
First-Order Logic

Orderings

Propositional superposition is based on an ordering on the
propositional variables, Section 2.7. The ordering is total and
well-founded. Basically, propositional variables correspond to
ground atoms in first-order logic.

This section generalizes the ideas of the propositional
superposition ordering to first-order logic. In first-order logic the
ordering has to also consider terms and variables and operations
on terms like the application of a substitution. See the first-order
resolution calculus.

I first define the ordering on terms and then explain how it is
extended to atoms.
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3.11.1 Definition (Σ-Operation Compatible Relation)
A binary relation A over T (Σ,X ) is called compatible with
Σ-operations, if s A s′ implies

f (t1, . . . , s, . . . , tn) A f (t1, . . . , s′, . . . , tn)
for all f ∈ Ω and s, s′, ti ∈ T (Σ,X ).

3.11.2 Lemma (Σ-Operation Compatible Relation)
A relation A is compatible with Σ-operations iff s A s′ implies
t [s]p A t [s′]p for all s, s′, t ∈ T (Σ,X ) and p ∈ pos(t).
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3.11.3 Definition (Substitution Stable Relation, Rewrite
Relation)
A binary relation A over T (Σ,X ) is called stable under
substitutions, if s A s′ implies sσ A s′σ for all s, s′ ∈ T (Σ,X ) and
substitutions σ.

A binary relation A is called a rewrite relation, if it is compatible
with Σ-operations and stable under substitutions. A rewrite
ordering is then an ordering that is a rewrite relation.
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3.11.4 Definition (Subterm Ordering)
The proper subterm ordering s > t is defined by s > t iff s|p = t
for some position p 6= ε of s.

3.11.5 Definition (Simplification Ordering)
A rewrite ordering � over T (Σ,X ) is called simplification
ordering, if it enjoys the subterm property s � t implies s > t for
all s, t ∈ T (Σ,X ) of the same sort.
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3.11.6 Definition (Lexicographical Path Ordering (LPO))
Let Σ = (S,Ω,Π) be a signature and let � be a strict partial
ordering on operator symbols in Ω, called precedence. The
lexicographical path ordering �lpo on T (Σ,X ) is defined as
follows: if s, t are terms in TS(Σ,X ) then s �lpo t iff

1. t = x ∈ X , x ∈ vars(s) and s 6= t or
2. s = f (s1, . . . , sn), t = g(t1, . . . , tm) and

2.1 si �lpo t for some i ∈ {1, . . . ,n} or
2.2 f � g and s �lpo tj for every j ∈ {1, . . . ,m} or
2.3 f = g, s �lpo tj for every j ∈ {1, . . . ,m} and

(s1, . . . , sn)(�lpo)lex (t1, . . . , tm).
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3.11.7 Theorem (LPO Properties)
1. The LPO is a rewrite ordering.
2. LPO enjoys the subterm property, hence is a simplification

ordering.
3. If the precedence � is total on Ω then �lpo is total on the set of

ground terms T (Σ).
4. If Ω is finite then �lpo is well-founded.
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3.11.9 Definition (The Knuth-Bendix Ordering)
Let Σ = (S,Ω,Π) be a finite signature, let � be a strict partial
ordering (“precedence”) on Ω, let w : Ω ∪ X → R+ be a weight
function, so that the following condition is satisfied:
w(x) = w0 ∈ R+ for all variables x ∈ X ; w(c) ≥ w0 for all
constants c ∈ Ω.

Then, the weight function w can be extended to terms
recursively:

w(f (t1, . . . , tn)) = w(f ) +
∑

1≤i≤n

w(ti)
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3.11.9 Definition (The Knuth-Bendix Ordering Ctd.)
or alternatively∑

w(t) =
∑

x∈vars(t)

w(x) ·#(x , t) +
∑
f∈Ω

w(f ) ·#(f , t)

where #(a, t) is the number of occurrences of a in t .
The Knuth-Bendix ordering �kbo on T (Σ,X ) induced by � and
admissible w is defined by: s �kbo t iff
1 #(x , s) ≥ #(x , t) for all variables x and w(s) > w(t), or
2 #(x , s) ≥ #(x , t) for all variables x , w(s) = w(t), and

(a) s = f (s1, . . . , sm), t = g(t1, . . . , tn), and f � g, or
(b) s = f (s1, . . . , sm), t = f (t1, . . . , tm), and

(s1, . . . , sm)(�kbo)lex (t1, . . . , tm).
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3.11.10 Theorem (KBO Properties)
1. The KBO is a rewrite ordering.
2. KBO enjoys the subterm property, hence is a simplification

ordering.
3. If the precedence � is total on Ω then �kbo is total on the set

of ground terms T (Σ).
4. If Ω is finite then �kbo is well-founded.
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The LPO ordering as well as the KBO ordering can be extended
to atoms in a straightforward way. The precedence � is extended
to Π. For LPO atoms are then compared according to
Definition 3.11.6-2. For KBO the weight function w is also
extended to atoms by giving predicates a non-zero positive
weight and then atoms are compared according to terms.

