2.5.4 Proposition (Renaming Variables)

Let *P* be a propositional variable not occurring in $\psi[\phi]_{\rho}$.

- 1. If $pol(\psi, p) = 1$, then $\psi[\phi]_p$ is satisfiable if and only if $\psi[P]_p \land (P \to \phi)$ is satisfiable.
- 2. If $pol(\psi, p) = -1$, then $\psi[\phi]_p$ is satisfiable if and only if $\psi[P]_p \land (\phi \to P)$ is satisfiable.
- 3. If $pol(\psi, p) = 0$, then $\psi[\phi]_p$ is satisfiable if and only if $\psi[P]_p \land (P \leftrightarrow \phi)$ is satisfiable.

Renaming

SimpleRenaming $\phi \Rightarrow_{\text{SimpRen}} \phi[P_1]_{p_1}[P_2]_{p_2} \dots [P_n]_{p_n} \land \text{def}(\phi, p_1, P_1) \land \dots \land \text{def}(\phi[P_1]_{p_1}[P_2]_{p_2} \dots [P_{n-1}]_{p_{n-1}}, p_n, P_n)$ provided $\{p_1, \dots, p_n\} \subset \text{pos}(\phi)$ and for all i, i + j either $p_i \parallel p_{i+j}$ or $p_i > p_{i+j}$ and the P_i are different and new to ϕ

Simple choice: choose $\{p_1, \ldots, p_n\}$ to be all non-literal and non-negation positions of ϕ .

Renaming Definition

$$def(\psi, p, P) := \begin{cases} (P \to \psi|_p) & \text{if } \operatorname{pol}(\psi, p) = 1\\ (\psi|_p \to P) & \text{if } \operatorname{pol}(\psi, p) = -1\\ (P \leftrightarrow \psi|_p) & \text{if } \operatorname{pol}(\psi, p) = 0 \end{cases}$$

Obvious Positions

A smaller set of positions from ϕ , called *obvious positions*, is still preventing the explosion and given by the rules:

(i) *p* is an obvious position if $\phi|_p$ is an equivalence and there is a position q < p such that $\phi|_q$ is either an equivalence or disjunctive in ϕ or

(ii) pq is an obvious position if $\phi|_{pq}$ is a conjunctive formula in ϕ , $\phi|_p$ is a disjunctive formula in ϕ and for all positions r with p < r < pq the formula $\phi|_r$ is not a conjunctive formula.

A formula $\phi|_{p}$ is conjunctive in ϕ if $\phi|_{p}$ is a conjunction and $pol(\phi, p) \in \{0, 1\}$ or $\phi|_{p}$ is a disjunction or implication and $pol(\phi, p) \in \{0, -1\}$.

Analogously, a formula $\phi|_{p}$ is disjunctive in ϕ if $\phi|_{p}$ is a disjunction or implication and pol $(\phi, p) \in \{0, 1\}$ or $\phi|_{p}$ is a conjunction and pol $(\phi, p) \in \{0, -1\}$. November 5, 2020 46/91

Polarity Dependent Equivalence Elimination

$$\begin{split} \textbf{ElimEquiv1} \quad & \chi[(\phi \leftrightarrow \psi)]_{\rho} \ \Rightarrow_{\mathsf{ACNF}} \ \chi[(\phi \to \psi) \land (\psi \to \phi)]_{\rho} \\ \text{provided pol}(\chi, \rho) \in \{0, 1\} \end{split}$$

ElimEquiv2 $\chi[(\phi \leftrightarrow \psi)]_{\rho} \Rightarrow_{\mathsf{ACNF}} \chi[(\phi \land \psi) \lor (\neg \phi \land \neg \psi)]_{\rho}$ provided $\operatorname{pol}(\chi, \rho) = -1$

