

Automated Reasoning I Christoph Weidenbach

Max Planck Institute for Informatics

November 5, 2020

Preliminaries

Propositional Logic

Automated Reasoning

Given a specification of a system, develop technology

logics, calculi, algorithms, implementations,

to automatically execute the specification and to automatically prove properties of the specification.

Concept

```
Slides: Definitions, Lemmas, Theorems, ...
```

Blackboard: Examples, Proofs, ...

Speech: Motivate, Explain, ...

Script: Slides, partially Blackboard ...

Exams: able to calculate → pass

understand → (very) good grade

Orderings

1.4.1 Definition (Orderings)

A *(partial) ordering* \succeq (or simply ordering) on a set M, denoted (M,\succeq) , is a reflexive, antisymmetric, and transitive binary relation on M

It is a total ordering if it also satisfies the totality property.

A *strict* (partial) ordering \succ is a transitive and irreflexive binary relation on M

A strict ordering is *well-founded*, if there is no infinite descending chain $m_0 > m_1 > m_2 > \dots$ where $m_i \in M$.

Given a strict ordering (M, \succ) , an element $m \in M$ is called *minimal*. if there is no element $m' \in M$ so that $m \succ m'$.

An element $m \in M$ is called *smallest*, if $m' \succ m$ for all $m' \in M$ different from m.

Multisets

Given a set M, a multiset S over M is a mapping $S: M \to \mathbb{N}$, where S specifies the number of occurrences of elements m of the base set M within the multiset S. I use the standard set notations \in , \subset , \subseteq , \cup , \cap with the analogous meaning for multisets, for example $(S_1 \cup S_2)(m) = S_1(m) + S_2(m)$.

A multiset S over a set M is *finite* if $\{m \in M \mid S(m) > 0\}$ is finite. For the purpose of this lecture I only consider finite multisets.

1.4.5 Definition (Lexicographic and Multiset Ordering Extensions)

Let (M_1, \succ_1) and (M_2, \succ_2) be two strict orderings.

Their *lexicographic combination* $\succ_{lex} = (\succ_1, \succ_2)$ on $M_1 \times M_2$ is defined as $(m_1, m_2) \succ (m'_1, m'_2)$ iff $m_1 \succ_1 m'_1$ or $m_1 = m'_1$ and $m_2 \succ_2 m'_2$.

Let (M, \succ) be a strict ordering.

The *multiset extension* \succ_{mul} to multisets over M is defined by $S_1 \succ_{\text{mul}} S_2$ iff $S_1 \neq S_2$ and $\forall m \in M[S_2(m) > S_1(m) \rightarrow \exists m' \in M(m' \succ m \land S_1(m') > S_2(m'))].$

1.4.7 Proposition (Properties of \succ_{lex} , \succ_{mul})

Let (M, \succ) , (M_1, \succ_1) , and (M_2, \succ_2) be orderings. Then

- 1. \succ_{lex} is an ordering on $M_1 \times M_2$.
- 2. if (M_1, \succ_1) , (M_2, \succ_2) are well-founded so is \succ_{lex} .
- 3. if (M_1, \succ_1) , (M_2, \succ_2) are total so is \succ_{lex} .
- 4. \succ_{mul} is an ordering on multisets over M.
- 5. if (M, \succ) is well-founded so is \succ_{mul} .
- 6. if (M, \succ) is total so is \succ_{mul} .

Please recall that multisets are finite.

Induction

Theorem (Noetherian Induction)

Let (M, \succ) be a well-founded ordering, and let Q be a predicate over elements of M. If for all $m \in M$ the implication

if Q(m'), for all $m' \in M$ so that $m \succ m'$, (induction hypothesis) then Q(m).

is satisfied, then the property Q(m) holds for all $m \in M$.

Abstract Rewrite Systems

1.6.1 Definition (Rewrite System)

A *rewrite system* is a pair (M, \rightarrow) , where M is a non-empty set and $\rightarrow \subseteq M \times M$ is a binary relation on M.

identity

i + 1-fold composition

transitive closure
reflexive transitive closure
reflexive closure
inverse
symmetric closure
transitive symmetric closure
refl. trans. symmetric closure

1.6.2 Definition (Reducible)

Let (M, \rightarrow) be a rewrite system. An element $a \in M$ is *reducible*, if there is a $b \in M$ such that $a \rightarrow b$.

An element $a \in M$ is in normal form (irreducible), if it is not reducible.

An element $c \in M$ is a *normal form* of b, if $b \to^* c$ and c is in normal form, denoted by $c = b \downarrow$.

Two elements b and c are *joinable*, if there is an a so that $b \rightarrow^* a \not\leftarrow c$, denoted by $b \downarrow c$.

1.6.3 Definition (Properties of →)

A relation → is called

Church-Rosser if $b \leftrightarrow^* c$ implies $b \downarrow c$

confluent if $b \not\leftarrow a \rightarrow^* c$ implies $b \downarrow c$

locally confluent if $b \leftarrow a \rightarrow c$ implies $b \downarrow c$

terminating if there is no infinite descending chain

 $b_0 \rightarrow b_1 \rightarrow b_2 \dots$

normalizing if every $b \in A$ has a normal form

convergent if it is confluent and terminating

1.6.4 Lemma (Termination vs. Normalization)

If \rightarrow is terminating, then it is normalizing.