Actually, since atoms are never substituted for variables in
first-order logic, an alternative to the above would be to first
compare the predicate symbols and let � decide the ordering.
Only if the atoms share the same predicate symbol, the argument
terms are considered, e.g., in a lexicographic way and are then
compared with respect to KBO or LPO, respectively.
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First-Order Ground Superposition

Propositional clauses and ground clauses are essentially the
same, as long as equational atoms are not considered. This
section deals only with ground clauses and recalls mostly the
material from Section 2.7 for first-order ground clauses. The main
difference is that the atom ordering is more complicated, see
Section 3.11.

From now on let N be a possibly infinite set of ground clauses.
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3.12.1 Definition (Ground Clause Ordering)
Let ≺ be a strict rewrite ordering total on ground terms and
ground atoms. Then ≺ can be lifted to a total ordering ≺L on
literals by its multiset extension ≺mul where a positive literal
P(t1, . . . , tn) is mapped to the multiset {P(t1, . . . , tn)} and a
negative literal ¬P(t1, . . . , tn) to the multiset
{P(t1, . . . , tn),P(t1, . . . , tn)}.

The ordering ≺L is further lifted to a total ordering on clauses ≺C
by considering the multiset extension of ≺L for clauses.
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3.12.2 Proposition (Properties of the Ground Clause
Ordering)
1. The orderings on literals and clauses are total and

well-founded.
2. Let C and D be clauses with P(t1, . . . , tn) = atom(max(C)),

Q(s1, . . . , sm) = atom(max(D)), where max(C) denotes the
maximal literal in C.
(a) If Q(s1, . . . , sm) ≺L P(t1, . . . , tn) then D ≺C C.
(b) If P(t1, . . . , tn) = Q(s1, . . . , sm), P(t1, . . . , tn) occurs negatively in

C but only positively in D, then D ≺C C.
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Eventually, as I did for propositional logic, I overload ≺ with ≺L
and ≺C . So if ≺ is applied to literals it denotes ≺L, if it is applied
to clauses, it denotes ≺C .

Note that ≺ is a total ordering on literals and clauses as well. For
superposition, inferences are restricted to maximal literals with
respect to ≺.

For a clause set N, I define N≺C = {D ∈ N | D ≺ C}.
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3.12.3 Definition (Abstract Redundancy)
A ground clause C is redundant with respect to a set of ground
clauses N if N≺C |= C.

Tautologies are redundant. Subsumed clauses are redundant if
⊆ is strict. Duplicate clauses are anyway eliminated quietly
because the calculus operates on sets of clauses.
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3.12.4 Definition (Selection Function)
The selection function sel maps clauses to one of its negative
literals or ⊥. If sel(C) = ¬P(t1, . . . , tn) then ¬P(t1, . . . , tn) is called
selected in C. If sel(C) = ⊥ then no literal in C is selected.

The selection function is, in addition to the ordering, a further
means to restrict superposition inferences. If a negative literal is
selected in a clause, any superposition inference must be on the
selected literal.

December 16, 2020 106/146



First-Order Logic

3.12.5 Definition (Partial Model Construction)
Given a clause set N and an ordering ≺ we can construct a
(partial) model NI for N inductively as follows:

NC :=
⋃

D≺C δD

δD :=


{P(t1, . . . , tn)} if D = D′ ∨ P(t1, . . . , tn),

P(t1, . . . , tn) strictly maximal, no literal
selected in D and ND 6|= D

∅ otherwise
NI :=

⋃
C∈N δC

Clauses C with δC 6= ∅ are called productive.
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3.12.6 Proposition (Propertied of the Model Operator)
Some properties of the partial model construction.
1. For every D with (C ∨ ¬P(t1, . . . , tn)) ≺ D we have

δD 6= {P(t1, . . . , tn)}.
2. If δC = {P(t1, . . . , tn)} then NC ∪ δC |= C.
3. If NC |= D and D ≺ C then for all C′ with C ≺ C′ we have

NC′ |= D and in particular NI |= D.
4. There is no clause C with P(t1, . . . , tn) ∨ P(t1, . . . , tn) ≺ C such

that δC = {P(t1, . . . , tn)}.
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Please properly distinguish: N is a set of clauses interpreted as
the conjunction of all clauses.

