2.5.4 Proposition (Renaming Variables)

Let *P* be a propositional variable not occurring in $\psi[\phi]_p$.

- 1. If pol $(\psi, p) = 1$, then $\psi[\phi]_p$ is satisfiable if and only if $\psi[P]_p \wedge (P \to \phi)$ is satisfiable.
- 2. If pol $(\psi, \rho) = -1$, then $\psi[\phi]_{\rho}$ is satisfiable if and only if $\psi[P]_p \wedge (\phi \rightarrow P)$ is satisfiable.
- 3. If pol $(\psi, p) = 0$, then $\psi[\phi]_p$ is satisfiable if and only if $\psi[P]_p \wedge (P \leftrightarrow \phi)$ is satisfiable.

Renaming

 $\phi \Rightarrow_{\mathsf{SimpRen}} \phi[P_1]_{\rho_1}[P_2]_{\rho_2} \ldots [P_n]_{\rho_n} \wedge$ $\det(\phi, p_1, P_1) \wedge \ldots \wedge \det(\phi[P_1]_{p_1}[P_2]_{p_2} \ldots [P_{n-1}]_{p_{n-1}}, p_n, P_n)$ provided $\{p_1, \ldots, p_n\} \subset \text{pos}(\phi)$ and for all *i*, *i* + *j* either $p_i \parallel p_{i+i}$ or $p_i > p_{i+i}$ and the P_i are different and new to ϕ

Simple choice: choose $\{p_1, \ldots, p_n\}$ to be all non-literal and non-negation positions of ϕ .

Preliminaries Propositional Logic

Renaming Definition

$$
\text{def}(\psi, p, P) := \left\{ \begin{array}{ll} (P \to \psi|_p) & \text{if } \text{pol}(\psi, p) = 1 \\ (\psi|_p \to P) & \text{if } \text{pol}(\psi, p) = -1 \\ (P \leftrightarrow \psi|_p) & \text{if } \text{pol}(\psi, p) = 0 \end{array} \right.
$$

Obvious Positions

A smaller set of positions from φ, called *obvious positions*, is still preventing the explosion and given by the rules:

(i) *p* is an obvious position if $\phi|_p$ is an equivalence and there is a position $q < p$ such that $\phi|_q$ is either an equivalence or disjunctive in ϕ or

(ii) *pq* is an obvious position if $\phi|_{pq}$ is a conjunctive formula in ϕ , $\phi|_p$ is a disjunctive formula in ϕ and for all positions *r* with $\bm{\mathsf{p}} < \bm{\mathsf{r}} < \bm{\mathsf{p}}$ q the formula $\phi|_{\bm{\mathsf{r}}}$ is not a conjunctive formula.

A formula $\phi|_p$ is conjunctive in ϕ if $\phi|_p$ is a conjunction and pol $(\phi, p) \in \{0, 1\}$ or $\phi|_p$ is a disjunction or implication and $pol(\phi, p) \in \{0, -1\}.$

Analogously, a formula $\phi|_p$ is disjunctive in ϕ if $\phi|_p$ is a disjunction or implication and $\text{pol}(\phi, p) \in \{0, 1\}$ or $\phi|_p$ is a conjunction and pol $(\phi, p) \in \{0, -1\}.$ planek institut November 5, 2020 46/91 Preliminaries Propositional Logic 0000000000000000000000000000000000

Polarity Dependent Equivalence Elimination

ElimEquiv1 $\chi[(\phi \leftrightarrow \psi)]_p \Rightarrow_{ACNF} \chi[(\phi \rightarrow \psi) \wedge (\psi \rightarrow \phi)]_p$ provided pol $(y, p) \in \{0, 1\}$

ElimEquiv2 $\chi[(\phi \leftrightarrow \psi)]_p \Rightarrow_{ACNF} \chi[(\phi \land \psi) \lor (\neg \phi \land \neg \psi)]_p$ provided pol $(y, p) = -1$

Preliminaries Propositional Logic

Extra \top , \bot Elimination Rules

where the two rules ElimTB11, ElimTB12 for equivalences are applied with respect to commutativity of \leftrightarrow .

Advanced CNF Algorithm

1 Algorithm: 3 acnf(ϕ)

Input : A formula ϕ .

Output: A formula ψ in CNF satisfiability preserving to ϕ .

- **2 whilerule** *(***ElimTB1**(φ)*,*. . .*,***ElimTB12**(φ)*)* **do** ;
- **SimpleRenaming** (ϕ) on obvious positions;
- **4 whilerule** *(***ElimEquiv1**(φ)*,***ElimEquiv2**(φ)*)* **do** ;
- **5 whilerule** *(***ElimImp**(φ)*)* **do** ;
- **6 whilerule** *(***PushNeg1**(φ)*,*. . .*,***PushNeg3**(φ)*)* **do** ;
- **7 whilerule** *(***PushDisj**(φ)*)* **do** ;

8 return φ;

Propositional Resolution

The propositional resolution calculus operates on a set of clauses and tests unsatisfiability.

Recall that for clauses I switch between the notation as a disiunction, e.g., $P \vee Q \vee P \vee \neg R$, and the multiset notation, e.g., {*P*, *Q*, *P*, ¬*R*}. This makes no difference as we consider ∨ in the context of clauses always modulo AC. Note that ⊥, the empty disjunction, corresponds to ∅, the empty multiset. Clauses are typically denoted by letters *C*, *D*, possibly with subscript.

Resolution Inference Rules

Resolution $(N \oplus \{C_1 \vee P, C_2 \vee \neg P\}) \Rightarrow_{R \in S}$ $(N \cup \{C_1 \vee P, C_2 \vee \neg P\} \cup \{C_1 \vee C_2\})$

Factoring $(N \oplus \{C \vee L \vee L\}) \Rightarrow_{R \in S}$ (*N* ∪ {*C* ∨ *L* ∨ *L*} ∪ {*C* ∨ *L*})

2.6.1 Theorem (Soundness & Completeness)

The resolution calculus is sound and complete: *N* is unsatisfiable iff $N \Rightarrow_{RES}^* N'$ and $\bot \in N'$ for some N'

Resolution Reduction Rules

Subsumption $(N \oplus \{C_1, C_2\}) \Rightarrow_{BFS} (N \cup \{C_1\})$ provided $C_1 \subset C_2$

Tautology Deletion $(N \oplus \{C \vee P \vee \neg P\}) \Rightarrow_{BFS} (N)$

Condensation $(N \oplus \{C_1 \vee L \vee L\}) \Rightarrow_{BFS} (N \cup \{C_1 \vee L\})$

Subsumption Resolution $(N \oplus \{C_1 \vee L, C_2 \vee \text{comp}(L)\}) \Rightarrow_{BES}$ $(N ∪ {C_1 ∨ L, C_2})$ where $C_1 \subset C_2$

2.6.6 Theorem (Resolution Termination)

If reduction rules are preferred over inference rules and no inference rule is applied twice to the same clause(s), then $\Rightarrow_{\sf RES}^+$ is well-founded.

The Overall Picture

Application

 $System + Problem$

System

 $Algorithm + Implementation$

Algorithm

 $Calculus + Strategy$

Calculus

 $Logic + States + Rules$

Logic

 $Syn tax + Semantics$

