Unification

3.7.1 Definition (Unifier)

Two terms *s* and *t* of the same sort are said to be *unifiable* if there exists a well-sorted substitution σ so that $s\sigma = t\sigma$, the substitution σ is then called a well-sorted *unifier* of *s* and *t*.

The unifier σ is called *most general unifier*, written $\sigma = mgu(s, t)$, if any other well-sorted unifier τ of *s* and *t* it can be represented as $\tau = \sigma \tau'$, for some well-sorted substitution τ' .

A state of the naive standard unification calculus is a set of equations *E* or \perp , where \perp denotes that no unifier exists. The set *E* is also called a *unification problem*.

The start state for checking whether two terms *s*, *t*, sort(*s*) = sort(*t*), (or two non-equational atoms *A*, *B*) are unifiable is the set $E = \{s = t\}$ ($E = \{A = B\}$). A variable *x* is *solved* in *E* if $E = \{x = t\} \uplus E', x \notin vars(t)$ and $x \notin vars(E)$.

A variable $x \in vars(E)$ is called *solved* in E if $E = E' \uplus \{x = t\}$ and $x \notin vars(t)$ and $x \notin vars(E')$.

Standard (naive) Unification

Tautology
$$E \uplus \{t = t\} \Rightarrow_{SU} E$$

Decomposition $E \uplus \{f(s_1, \ldots, s_n) = f(t_1, \ldots, t_n)\} \Rightarrow_{SU} E \cup \{s_1 = t_1, \ldots, s_n = t_n\}$

Clash $E \uplus \{f(s_1, \ldots, s_n) = g(s_1, \ldots, s_m)\} \Rightarrow_{SU} \bot$ if $f \neq g$

Substitution $E \uplus \{x = t\} \Rightarrow_{SU} E\{x \mapsto t\} \cup \{x = t\}$ if $x \in vars(E)$ and $x \notin vars(t)$

Occurs Check $E \uplus \{x = t\} \Rightarrow_{SU} \bot$ if $x \neq t$ and $x \in vars(t)$

Orient $E \uplus \{t = x\} \Rightarrow_{SU} E \cup \{x = t\}$ if $t \notin \mathcal{X}$

3.7.2 Theorem (Soundness, Completeness and Termination of $\Rightarrow_{\rm SU})$

If s, t are two terms with sort(s) = sort(t) then

- 1. if $\{s = t\} \Rightarrow_{SU}^{*} E$ then any equation $(s' = t') \in E$ is well-sorted, i.e., sort(s') = sort(t').
- 2. \Rightarrow_{SU} terminates on $\{s = t\}$.
- 3. if $\{s = t\} \Rightarrow_{SU}^{*} E$ then σ is a unifier (mgu) of E iff σ is a unifier (mgu) of $\{s = t\}$.
- 4. if $\{s = t\} \Rightarrow_{SU}^* \bot$ then *s* and *t* are not unifiable.
- 5. if $\{s = t\} \Rightarrow_{SU}^* \{x_1 = t_1, \dots, x_n = t_n\}$ and this is a normal form, then $\{x_1 \mapsto t_1, \dots, x_n \mapsto t_n\}$ is an mgu of *s*, *t*.

Size of Unification Problems

Any normal form of the unification problem E given by

 $\{f(x_1, g(x_1, x_1), x_3, \dots, g(x_n, x_n)) = f(g(x_0, x_0), x_2, g(x_2, x_2), \dots, x_{n+1})\}$

with respect to \Rightarrow_{SU} is exponentially larger than *E*.

Polynomial Unification

The second calculus, polynomial unification, prevents the problem of exponential growth by introducing an implicit representation for the mgu.

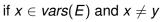
For this calculus the size of a normal form is always polynomial in the size of the input unification problem.

Tautology
$$E \uplus \{t = t\} \Rightarrow_{\mathsf{PU}} E$$

Decomposition
$$E \uplus \{f(s_1, \ldots, s_n) = f(t_1, \ldots, t_n)\} \Rightarrow_{\mathsf{PU}} E \uplus \{s_1 = t_1, \ldots, s_n = t_n\}$$

Clash $E \uplus \{f(t_1, \ldots, t_n) = g(s_1, \ldots, s_m)\} \Rightarrow_{\mathsf{PU}} \bot$ if $f \neq g$

Occurs Check $E \uplus \{x = t\} \Rightarrow_{PU} \bot$ if $x \neq t$ and $x \in vars(t)$ Orient $E \uplus \{t = x\} \Rightarrow_{PU} E \uplus \{x = t\}$ if $t \notin X$ Substitution $E \uplus \{x = y\} \Rightarrow_{PU} E\{x \mapsto y\} \uplus \{x = y\}$



Cycle $E \uplus \{x_1 = t_1, \dots, x_n = t_n\} \Rightarrow_{PU} \bot$ if there are positions p_i with $t_i|_{p_i} = x_{i+1}, t_n|_{p_n} = x_1$ and some $p_i \neq \epsilon$

 $\begin{array}{ll} \text{Merge} & E \uplus \{x=t, x=s\} \ \Rightarrow_{\mathsf{PU}} \ E \uplus \{x=t, t=s\} \\ \text{if } t, s \not\in \mathcal{X} \text{ and } |t| \leq |s| \end{array}$

3.7.4 Theorem (Soundness, Completeness and Termination of \Rightarrow_{PU})

If s, t are two terms with sort(s) = sort(t) then

- 1. if $\{s = t\} \Rightarrow_{PU}^{*} E$ then any equation $(s' = t') \in E$ is well-sorted, i.e., sort(s') = sort(t').
- 2. $\Rightarrow_{\mathsf{PU}}$ terminates on $\{s = t\}$.
- 3. if $\{s = t\} \Rightarrow_{PU}^{*} E$ then σ is a unifier (mgu) of E iff σ is a unifier (mgu) of $\{s = t\}$.
- 4. if $\{s = t\} \Rightarrow_{PU}^* \bot$ then *s* and *t* are not unifiable.

3.7.5 Theorem (Normal Forms Generated by \Rightarrow_{PU})

Let $\{s = t\} \Rightarrow_{PU}^* \{x_1 = t_1, \dots, x_n = t_n\}$ be a normal form. Then

- 1. $x_i \neq x_j$ for all $i \neq j$ and without loss of generality $x_i \notin vars(t_{i+k})$ for all $i, k, 1 \leq i < n, i+k \leq n$.
- 2. the substitution $\{x_1 \mapsto t_1\}\{x_2 \mapsto t_2\} \dots \{x_n \mapsto t_n\}$ is an mgu of s = t.