November 5, 2020

Propositional Logic Preliminaries <u>______</u>

Extra \top, \bot Elimination Rules

ElimTB7	$\chi[\phi \to \bot]_{\rho} \Rightarrow_{ACNF}$	$\chi[\neg\phi]_{P}$
ElimTB8	$\chi[\perp \to \phi]_{\rho} \Rightarrow_{ACNF}$	$\chi[\top]_{\rho}$
ElimTB9	$\chi[\phi \to \top]_{\rho} \Rightarrow_{ACNF}$	$\chi[\top]_{\rho}$
ElimTB10	$\chi[\top \to \phi]_{\rho} \Rightarrow_{ACNF}$	$\chi[\phi]_{ m ho}$
ElimTB11	$\chi[\phi\leftrightarrow\perp]_{\rho} \Rightarrow_{ACNF}$	$\chi[\neg\phi]_{\rho}$
ElimTB12	$\chi[\phi\leftrightarrow\top]_{\rho} \Rightarrow_{ACNF}$	$\chi[\phi]_{ m ho}$

where the two rules ElimTB11, ElimTB12 for equivalences are applied with respect to commutativity of \leftrightarrow .

Advanced CNF Algorithm

1 Algorithm: 3 $\operatorname{acnf}(\phi)$

Input : A formula ϕ .

Output: A formula ψ in CNF satisfiability preserving to ϕ .

- 2 whilerule (ElimTB1(ϕ),...,ElimTB12(ϕ)) do ;
- **3** SimpleRenaming(ϕ) on obvious positions;
- 4 whilerule (ElimEquiv1(ϕ),ElimEquiv2(ϕ)) do ;
- 5 whilerule (ElimImp (ϕ)) do ;
- 6 whilerule (PushNeg1(ϕ),...,PushNeg3(ϕ)) do ;
- 7 whilerule (PushDisj(ϕ)) do ;

8 return ϕ ;

Propositional Resolution

The propositional resolution calculus operates on a set of clauses and tests unsatisfiability.

Recall that for clauses I switch between the notation as a disjunction, e.g., $P \lor Q \lor P \lor \neg R$, and the multiset notation, e.g., $\{P, Q, P, \neg R\}$. This makes no difference as we consider \lor in the context of clauses always modulo AC. Note that \bot , the empty disjunction, corresponds to \emptyset , the empty multiset. Clauses are typically denoted by letters *C*, *D*, possibly with subscript.

Resolution Inference Rules

 $\begin{array}{l} \textbf{Resolution} \quad (N \uplus \{C_1 \lor P, C_2 \lor \neg P\}) \Rightarrow_{\mathsf{RES}} \\ (N \cup \{C_1 \lor P, C_2 \lor \neg P\} \cup \{C_1 \lor C_2\}) \end{array}$

Factoring $(N \uplus \{C \lor L \lor L\}) \Rightarrow_{\mathsf{RES}} (N \cup \{C \lor L \lor L\} \cup \{C \lor L\})$

2.6.1 Theorem (Soundness & Completeness)

The resolution calculus is sound and complete: N is unsatisfiable iff $N \Rightarrow_{\mathsf{RES}}^* N'$ and $\bot \in N'$ for some N'

Resolution Reduction Rules

Subsumption $(N \uplus \{C_1, C_2\}) \Rightarrow_{\mathsf{RES}} (N \cup \{C_1\})$ provided $C_1 \subset C_2$

Tautology Deletion $(N \uplus \{C \lor P \lor \neg P\}) \Rightarrow_{\mathsf{RES}} (N)$

Condensation $(N \uplus \{C_1 \lor L \lor L\}) \Rightarrow_{\mathsf{RES}} (N \cup \{C_1 \lor L\})$

 $\begin{aligned} & \textbf{Subsumption Resolution} \quad (N \uplus \{C_1 \lor L, C_2 \lor \text{comp}(L)\}) \Rightarrow_{\text{RES}} \\ & (N \cup \{C_1 \lor L, C_2\}) \\ & \text{where } C_1 \subseteq C_2 \end{aligned}$

2.6.6 Theorem (Resolution Termination)

If reduction rules are preferred over inference rules and no inference rule is applied twice to the same clause(s), then $\Rightarrow_{\sf RES}^+$ is well-founded.

The Overall Picture

Application

System + Problem

System

Algorithm + Implementation

Algorithm

Calculus + Strategy

Calculus

 $\label{eq:logic} \text{Logic} + \text{States} + \text{Rules}$

Logic

Syntax+Semantics

