Preliminaries Propositional Logic
0000000000000 000000000000 000

Propositional Logic: Operations

2.1.2 Definition (Atom, Literal, Clause)

A propositional variable P is called an atom. It is also called a
(positive) literal and its negation —P is called a (negative) literal.

The functions comp and atom map a literal to its complement, or
atom, respectively: if comp(—P) = P and comp(P) = —-P,
atom(—P) = P and atom(P) = P for all P € ¥. Literals are
denoted by letters L, K. Two literals P and —P are called
complementary.

A disjunction of literals Ly v ...V L, is called a clause. A clause is
identified with the multiset of its literals.

ini p | | [November 5, 2020 22/91

Preliminaries Propositional Logic
0000000000000 000000000000 000

2.1.3 Definition (Position)
A position is a word over N. The set of positions of a formula ¢ is
inductively defined by

pos(¢p) = {etifpe{T,L}orpecXx
pos(—¢) = {e}U{1p|p € pos(¢)}
pos(potp) = {efU{1p|pe pos(¢)}U{2p|p € pos(y)}

where o € {A,V, —, <}

November 5, 2020 23/91

Innpnn:
i

Preliminaries Propositional Logic
0000000000000 000000000000 000

The prefix order < on positions is defined by p < q if there is
some p’ such that po’ = q. Note that the prefix order is partial,
e.g., the positions 12 and 21 are not comparable, they are
“parallel”, see below.

The relation < is the strict part of <, i.e., p < g if p < g but not
qg=p.

The relation || denotes incomparable, also called parallel
positions, i.e., p || q if neither p < g, nor q < p.

A position p is above q if p < q, pis strictly above q if p < g, and
p and g are parallelif p || g.

November 5, 2020 24/91

T LR
inf ati

Preliminaries Propositional Logic
0000000000000 000000000000 000

The size of a formula ¢ is given by the cardinality of pos(¢):
6] := | pos(¢).

The subformula of ¢ at position p € pos(¢) is inductively defined
by ¢l := &, =¢l1p := d|p, and (¢4 o P2)|jp := ¢ilp Where i € {1,2},
o€ {A,V,—, <}

Finally, the replacement of a subformula at position p € pos(¢) by
a formula ¢ is inductively defined by ¢[v]. := ¢

(~)[]1p = —6[]p, and (61 0 d2)[]1p = (1[¢]p o b2).
(91 0 ¢2)[¥]2p := (91 0 P2[1]p), where o € {A,V, =, <}

inn p [I ook November 5, 2020 25/91

Preliminaries Propositional Logic
0000000000000 000000000000 0000000000000000000000000000000000O000000000000000000000000000

2.1.5 Definition (Polarity)

The polarity of the subformula ¢|, of ¢ at position p € pos(¢) is
inductively defined by
pol(¢,e) = 1
pol(=¢,1p) := —pol(¢,p)
pol(¢102,ip) = pol(¢i,p) if o€ {A V} i€ {1,2}

p0|(¢1 — ¢271p) = —p0|(¢1,P)

pol(¢1 — ¢2,2p) := pol(d2,p)

pol(¢1 > d2,ip) = 0 if i€{1,2}

ini p BB st November 5, 2020 26/91

Preliminaries Propositional Logic
0000000000000 000000000000 000

Valuations can be nicely represented by sets or sequences of
literals that do not contain complementary literals nor duplicates.

If Ais a (partial) valuation of domain X then it can be represented
by the set
{P|PeXxand A(P)=1}U{=-P| P X and A(P) = 0}.

Another, equivalent representation are Herbrand interpretations
that are sets of positive literals, where all atoms not contained in
an Herbrand interpretation are false. If A is a total valuation of
domain X then it corresponds to the Herbrand interpretation
{P|PeXand A(P)=1}.

