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2.5.4 Proposition (Renaming Variables)

Let P be a propositional variable not occurring in 1[¢]p.

1. If pol(+, p) = 1, then ¥[¢], is satisfiable if and only if
Y[Plp A (P — ¢) is satisfiable.

2. If pol(, p) = —1, then ¥[¢],, is satisfiable if and only if
Y[Plp A (¢ — P) is satisfiable.

3. If pol(%, p) = 0, then y[¢], is satisfiable if and only if
Y[Plp A (P« ¢) is satisfiable.
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Renaming

SimpleRenaming ¢ =>simpren ®[P1lp,[P2lp, - - - [Pnlp, N
def((b:p'l ) P1) ARTIAN def(¢[P1 ]P1 [P2]P2 e [Pn—1]Pn—17pn7 Pn)

provided {py,...,pn} C pos(¢) and for all i,i + j either p; || p;;, or
pi > pitj and the P; are different and new to ¢

Simple choice: choose {p1, ..., pn} to be all non-literal and
non-negation positions of ¢.
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Renaming Definition

(P —1lp) if pol(y, p) =1
def(w7p7 P) = (¢‘p — P) if pOl(l/},p) =—1
(P« ¢lp) if pol(),p) =0
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Obvious Positions

A smaller set of positions from ¢, called obvious positions, is still
preventing the explosion and given by the rules:

(i) p is an obvious position if ¢|, is an equivalence and there is a
position g < p such that ¢|4 is either an equivalence or
disjunctive in ¢ or

(i) pq is an obvious position if ¢|pq is a conjunctive formula in ¢,
¢|p is a disjunctive formula in ¢ and for all positions r with

p < r < pq the formula ¢|, is not a conjunctive formula.

A formula ¢|, is conjunctive in ¢ if ¢|, is a conjunction and

pol(¢, p) € {0, 1} or ¢|p is a disjunction or implication and
pol(¢, p) € {0, —1}.

Analogously, a formula ¢|, is disjunctive in ¢ if ¢|, is a disjunction
or implication and pol(¢, p) € {0,1} or ¢|, is a conjunction and

pol(¢,p) € {0, —1}.
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Polarity Dependent Equivalence
Elimination

ElimEquivl  x[(¢ < ¥)lo =acnF X[(¢ = ¥) A (¥ — d)lp
provided pol(x, p) € {0,1}

ElimEquiv2  x[(¢ <> ¥)lo =acnF X[(@AY) V (md A —9)]p
provided pol(x, p) = —1
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Extra T, L Elimination Rules

ElimTB7 xl¢ = Llp =acnF X[~9)p
ElimTB8 x[L = dlp =acnF X[Tlp
ElimTB9 xlo — Tlp =acnF X[Tlp
ElimTB10 x[T — 9lp =acNF x[9lp
ElimTB11 xl¢ < Llp =acnF X[~9lp
ElimTB12 x[® < Tlp =acnF x[9lo

where the two rules ElimTB11, ElimTB12 for equivalences are
applied with respect to commutativity of «.
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Advanced CNF Algorithm

Algorithm: 3 acnf(¢)

Input : A formula ¢.

Output: A formula v in CNF satisfiability preserving to ¢.
whilerule (ElimTB1(¢),.. .. ElimTB12(¢)) do ;
SimpleRenaming(¢) on obvious positions;

whilerule (ElimEquiv1(¢),ElimEquiv2(¢)) do ;
whilerule (Elimimp(¢)) do ;

whilerule (PushNeg1(¢),...,PushNeg3(¢)) do ;
whilerule (PushDisj(¢)) do ;

return ¢;
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Propositional Resolution

The propositional resolution calculus operates on a set of clauses
and tests unsatisfiability.

Recall that for clauses | switch between the notation as a
disjunction, e.g., PV QV PV =R, and the multiset notation, e.g.,
{P, Q, P,-R}. This makes no difference as we consider V in the
context of clauses always modulo AC. Note that L, the empty
disjunction, corresponds to (), the empty multiset. Clauses are
typically denoted by letters C, D, possibly with subscript.
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Resolution Inference Rules

Resolution (Nw{CyV P,CoV-P}) =pes
(NU{CyVP,CoVv-P}U{CyV Cs})

Factoring (Nw{CVLVL}) =Res
(Nu{CvLvL}u{CVL})
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2.6.1 Theorem (Soundness & Completeness)

The resolution calculus is sound and complete:
N is unsatisfiable iff N = N' and L € N’ for some N’
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Resolution Reduction Rules

Subsumption (Nw{Cy,Co}) =ges (NU{C1})
provided C; C C,

Tautology Deletion (Nw{CV PV -P}) =pges (N)

Condensation (Nw{CiVLVL}) =res (NU{C;yVL})

Subsumption Resolution (Nw{CyV L,CsVcomp(L)}) =Res
(NU{Cy VL Ca})
where C1 - Cg
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2.6.6 Theorem (Resolution Termination)

If reduction rules are preferred over inference rules and no
inference rule is applied twice to the same clause(s), then =fcq
is well-founded.
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The Overall Picture

Application
System + Problem
System
Algorithm + Implementation
Algorithm
Calculus + Strategy
Calculus
Logic + States + Rules
Logic
Syntax + Semantics
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