Equational Logic

From now on First-order Logic is considered with equality. In this chapter, I investigate properties of a set of unit equations. For a set of unit equations I write E.

Full first-order clauses with equality are studied in the chapter on first-order superposition with equality. I recall certain definitions from Section 1.6 and Chapter 3.

The main reasoning problem considered in this chapter is given a set of unit equations *E* and an additional equation $s \approx t$, does $E \models s \approx t$ hold?

As usual, all variables are implicitely universally quantified. The idea is to turn the equations *E* into a convergent term rewrite system (TRS) *R* such that the above problem can be solved by checking identity of the respective normal forms: $s \downarrow_R = t \downarrow_R$.

Showing $E \models s \approx t$ is as difficult as proving validity of any first-order formula, see the section on complexity.

4.0.1 Definition (Equivalence Relation, Congruence Relation)

An *equivalence* relation \sim on a term set $T(\Sigma, \mathcal{X})$ is a reflexive, transitive, symmetric binary relation on $T(\Sigma, \mathcal{X})$ such that if $s \sim t$ then sort(s) = sort(t).

Two terms *s* and *t* are called *equivalent*, if $s \sim t$. An equivalence \sim is called a *congruence* if $s \sim t$ implies $u[s] \sim u[t]$, for all terms $s, t, u \in T(\Sigma, \mathcal{X})$. Given a term $t \in T(\Sigma, \mathcal{X})$, the set of all terms equivalent to *t* is called the *equivalence class of t by* \sim , denoted by

$$[t]_{\sim} := \{t' \in T(\Sigma, \mathcal{X}) \mid t' \sim t\}.$$

If the matter of discussion does not depend on a particular equivalence relation or it is unambiguously known from the context, [*t*] is used instead of $[t]_{\sim}$. The above definition is equivalent to Definition 3.2.3.

The set of all equivalence classes in $T(\Sigma, \mathcal{X})$ defined by the equivalence relation is called a *quotient by* \sim , denoted by $T(\Sigma, \mathcal{X})|_{\sim} := \{[t] \mid t \in T(\Sigma, \mathcal{X})\}$. Let *E* be a set of equations then \sim_E denotes the smallest congruence relation "containing" *E*, that is, $(I \approx r) \in E$ implies $I \sim_E r$. The equivalence class $[t]_{\sim_E}$ of a term *t* by the equivalence (congruence) \sim_E is usually denoted, for short, by $[t]_E$. Likewise, $T(\Sigma, \mathcal{X})|_E$ is used for the quotient $T(\Sigma, \mathcal{X})|_{\sim_E}$ of $T(\Sigma, \mathcal{X})$ by the equivalence (congruence) \sim_E .

4.1.1 Definition (Rewrite Rule, Term Rewrite System)

A *rewrite rule* is an equation $l \approx r$ between two terms l and r so that l is not a variable and $vars(l) \supseteq vars(r)$. A *term rewrite system R*, or a TRS for short, is a set of rewrite rules.

4.1.2 Definition (Rewrite Relation)

Let *E* be a set of (implicitly universally quantified) equations, i.e., unit clauses containing exactly one positive equation. The *rewrite* relation $\rightarrow_E \subseteq T(\Sigma, \mathcal{X}) \times T(\Sigma, \mathcal{X})$ is defined by

 $s \to_E t$ iff there exist $(l \approx r) \in E, p \in pos(s)$, and matcher σ , so that $s|_p = l\sigma$ and $t = s[r\sigma]_p$.

Note that in particular for any equation $l \approx r \in E$ it holds $l \rightarrow_E r$, so the equation can also be written $l \rightarrow r \in E$.

Often $s = t \downarrow_R$ is written to denote that *s* is a normal form of *t* with respect to the rewrite relation \rightarrow_R . Notions $\rightarrow_R^0, \rightarrow_R^+, \rightarrow_R^*, \leftrightarrow_R^*$, etc. are defined accordingly, see Section 1.6.

An instance of the left-hand side of an equation is called a *redex* (reducible expression). *Contracting* a redex means replacing it with the corresponding instance of the right-hand side of the rule.

