
Preliminaries Propositional Logic

2.9.10 Lemma (CDCL Soundness)
In a reasonable CDCL derivation, CDCL can only terminate in
two different types of final states: (M; N; U; k ;>) where M |= N
and (M; N; U; k ;⊥) where N is unsatisfiable.
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2.9.11 Proposition (CDCL Soundness)
The rules of the CDCL algorithm are sound: (i) if CDCL
terminates from (ε; N; ∅; 0;>) in the state (M; N; U; k ;>), then N
is satisfiable, (ii) if CDCL terminates from (ε; N; ∅; 0;>) in the
state (M; N; U; k ;⊥), then N is unsatisfiable.
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2.9.12 Proposition (CDCL Strong Completeness)
The CDCL rule set is complete: for any valuation M with M |= N
there is a reasonable sequence of rule applications generating
(M ′; N; U; k ;>) as a final state, where M and M ′ only differ in the
order of literals.
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2.9.13 Proposition (CDCL Termination)
Assume the algorithm CDCL with all rules except Restart and
Forget is applied using a reasonable strategy. Then it terminates
in a state (M; N; U; k ; D) with D ∈ {>,⊥}.
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The Overall Picture

Application
System + Problem

System
Algorithm + Implementation

Algorithm
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Logic
Syntax + Semantics
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1 Algorithm: 5 CDCL(S)
Input : An initial state (ε; N; ∅; 0;>).
Output: A final state S = (M; N; U; k ;>) or S = (M; N; U; k ;⊥)

2 while (any rule applicable) do

3 ifrule (Conflict(S)) then
4 while (Skip(S) ‖ Resolve(S)) do
5 update VSIDS on resolved literals;
6 update VSIDS on learned clause, Backtrack(S);
7 if (forget heuristic) then
8 Forget(S), Restart(S);
9 else

10 if (restart heuristic) then
11 Restart(S);
12 else
13 ifrule (! Propagate(S)) then
14 Decide(S) literal with max. VSIDS score;
15 return(S);
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Implementation: Data Structures

Propagate (M; N; U; k ;>) ⇒CDCL (MLC∨L; N; U; k ;>)

provided C ∨ L ∈ (N ∪ U), M |= ¬C, and L is undefined in M

Conflict (M; N; U; k ;>) ⇒CDCL (M; N; U; k ; D)

provided D ∈ (N ∪ U) and M |= ¬D
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Implementation

data structures: clauses, trail, and the rules
heuristics: decision literal, forget, restart
space efficiency: forget
quality: restarts
special cases
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Data Structures

Idea: Select two literals from each clause for indexing.

2.10.1 Invariant (2-Watched Literal Indexing)
If one of the watched literals is false and the other watched literal
is not true, then all other literals of the clause are false.
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N = {P ∨ ¬R, P ∨ ¬Q, R ∨Q ∨ P, ¬P ∨ R ∨Q}
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VSIDS: Variable State Independent
Decaying Sum

each propositional variable has a positive score, initially 0
decide the variable with maximal score, remember sign (phase
saving)
increment the score of variables involved in resolution by b
increment the score of variables in learned clauses by b
initially b > 0
at Backtrack set b := c ∗ b where 2 >> c > 1, i.e., bn = cn ∗ b
take care of overflows, i.e., rescale from time to time
sometimes pick a variable randomly
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Forget

fix a limit d on the number of learned clauses
if more than |U| > d start forgetting
remove redundant clauses
sort the learned clauses according to a score
typical elements of the score are clause length, the VSIDS
score, dependency on decisions
remove the k% clauses with minimal score from U
d := d + e for some e, e >> 1
do a Restart
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Restart

after forgetting do a restart
if a unit is learned do a restart
restart often at the beginning of a run
classics: Luby sequence 1, 1, 2, 1, 1, 2, 4, . . .
(u1, v1) := (1,1),
(un+1, vn+1) := ((un &− un) = vn?(un + 1,1) : (un,2 ∗ vn))
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Memory Matters: SPASS-SATT

Forget-Start 800 108800
Restarts 412 369
Conflicts 153640 133403

Decisions 184034 159005
Propagations 17770298 15544812

Time 11 23
Memory 16 41
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Propositional Logic Calculi

1. Tableau: classics, natural from the semantics
2. Resolution: classics, first-order, prepares for CDCL
3. CDCL: current prime calculus for propositional logic
4. Superposition: first-order, prepares for first-order
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