1.6.5 Theorem (Church-Rosser vs. Confluence)

The following properties are equivalent for any (M, \rightarrow) :

- (i) \rightarrow has the Church-Rosser property.
- (ii) \rightarrow is confluent.

1.6.6 Lemma (Newman's Lemma)

Let (M, \rightarrow) be a terminating rewrite system. Then the following properties are equivalent:

- (i) \rightarrow is confluent
- (ii) \rightarrow is locally confluent

LA Equations Rewrite System

M is the set of all LA equations sets N over \mathbb{Q} includes normalizing the equation

Eliminate
$$\{x \doteq s, x \doteq t\} \uplus N \Rightarrow_{\mathsf{LAE}} \{x \doteq s, x \doteq t, s \doteq t\} \cup N$$
 provided $s \neq t$, and $s \doteq t \notin N$

Fail
$$\{q_1 \doteq q_2\} \uplus N \Rightarrow_{\mathsf{LAE}} \emptyset$$
 provided $q_1, q_2 \in \mathbb{Q}, q_1 \neq q_2$

LAE Redundancy

Subsume $\{s \doteq t, s' \doteq t'\} \uplus N \Rightarrow_{\mathsf{LAE}} \{s \doteq t\} \cup N$ provided $s \doteq t$ and $qs' \doteq qt'$ are identical for some $q \in \mathbb{Q}$

Rewrite Systems on Logics: Calculi

	Validity	Satisfiability
Sound	If the calculus derives a proof of validity for the formula, it is valid.	If the calculus derives satisfiability of the formula, it has a model.
Complete	If the formula is valid, a proof of validity is derivable by the calculus.	If the formula has a model, the calculus derives satisfiability.
Strongly Complete	For any validity proof of the formula, there is a derivation in the calcu- lus producing this proof.	For any model of the formula, there is a derivation in the calculus producing this model.

Propositional Logic: Syntax

2.1.1 Definition (Propositional Formula)

The set PROP(Σ) of *propositional formulas* over a signature Σ , is inductively defined by:

$PROP(\Sigma)$	Comment	
	connective \perp denotes "false"	
Т	connective ⊤ denotes "true"	
P	for any propositional variable $P \in \Sigma$	
$(\neg \phi)$	connective ¬ denotes "negation"	
$(\phi \wedge \psi)$	connective ∧ denotes "conjunction"	
$(\phi \lor \psi)$	connective ∨ denotes "disjunction"	
$(\phi ightarrow \psi)$	${\sf connective} \to {\sf denotes} \text{ "implication"}$	
$(\phi \leftrightarrow \psi)$	connective \leftrightarrow denotes "equivalence"	

where $\phi, \psi \in \mathsf{PROP}(\Sigma)$.

Propositional Logic: Semantics

2.2.1 Definition ((Partial) Valuation)

A Σ-valuation is a map

$$\mathcal{A}:\Sigma\to\{0,1\}.$$

where $\{0,1\}$ is the set of *truth values*. A *partial* Σ -valuation is a map $\mathcal{A}': \Sigma' \to \{0,1\}$ where $\Sigma' \subseteq \Sigma$.

2.2.2 Definition (Semantics)

A Σ -valuation $\mathcal A$ is inductively extended from propositional variables to propositional formulas $\phi, \psi \in \mathsf{PROP}(\Sigma)$ by

$$\begin{array}{rcl} \mathcal{A}(\bot) &:=& 0 \\ \mathcal{A}(\top) &:=& 1 \\ \mathcal{A}(\neg \phi) &:=& 1 - \mathcal{A}(\phi) \\ \mathcal{A}(\phi \land \psi) &:=& \min(\{\mathcal{A}(\phi), \mathcal{A}(\psi)\}) \\ \mathcal{A}(\phi \lor \psi) &:=& \max(\{\mathcal{A}(\phi), \mathcal{A}(\psi)\}) \\ \mathcal{A}(\phi \to \psi) &:=& \max(\{1 - \mathcal{A}(\phi), \mathcal{A}(\psi)\}) \\ \mathcal{A}(\phi \leftrightarrow \psi) &:=& \text{if } \mathcal{A}(\phi) = \mathcal{A}(\psi) \text{ then 1 else 0} \end{array}$$

If $\mathcal{A}(\phi) = 1$ for some Σ -valuation \mathcal{A} of a formula ϕ then ϕ is satisfiable and we write $\mathcal{A} \models \phi$. In this case \mathcal{A} is a model of ϕ .

If $\mathcal{A}(\phi) = 1$ for all Σ -valuations \mathcal{A} of a formula ϕ then ϕ is *valid* and we write $\models \phi$.

If there is no Σ -valuation \mathcal{A} for a formula ϕ where $\mathcal{A}(\phi)=1$ we say ϕ is *unsatisfiable*.

A formula ϕ entails ψ , written $\phi \models \psi$, if for all Σ-valuations \mathcal{A} whenever $\mathcal{A} \models \phi$ then $\mathcal{A} \models \psi$.