A term rewrite system *R* is called *convergent* if the rewrite relation \rightarrow_R is confluent and terminating. A set of equations *E* or a TRS *R* is terminating if the rewrite relation \rightarrow_E or \rightarrow_R has this property. Furthermore, if *E* is terminating then it is a TRS.

A rewrite system is called *right-reduced* if for all rewrite rules $I \rightarrow r$ in R, the term r is irreducible by R. A rewrite system R is called *left-reduced* if for all rewrite rules $I \rightarrow r$ in R, the term I is irreducible by $R \setminus \{I \rightarrow r\}$. A rewrite system is called *reduced* if it is left- and right-reduced.

4.1.3 Lemma (Left-Reduced TRS)

Left-reduced terminating rewrite systems are convergent. Convergent rewrite systems define unique normal forms.

4.1.4 Lemma (TRS Termination)

A rewrite system *R* terminates iff there exists a reduction ordering \succ so that $l \succ r$, for each rule $l \rightarrow r$ in *R*.

Let *E* be a set of universally quantified equations. A model \mathcal{A} of *E* is also called an *E*-algebra. If $E \models \forall \vec{x} (s \approx t)$, i.e., $\forall \vec{x} (s \approx t)$ is valid in all *E*-algebras, this is also denoted with $s \approx_E t$. The goal is to use the rewrite relation \rightarrow_E to express the semantic consequence relation syntactically: $s \approx_E t$ if and only if $s \leftrightarrow_F^* t$.

Let *E* be a set of (well-sorted) equations over $T(\Sigma, \mathcal{X})$ where all variables are implicitly universally quantified. The following inference system allows to derive consequences of *E*:

Reflexivity $E \Rightarrow_E E \cup \{t \approx t\}$

Symmetry $E \uplus \{t \approx t'\} \Rightarrow_{\mathsf{E}} E \cup \{t \approx t'\} \cup \{t' \approx t\}$

Transitivity $E \uplus \{t \approx t', t' \approx t''\} \Rightarrow_{\mathsf{E}} E \cup \{t \approx t', t' \approx t''\} \cup \{t \approx t''\}$

Congruence $E \uplus \{t_1 \approx t'_1, \dots, t_n \approx t'_n\} \Rightarrow_{\mathsf{E}} E \cup \{t_1 \approx t'_1, \dots, t_n \approx t'_n\} \cup \{f(t_1, \dots, t_n) \approx f(t'_1, \dots, t'_n)\}$ for any function $f : \operatorname{sort}(t_1) \times \dots \times \operatorname{sort}(t_n) \to S$ for some S

Instance $E \uplus \{t \approx t'\} \Rightarrow_{\mathsf{E}} E \cup \{t \approx t'\} \cup \{t\sigma \approx t'\sigma\}$ for any well-sorted substitution σ

4.1.5 Lemma (Equivalence of \leftrightarrow_E^* and \Rightarrow_E^*)

The following properties are equivalent:

1.
$$s \leftrightarrow_E^* t$$

2. $E \Rightarrow_E^* s \approx t$ is derivable.

where $E \Rightarrow_E^* s \approx t$ is an abbreviation for $E \Rightarrow_E^* E'$ and $s \approx t \in E'$.

4.1.6 Corollary (Convergence of E)

If a set of equations *E* is convergent then $s \approx_E t$ if and only if $s \leftrightarrow^* t$ if and only if $s \downarrow_E = t \downarrow_E$.

4.1.7 Corollary (Decidability of \approx_E)

If a set of equations *E* is finite and convergent then \approx_E is decidable.

The above Lemma 4.1.5 shows equivalence of the syntactically defined relations \leftrightarrow_E^* and *Rightarrow*_E^{*}. What is missing, in analogy to Herbrand's theorem for first-order logic without equality Theorem 3.5.5, is a semantic characterization of the relations by a particular algebra.

