
First-Order Logic

First-Order Superposition

Now the result for ground superposition are lifted to superposition
on first-order clauses with variables, still without equality.

The completeness proof of ground superposition above talks
about (strictly) maximal literals of ground clauses. The
non-ground calculus considers those literals that correspond to
(strictly) maximal literals of ground instances.

The used ordering is exactly the ordering of Definition 3.12.1
where clauses with variables are projected to their ground
instances for ordering computations.

December 16, 2020 117/146



First-Order Logic

3.13.1 Definition (Maximal Literal)
A literal L is called maximal in a clause C if and only if there
exists a grounding substitution σ so that Lσ is maximal in Cσ, i.e.,
there is no different L′ ∈ C: Lσ ≺ L′σ. The literal L is called
strictly maximal if there is no different L′ ∈ C such that Lσ � L′σ.

Note that the orderings KBO and LPO cannot be total on atoms
with variables, because they are stable under substitutions.
Therefore, maximality can also be defined on the basis of
absence of greater literals. A literal L is called maximal in a
clause C if L 6≺ L′ for all other literals L′ ∈ C. It is called strictly
maximal in a clause C if L 6� L′ for all other literals L′ ∈ C.

December 16, 2020 118/146



First-Order Logic

Superposition Left
(N ] {C1 ∨ P(t1, . . . , tn),C2 ∨ ¬P(s1, . . . , sn)}) ⇒SUP
(N ∪ {C1 ∨ P(t1, . . . , tn),C2 ∨ ¬P(s1, . . . , sn)} ∪ {(C1 ∨ C2)σ})
where (i) P(t1, . . . , tn)σ is strictly maximal in (C1 ∨ P(t1, . . . , tn))σ
(ii) no literal in C1 ∨ P(t1, . . . , tn) is selected (iii) ¬P(s1, . . . , sn)σ is
maximal and no literal selected in (C2 ∨ ¬P(s1, . . . , sn))σ, or
¬P(s1, . . . , sn) is selected in (C2 ∨ ¬P(s1, . . . , sn))σ (iv) σ is the
mgu of P(t1, . . . , tn) and P(s1, . . . , sn)

Factoring
(N ] {C ∨ P(t1, . . . , tn) ∨ P(s1, . . . , sn)}) ⇒SUP
(N ∪ {C ∨ P(t1, . . . , tn) ∨ P(s1, . . . , sn)} ∪ {(C ∨ P(t1, . . . , tn))σ})
where (i) P(t1, . . . , tn)σ is maximal in
(C ∨ P(t1, . . . , tn) ∨ P(s1, . . . , sn))σ (ii) no literal is selected in
C ∨ P(t1, . . . , tn) ∨ P(s1, . . . , sn) (iii) σ is the mgu of P(t1, . . . , tn)
and P(s1, . . . , sn)

December 16, 2020 119/146



First-Order Logic

Note that the above inference rules Superposition Left and
Factoring are generalizations of their respective counterparts
from the ground superposition calculus above. Therefore, on
ground clauses they coincide. Therefore, we can safely overload
them in the sequel.

3.13.3 Definition (Abstract Redundancy)
A clause C is redundant with respect to a clause set N if for all
ground instances Cσ there are clauses {C1, . . . ,Cn} ⊆ N with
ground instances C1τ1, . . . ,Cnτn such that Ciτi ≺ Cσ for all i and
C1τ1, . . . ,Cnτn |= Cσ.

December 16, 2020 120/146



First-Order Logic

3.13.4 Definition (Saturation)
A set N of clauses is called saturated up to redundancy, if any
inference from non-redundant clauses in N yields a redundant
clause with respect to N or is contained in N.

In contrast to the ground case, the above abstract notion of
redundancy is not effective, i.e., it is undecidable for some clause
C whether it is redundant, in general. Nevertheless, the concrete
ground redundancy notions carry over to the non-ground case.
Note also that a clause C is contained in N modulo renaming of
variables.

December 16, 2020 121/146



First-Order Logic

Subsumption (N ] {C1,C2}) ⇒SUP (N ∪ {C1})
provided C1σ ⊂ C2 for some σ

Tautology Deletion (N ] {C ∨P(t1, . . . , tn)∨¬P(t1, . . . , tn)})
⇒SUP (N)

December 16, 2020 122/146



First-Order Logic

Let rdup be a function from clauses to clauses that removes
duplicate literals, i.e., rdup(C) = C′ where C′ ⊆ C, C′ does not
contain any duplicate literals, and for each L ∈ C also L ∈ C′.

Condensation (N ] {C1 ∨ L ∨ L′}) ⇒SUP
(N ∪ {rdup((C1 ∨ L ∨ L′)σ)})
provided Lσ = L′ and rdup((C1 ∨ L ∨ L′)σ) subsumes C1 ∨ L ∨ L′

for some σ

Subsumption Resolution (N ] {C1 ∨ L,C2 ∨ L′}) ⇒SUP
(N ∪ {C1 ∨ L,C2})
where Lσ = ¬L′ and C1σ ⊆ C2 for some σ

December 16, 2020 123/146



First-Order Logic

3.13.7 Lemma (Lifting)
Let D ∨ L and C ∨ L′ be variable-disjoint clauses and σ a
grounding substitution for C ∨ L and D ∨ L′. If there is a
superposition left inference
(N ] {(D ∨ L)σ, (C ∨ L′)σ})⇒SUP
(N ∪ {(D ∨ L)σ, (C ∨ L′)σ} ∪ {Dσ ∨ Cσ}) and if
sel((D ∨ L)σ) = sel((D ∨ L))σ, sel((C ∨ L′)σ) = sel((C ∨ L′))σ , then
there exists a mgu τ such that
(N ] {D ∨ L,C ∨ L′})⇒SUP (N ∪ {D ∨ L,C ∨ L′} ∪ {(D ∨ C)τ}).