November 5, 2020 27/91

T LR
inf ati

Preliminaries Propositional Logic
0000000000000 0000000000000 00

2.2.4 Theorem (Deduction Theorem)
pEYift o=

inn p [[ook November 5, 2020 28/91

Preliminaries Propositional Logic
0000000000000 0000000000000 00

2.2.6 Lemma (Formula Replacement)

Let ¢ be a propositional formula containing a subformula v at
position p, i.e., ¢|p = ¥. Furthermore, assume |= ¢ <> x.
Then = ¢ < ¢[x]p-

ini p | | i November 5, 2020 29/91

Preliminaries Propositional Logic
0000000000000 000000000000 eO00

Propositional Tableau

2.4.1 Definition (a-, 5-Formulas)

A formula ¢ is called an a-formula if ¢ is a formula =—¢+, @1 A ¢o,

1 < d2, (D1 V ¢2), OF ~(P1 — P2).

A formula ¢ is called a g-formula if ¢ is a formula ¢1 V ¢o,

1 = ¢2, 2(P1 A ¢2), OF =(P1 <> o).

November 5, 2020 30/91

Innpnn:
\

Preliminaries Propositional Logic

0000000000000 0000000000000 eO000000000000000000000000000000000O000000000000000000000000000

2.4.2 Definition (Direct Descendant)

Given an «a- or -formula ¢, its direct descendants are as follows:

o Left Descendant | Right Descendant
—¢ ¢ ¢
A H1 P2
1 <> P2 O1 — P2 P2 = P1
(1 V $2) —¢1 —¢2
(1 — ¢2) o1 —¢2
B Left Descendant | Right Descendant
1V P2 ?1 ¢2
P1 = P2 1 P2
(1 A $2) 91 ~¢2
(P11 <> p2) | (1 — ¢2) (P2 — ¢1)

Ini BB ek insiin
informatik

November 5, 2020 31/91

Preliminaries Propositional Logic
0000000000000 0000000000000 0eO000

2.4.3 Proposition ()
For any valuation A:

(i) if ¢ is an a-formula then A(¢) = 1 iff A(¢¢) = 1 and A(¢2) =1
for its descendants ¢4, ¢o.

(ii) if ¢ is a p-formula then A(¢) = 1 iff A(¢1) =1 or A(¢p2) = 1 for
its descendants ¢4, ¢o.

November 5, 2020 32/91

T LR
inf ati

Preliminaries Propositional Logic
0000000000000 0000000000000 00e00

Tableau Rewrite System

The tableau calculus operates on states that are sets of
sequences of formulas. Semantically, the set represents a
disjunction of sequences that are interpreted as conjunctions of
the respective formulas.

A sequence of formulas (¢1, ..., ¢n) is called closed if there are
two formulas ¢; and ¢; in the sequence where ¢; = comp(¢;).

A state is closed if all its formula sequences are closed.

The tableau calculus is a calculus showing unsatisfiability of a
formula. Such calculi are called refutational calculi. Recall a
formula ¢ is valid iff —¢ is unsatisfiable.

in p | | i November 5, 2020 33/91

Preliminaries Propositional Logic
0000000000000 0000000000000 000eO000

A formula ¢ occurring in some sequence is called open if in case
¢ is an a-formula not both direct descendants are already part of
the sequence and if it is a S-formula none of its descendants is
part of the sequence.

inn p [I ook November 5, 2020 34/91

Preliminaries Propositional Logic
0000000000000 0000000000000 0000e00

Tableau Rewrite Rules

a-Expansion Nw{(¢1,...,¢,...,dn)} =T
NH’J{(¢17--->¢a--‘7¢naw1’d}2)}

provided v is an open a-formula, 1, v its direct descendants
and the sequence is not closed.

B-Expansion N {(p1,...,0,...,én)} =1
Nw{(¢1,.. 0, bn, 1)} W {(B1, 55 Pn, o)}
provided v is an open S-formula, 4, ¥ its direct descendants
and the sequence is not closed.