4.1.8 Definition (Quotient Algebra)

For sets of unit equations this is a *quotient algebra*: Let *X* be a set of variables. For $t \in T(\Sigma, \mathcal{X})$ let $[t] = \{t' \in T(\Sigma, \mathcal{X})) \mid E \Rightarrow_{\mathsf{E}}^* t \approx t'\}$ be the *congruence class* of *t*. Define a Σ -algebra \mathcal{I}_E , called the *quotient algebra*, technically $T(\Sigma, \mathcal{X})/E$, as follows: $S^{\mathcal{I}_E} = \{[t] \mid t \in T_S(\Sigma, \mathcal{X})\}$ for all sorts *S* and $f^{\mathcal{I}_E}([t_1], \dots, [t_n]) = [f(t_1, \dots, t_n)]$ for $f : \operatorname{sort}(t_1) \times \dots \times \operatorname{sort}(t_n) \to T \in \Omega$ for some sort *T*.

4.1.9 Lemma (\mathcal{I}_E is an *E*-algebra)

 $\mathcal{I}_E = T(\Sigma, \mathcal{X})/E$ is an *E*-algebra.

4.1.10 Lemma (\Rightarrow_E is complete)

Let \mathcal{X} be a countably infinite set of variables; let $s, t \in T_{\mathcal{S}}(\Sigma, \mathcal{X})$. If $\mathcal{I}_E \models \forall \vec{x} (s \approx t)$, then $E \Rightarrow_E^* s \approx t$ is derivable.

4.1.11 Theorem (Birkhoff's Theorem)

Let \mathcal{X} be a countably infinite set of variables, let E be a set of (universally quantified) equations. Then the following properties are equivalent for all $s, t \in T_{\mathcal{S}}(\Sigma, \mathcal{X})$:

1.
$$s \leftrightarrow_E^* t$$
.

2. $E \Rightarrow_E^* s \approx t$ is derivable.

3.
$$s \approx_E t$$
, i.e., $E \models \forall \vec{x} (s \approx t)$.

4. $\mathcal{I}_E \models \forall \vec{x} (s \approx t)$.

By Theorem 4.1.11 the semantics of *E* and \leftrightarrow_E^* conincide. In order to decide \leftrightarrow_E^* we need to turn \rightarrow_E^* in a confluent and terminating relation.

If \leftrightarrow_E^* is terminating then confluence is equivalent to local confluence, see Newman's Lemma, Lemma 1.6.6. Local confluence is the following problem for TRS: if $t_1 \xrightarrow{} t_0 \rightarrow_E t_2$, does there exist a term *s* so that $t_1 \rightarrow_E^* s \xrightarrow{} t_2$?

If the two rewrite steps happen in different subtrees (disjoint redexes) then a repitition of the respective other step yields the common term s.

If the two rewrite steps happen below each other (overlap at or below a variable position) again a repetition of the respective other step yields the common term *s*.

If the left-hand sides of the two rules overlap at a non-variable position there is no ovious way to generate *s*.

More technically two rewrite rules $l_1 \rightarrow r_1$ and $l_2 \rightarrow r_2$ overlap if there exist some non-variable subterm $l_1|_p$ such that l_2 and $l_1|_p$ have a common instance $(l_1|_p)\sigma_1 = l_2\sigma_2$. If the two rewrite rules do not have common variables, then only a single substitution is necessary, the mgu σ of $(l_1|_p)$ and l_2 .

4.2.1 Definition (Critical Pair)

Let $l_i \rightarrow r_i$ (i = 1, 2) be two rewrite rules in a TRS *R* whithout common variables, i.e., $vars(l_1) \cap vars(l_2) = \emptyset$. Let $p \in pos(l_1)$ be a position so that $l_1|_p$ is not a variable and σ is an mgu of $l_1|_p$ and l_2 . Then $r_1\sigma \leftarrow l_1\sigma \rightarrow (l_1\sigma)[r_2\sigma]_p$.

 $\langle r_1\sigma, (l_1\sigma)[r_2\sigma]_p \rangle$ is called a *critical pair* of *R*.

The critical pair is *joinable* (or: converges), if $r_1 \sigma \downarrow_R (l_1 \sigma) [r_2 \sigma]_p$.

4.2.2 Theorem ("Critical Pair Theorem")

A TRS *R* is locally confluent iff all its critical pairs are joinable.