N≺C is of set of clauses from N strictly smaller than C with
respect to ≺.

NI , NC are Herbrand interpretations (see Proposition 3.5.3).

NI is the overall (partial) model for N, whereas NC is generated
from all clauses from N strictly smaller than C.

December 16, 2020 109/146



First-Order Logic

Superposition Left
(N ] {C1 ∨ P(t1, . . . , tn),C2 ∨ ¬P(t1, . . . , tn)}) ⇒SUP
(N ∪ {C1 ∨ P(t1, . . . , tn),C2 ∨ ¬P(t1, . . . , tn)} ∪ {C1 ∨ C2})
where (i) P(t1, . . . , tn) is strictly maximal in C1 ∨ P(t1, . . . , tn)
(ii) no literal in C1 ∨ P(t1, . . . , tn) is selected
(iii) ¬P(t1, . . . , tn) is maximal and no literal selected in
C2 ∨ ¬P(t1, . . . , tn), or ¬P(t1, . . . , tn) is selected in
C2 ∨ ¬P(t1, . . . , tn)

Factoring (N ] {C ∨ P(t1, . . . , tn) ∨ P(t1, . . . , tn)}) ⇒SUP
(N ∪ {C ∨ P(t1, . . . , tn) ∨ P(t1, . . . , tn)} ∪ {C ∨ P(t1, . . . , tn)})
where (i) P(t1, . . . , tn) is maximal in
C ∨ P(t1, . . . , tn) ∨ P(t1, . . . , tn)
(ii) no literal is selected in C ∨ P(t1, . . . , tn) ∨ P(t1, . . . , tn)
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3.12.7 Definition (Saturation)
A set N of clauses is called saturated up to redundancy, if any
inference from non-redundant clauses in N yields a redundant
clause with respect to N or is contained in N.
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Subsumption (N ] {C1,C2}) ⇒SUP (N ∪ {C1})
provided C1 ⊂ C2

Tautology Deletion (N ] {C ∨P(t1, . . . , tn)∨¬P(t1, . . . , tn)})
⇒SUP (N)

Condensation (N ]{C1∨L∨L}) ⇒SUP (N ∪{C1∨L})

Subsumption Resolu-
tion

(N ] {C1 ∨ L,C2 ∨ ¬L}) ⇒SUP

(N ∪ {C1 ∨ L,C2})
where C1 ⊆ C2
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3.12.8 Proposition (Completeness of the Reduction Rules)
All clauses removed by Subsumption, Tautology Deletion,
Condensation and Subsumption Resolution are redundant with
respect to the kept or added clauses.

3.12.9 Theorem (Completeness)
Let N be a, possibly countably infinite, set of ground clauses. If N
is saturated up to redundancy and ⊥ /∈ N then N is satisfiable
and NI |= N.
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3.12.10 Theorem (Compactness of First-Order Logic)
Let N be a, possibly countably infinite, set of first-order logic
ground clauses. Then N is unsatisfiable iff there is a finite subset
N ′ ⊆ N such that N ′ is unsatisfiable.

3.12.11 Corollary (Compactness of First-Order Logic:
Classical)
A set N of clauses is satisfiable iff all finite subsets of N are
satisfiable.
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3.12.12 Theorem (Soundness and Completeness of
Ground Superposition)
A first-order Σ-sentence φ is valid iff there exists a ground
superposition refutation for grd(Σ, cnf(¬φ)).

3.12.13 Theorem (Semi-Decidability of First-Order Logic by
Ground Superposition)
If a first-order Σ-sentence φ is valid then a ground superposition
refutation can be computed.
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3.12.15 Theorem (Craig’s Theorem)
Let φ and ψ be two propositional (first-order ground) formulas so
that φ |= ψ. Then there exists a formula χ (called the interpolant
for φ |= ψ), so that χ contains only propositional variables
(first-order signature symbols) occurring both in φ and in ψ so
that φ |= χ and χ |= ψ.
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