
Knuth-Bendix Completion (KBC)

Given a set E of equations, the goal of Knuth-Bendix completion
is to transform E into an equivalent convergent set R of rewrite
rules. If R is finite this yields a decision procedure for E .

For ensuring termination the calculus fixes a reduction ordering �
and constructs R in such a way that→R ⊆ �, i.e., l � r for every
l → r ∈ R.

For ensuring confluence the calculus checks whether all critical
pairs are joinable.

January 13, 2021 25/1



The completion procedure itself is presented as a set of abstract
rewrite rules working on a pair of equations E and rules R:
(E0;R0)⇒KBC (E1;R1)⇒KBC (E1;R2)⇒KBC . . ..

The initial state is (E0, ∅) where E = E0 contains the input
equations.

If⇒KBC successfully terminates then E is empty and R is the
convergent rewrite system for E0.

For each step (E ; R)⇒KBC (E ′; R′) the equational theories of
E ∪ R and E ′ ∪ R′ agree: ≈E∪R = ≈E ′∪R′ . By cp(R) I denote the
set of critical pairs between rules in R.

January 13, 2021 26/1



Orient (E ] {s
.
≈ t}; R) ⇒KBC (E ; R ∪ {s → t})

if s � t

Delete (E ] {s ≈ s}; R) ⇒KBC (E ; R)

Deduce (E ; R) ⇒KBC (E ∪ {s ≈ t}; R)

if 〈s, t〉 ∈ cp(R)

January 13, 2021 27/1



Simplify-Eq (E ] {s
.
≈ t}; R) ⇒KBC (E ∪ {u ≈ t}; R)

if s →R u

R-Simplify-Rule (E ; R ] {s → t}) ⇒KBC (E ; R ∪ {s → u})
if t →R u

L-Simplify-Rule (E ; R ] {s → t}) ⇒KBC (E ∪ {u ≈ t}; R)

if s →R u using a rule l → r ∈ R so that s A l , see below.

January 13, 2021 28/1



Trivial equations cannot be oriented and since they are not
needed they can be deleted by the Delete rule.

The rule Deduce turns critical pairs between rules in R into
additional equations. Note that if 〈s, t〉 ∈ cp(R) then sR ←u →R t
and hence R |= s ≈ t .

The simplification rules are not needed but serve as reduction
rules, removing redundancy from the state. Simplification of the
left-hand side may influence orientability and orientation of the
result. Therefore, it yields an equation. For technical reasons, the
left-hand side of s → t may only be simplified using a rule l → r ,
if l → r cannot be simplified using s → t , that is, if s A l , where
the encompassment quasi-ordering A∼ is defined by s A∼ l if
s|p = lσ for some p and σ and A = A∼ \@∼ is the strict part of A∼.

January 13, 2021 29/1



4.4.4 Proposition (Knuth-Bendix Completion Correctness)
If the completion procedure on a set of equations E is run,
different things can happen:
1. A state where no more inference rules are applicable is

reached and E is not empty. ⇒ Failure (try again with another
ordering?)

2. A state where E is empty is reached and all critical pairs
between the rules in the current R have been checked.

3. The procedure runs forever.

January 13, 2021 30/1



4.4.5 Definition (Run)
A (finite or infinite) sequence
(E0; R0)⇒KBC (E1; R1)⇒KBC (E2; R2)⇒KBC . . . with R0 = ∅ is
called a run of the completion procedure with input E0 and �. For
a run, E∞ =

⋃
i≥0 Ei and R∞ =

⋃
i≥0 Ri .

4.4.6 Definition (Persistent Equations)
The sets of persistent equations of rules of the run are
E∗ =

⋃
i≥0

⋂
j≥i Ej and R∗ =

⋃
i≥0

⋂
j≥i Rj .

Note: If the run is finite and ends with En,Rn then E∗ = En and
R∗ = Rn.

January 13, 2021 31/1



4.4.7 Definition (Fair Run)
A run is called fair if CP(R∗) ⊆ E∞ (i.e., if every critical pair
between persisting rules is computed at some step of the
derivation).

4.4.10 Theorem (KBC Soundness)
Let (E0; R0)⇒KBC (E1; R1)⇒KBC (E2; R2)⇒KBC . . . be a fair run
and let R0 and E∗ be empty. Then
1. every proof in E∞ ∪ R∞ is equivalent to a rewrite proof in R∗,
2. R∗ is equivalent to E0 and
3. R∗ is convergent.

January 13, 2021 32/1



Complexity

3.15.2 Theorem (Equational Logic Validity is Undecidable)
Validity of an equation modulo a set of equations is undecidable.

(Proof Scetch) Given a PCP with word lists (u1, . . . ,un) and
(v1, . . . , vn) over alphabet {a,b}, it is represented by two unary
functions ga and gb, constants ε, c,d , and a binary function fR ,
all over some sort S. Then a word pair ui , vi is encoded by the
equation fR(ui(x), vi(y)) ≈ fR(x , y) and the start state with the
empty word is encoded by equation fR(ε, ε) ≈ d and the final
state identifying two equal words different from ε by the equations
fR(ga(x),ga(x)) ≈ c, fR(gb(x),gb(x)) ≈ c. I call the set of these
equations E . Now the PCP over the two word lists has a solution
iff E |= c ≈ d .

January 13, 2021 33/1



4.4.11 Corollary (KBC Termination)
Termination of⇒KBC is undecidable for some given finite set of
equations E .

(Proof Scetch) Using exactly the construction of Theorem 3.15.2
it remains to be shown that all computed critical pairs can be
oriented. Critical pairs corresponding to the search for a PCP
solution result in equations fR(u(x), v(y)) ≈ fR(u′(x), v ′(y)) or
fR(u′(x), v ′(x)) ≈ c. By chosing an appropriate ordering, all these
equations can be oriented. Thus⇒KBC does not produce any
unorientable equations. The rest follows from Theorem 3.15.2.

January 13, 2021 34/1


