
2 T -Solver Inform(L);
3 while (any rule applicable) do
4 ifrule (Conflict(S)) then
5 S = Analyze(S);
6 else ifrule (Propagate(S)) then
7 T -Solver Assert(L);
8 else
9 T -Solver IncompleteCheck(M);

10 S = ReactToT -Solver(S);
11 if (T -Solver failed or found model for M)

then
12 if (M |= N or complete check heuristic)

then
13 T -Solver CompleteCheck(M);
14 S = ReactToT -Solver(S);
15 if (T -Solver found model for M) then
16 return(S);

17 else
18 Decide(S);
19 T -Solver AddDecision(L);
20 T -Solver Assert(L);

21 return(S);

Algorithm 2: ReactToT -Solver

Input : A state (M ;N ;U ; k;>).
Output: A state S = (M ′;N ;U ′; k′;D), D ∈ {>,⊥}

1 if (detected T -Conflict) then
2 C = T -Solver GetConflict(S);
3 T -Conflict’(S,C);
4 S = Analyze(S);

5 else if (detected T -Propagations) then
6 L1, . . . , Ln = T -Solver GetPropagations(S);
7 T -Propagate(S,L);
8 T -Solver Assert(L);

9 else if (decided to learn clauses in T ′) then
10 T ′ = T -Solver GetLearnedClauses(S);
11 T -Learn(S, T ′);
12 return(S);

Algorithm 3: Analyze(S)

Input : A state (M ;N ;U ; k;D) with D 6∈ {>,⊥}.
Output: A state S = (M ′;N ;U ′; k′;D), D ∈ {>,⊥}

1 whilerule (Skip(S) or Resolve(S)) do
2 ;
3 if (T -forget heuristic) then
4 T -Forget(S,N ′);
5 ifrule (Backtrack(S)) then
6 T -Solver.backtrack(k);
7 return(S);

13th June 2017 36/29

Interface

Incremental, backtrackable
– Inform
– AddDecision
– Assert
– Backtrack
– CompleteCheck
– IncompleteCheck
– GetPropagations
– GetReason
– GetConflict
– GetLearnedClauses

13th June 2017 37/29

Interface

Incremental, backtrackable
– Inform
– AddDecision
– Assert
– Backtrack
– CompleteCheck
– IncompleteCheck
– GetPropagations
– GetReason
– GetConflict
– GetLearnedClauses

13th June 2017 37/29

Implementation – Architecture

SMT-LIB

Parser

SMT-LIB
Simplifications

CNF
Transformation

Core
cdclla-Module

SPASS-SATT Simplex Solver

SAT/UNSAT

Formula

simplified and normalized Formula

Formula in CNF

backtrack level, conflict?

propagate, decide,
handle conflict,

new clause/variable

modification of trail

T -conflict/T -learned clauses,
T -propagations,

explanations

13th June 2017 38/29

	Introduction
	CDCL(T) Calculus
	Properties of CDCL(T)
	Implementation and Improvements
	Conclusion