Let C ∨ L ∨ L′ be a clause and σ a grounding substitution for
C ∨ L ∨ L′. If there is a factoring inference
(N ] {(C ∨ L ∨ L′)σ})⇒SUP (N ∪ {(C ∨ L ∨ L′)σ} ∪ {(C ∨ L)σ})
and if sel((C ∨ L ∨ L′)σ) = sel((C ∨ L ∨ L′))σ , then there exists a
mgu τ such that
(N ] {C ∨ L ∨ L′})⇒SUP (N ∪ {C ∨ L ∨ L′} ∪ {(C ∨ L)τ})

December 16, 2020 124/146



First-Order Logic

3.13.8 Example (First-Order Reductions are not Liftable)
Consider the two clauses P(x) ∨Q(x), P(g(y)) and grounding
substitution {x 7→ g(a), y 7→ a}. Then P(g(y))σ subsumes
(P(x) ∨Q(x))σ but P(g(y)) does not subsume P(x) ∨Q(x). For
all other reduction rules similar examples can be constructed.

December 16, 2020 125/146



First-Order Logic

3.13.9 Lemma (Soundness and Completeness)
First-Order Superposition is sound and complete.

3.13.10 Lemma (Redundant Clauses are Obsolete)
If a clause set N is unsatisfiable, then there is a derivation
N ⇒∗SUP N ′ such that ⊥ ∈ N ′ and no clause in the derivation of ⊥
is redundant.

3.13.11 Lemma (Model Property)
If N is a saturated clause set and ⊥ 6∈ N then grd(Σ,N)I |= N.

December 16, 2020 126/146



First-Order Logic

Decision Procedures for BS

3.15.3 Definition (Bernays-Schoenfinkel Fragment (BS))
A formula of the Bernays-Schoenfinkel fragment has the form
∃~x .∀~y .φ such that φ does not contain quantifiers nor non-constant
function symbols.

3.15.4 Theorem (BS is decidable)
Unsatisfiability of a BS clause set is decidable.

December 16, 2020 127/146



First-Order Logic

1 : ¬R(x , y) ∨ ¬R(y , z) ∨ R(x , z)

2 : R(x , y) ∨ R(y , x)

December 16, 2020 128/146



First-Order Logic

A state is now a set of clause sets. Let k be the number of
different constants a1, . . . ,ak in the initial clause set N. Then the
initial state is the set M = {N}, Superposition Left is adopted to
the new setting, Factoring is no longer needed and the rules
Instantiate and Split are added. The variables x1, . . . , xk
constitute a variable chain between literals L1, Lk inside a clause
C, if there are literals {L1, . . . ,Lk} ⊆ C such that
xi ∈ (vars(Li) ∩ vars(Li+1)), 1 ≤ i < k .

December 16, 2020 129/146



First-Order Logic

Superposition BS
M ] {N ] {P(t1, . . . , tn),C ∨ ¬P(s1, . . . , sn)}} ⇒SUPBS
M ∪ {N ∪ {P(t1, . . . , tn),C ∨ ¬P(s1, . . . , sn)} ∪ {Cσ}}
where (i) ¬P(s1, . . . , sn) is selected in (C ∨ ¬P(s1, . . . , sn))σ (ii) σ
is the mgu of P(t1, . . . , tn) and P(s1, . . . , sn)
(iii) C ∨ ¬P(s1, . . . , sn) is a Horn clause

Instantiation M ] {N ] {C ∨ A1 ∨ A2}} ⇒SUPBS
M ∪ {N ∪ {(C ∨ A1 ∨ A2)σi | σi = {x 7→ ai},1 ≤ i ≤ k}}}
where x occurs in a variable chain between A1 and A2

Split M ] {N ] {C1 ∨ A1 ∨ C2 ∨ A2}}
⇒SUPBS M ∪ {N ∪ {C1 ∨ A1},N ∪ {C2 ∨ A2}}
where vars(C1 ∨ A1) ∩ vars(C2 ∨ A2) = ∅

December 16, 2020 130/146



First-Order Logic

3.16.1 Definition (Rigorous Selection Strategy)
A selection strategy is rigorous of in any clause containing a
negative literal, a negative literal is selected.

3.16.2 Lemma (SUPBS Basic Properties)
The SUPBS rules have the following properties:
1. Superposition BS is sound.
2. Instantiation is sound and complete.
3. Split is sound and complete.

December 16, 2020 131/146



First-Order Logic

Alternative Condensation Rule

The Condensation-BS rule turns Superposition (Resolution) into
a decision procedure for the Bernays-Schönfinkel fragment and is
an alternative to the SUPBS calculus.

Condensation-BS (N ] {L1 ∨ · · · ∨ Ln}) ⇒SUP
(N ∪ {rdup((L1 ∨ . . . Ln)σi,j) | σi,j = mgu(Li ,Lj) and σi,j 6= ⊥})
provided any ground instance (L1 ∨ · · · ∨ Ln)δ contains at least
two duplicate literals

December 16, 2020 132/146