November 5, 2020 35/91

lllpll'“

Preliminaries Propositional Logic
0000000000000 0000000000000 00000e000

Tableau Properties

2.4.4 Theorem (Propositional Tableau is Sound)

If for a formula ¢ the tableau calculus computes {(—¢)} =1 N
and N is closed, then ¢ is valid.

2.4.5 Theorem (Propositional Tableau Terminates)

Starting from a start state {(¢)} for some formula ¢, the relation
=71 is well-founded.

November 5, 2020 36/91

P
infc t

Preliminaries Propositional Logic
0000000000000 0000000000000 000000e00

2.4.6 Theorem (Propositional Tableau is Complete)
If ¢ is valid, tableau computes a closed state out of {(—¢)}.

2.4.7 Corollary (Propositional Tableau generates Models)

Let ¢ be a formula, {(¢)} =5 N and s € N be a sequence that is
not closed and neither a-expansion nor g-expansion are
applicable to s. Then the literals in s form a (partial) valuation
that is a model for ¢.

November 5, 2020 37/91

Preliminaries Propositional Logic
0000000000000 0000000000000 0000000e000

Normal Forms

Definition (CNF, DNF)

A formula is in conjunctive normal form (CNF) or clause normal
form if it is a conjunction of disjunctions of literals, or in other
words, a conjunction of clauses.

A formula is in disjunctive normal form (DNF), if it is a disjunction
of conjunctions of literals.

max |,| anl k institut November 5, 2020 38/91
i p [| b

Preliminaries Propositional Logic
0000000000000 0000000000000 O00000000e00

Checking the validity of CNF formulas or the unsatisfiability of
DNF formulas is easy:

(i) a formula in CNF is valid, if and only if each of its disjunctions
contains a pair of complementary literals P and —P,

(if) conversely, a formula in DNF is unsatisfiable, if and only if

each of its conjunctions contains a pair of complementary literals
Pand -P

in p [] oo November 5, 2020 39/91

Preliminaries Propositional Logic
0000000000000 0000000000000 O000000000e000

Basic CNF Transformation

ElimEquiv
Elimimp
PushNeg1
PushNeg2
PushNeg3
PushDisj
ElimTB1
ElimTB2
ElimTB3
ElimTB4
ElimTB5
ElimTB6

TITOILE
info

X[(¢ < ¥)lp =Bene X[(¢ — ¥) A (¥ — b)lp
xI[(¢ = ¥)lp =BenF X[(—¢ V ¥)lp
X[=(oVY)lp =BeNF X[(—6 A —Y)]p

xX[=(@ A)]lp =Bene X[(—o V)]p
x[-=dlp =8BenNF X[¢lp

xX[(&1 A d2) Vbl =BenF XI(¢1 V) A(d2 V)p
x[(@AT)lp =Bene X[9]p

xl(@ A Lo =8ene X[L]p

x[(@V T)lp =8ene X[Tlp

xl(¢V L)]p =Bene x[9]p

x[-Llp =Bene X[Tlp

X[~ Tlp =BenF X[L]p

]!;!:Inltkk institut November 5, 2020 40/91

Preliminaries Propositional Logic
0000000000000 0000000000000 O0000000000e00

N o a0 ODN

Basic CNF Algorithm

Algorithm: 2 benf(¢)

Input : A propositional formula ¢.

Output: A propositional formula ¢ equivalent to ¢ in CNF.
whilerule (ElimEquiv(¢)) do ;

whilerule (Elimimp(¢)) do ;

whilerule (ElimTB1(¢),...,ElimTB6(¢)) do ;

whilerule (PushNeg1(¢),...,PushNeg3(¢)) do ;
whilerule (PushDisj(¢)) do ;

return ¢;

in p | | i November 5, 2020 41/91

Preliminaries Propositional Logic
0000000000000 0000000000000 O00000000000e000

Advanced CNF Algorithm

For the formula

Py < (Pa+s (P33 (... (Pp_y < Pp)...))

the basic CNF algorithm generates a CNF with 2"~ clauses.

inn p [I ook November 5, 2020 42/91

