
Preliminaries Propositional Logic

2.9.10 Lemma (CDCL Soundness)
In a reasonable CDCL derivation, CDCL can only terminate in
two different types of final states: (M; N; U; k ;>) where M |= N
and (M; N; U; k ;⊥) where N is unsatisfiable.

November 5, 2020 66/91

Preliminaries Propositional Logic

2.9.11 Proposition (CDCL Soundness)
The rules of the CDCL algorithm are sound: (i) if CDCL
terminates from (ε; N; ∅; 0;>) in the state (M; N; U; k ;>), then N
is satisfiable, (ii) if CDCL terminates from (ε; N; ∅; 0;>) in the
state (M; N; U; k ;⊥), then N is unsatisfiable.

November 5, 2020 67/91

Preliminaries Propositional Logic

2.9.12 Proposition (CDCL Strong Completeness)
The CDCL rule set is complete: for any valuation M with M |= N
there is a reasonable sequence of rule applications generating
(M ′; N; U; k ;>) as a final state, where M and M ′ only differ in the
order of literals.

November 5, 2020 68/91

Preliminaries Propositional Logic

2.9.13 Proposition (CDCL Termination)
Assume the algorithm CDCL with all rules except Restart and
Forget is applied using a reasonable strategy. Then it terminates
in a state (M; N; U; k ; D) with D ∈ {>,⊥}.

November 5, 2020 69/91

Preliminaries Propositional Logic

The Overall Picture

Application
System + Problem

System
Algorithm + Implementation

Algorithm
Calculus + Strategy

Calculus
Logic + States + Rules

Logic
Syntax + Semantics

November 5, 2020 70/91

Preliminaries Propositional Logic

1 Algorithm: 5 CDCL(S)
Input : An initial state (ε; N; ∅; 0;>).
Output: A final state S = (M; N; U; k ;>) or S = (M; N; U; k ;⊥)

2 while (any rule applicable) do

3 ifrule (Conflict(S)) then
4 while (Skip(S) ‖ Resolve(S)) do
5 update VSIDS on resolved literals;
6 update VSIDS on learned clause, Backtrack(S);
7 if (forget heuristic) then
8 Forget(S), Restart(S);
9 else

10 if (restart heuristic) then
11 Restart(S);
12 else
13 ifrule (! Propagate(S)) then
14 Decide(S) literal with max. VSIDS score;
15 return(S);

November 5, 2020 71/91

Preliminaries Propositional Logic

Implementation: Data Structures

Propagate (M; N; U; k ;>) ⇒CDCL (MLC∨L; N; U; k ;>)

provided C ∨ L ∈ (N ∪ U), M |= ¬C, and L is undefined in M

Conflict (M; N; U; k ;>) ⇒CDCL (M; N; U; k ; D)

provided D ∈ (N ∪ U) and M |= ¬D

November 5, 2020 72/91

Preliminaries Propositional Logic

Implementation

data structures: clauses, trail, and the rules
heuristics: decision literal, forget, restart
space efficiency: forget
quality: restarts
special cases

November 5, 2020 73/91

Preliminaries Propositional Logic

Implementation

data structures: clauses, trail, and the rules
heuristics: decision literal, forget, restart
space efficiency: forget
quality: restarts
special cases

November 5, 2020 73/91

Preliminaries Propositional Logic

Implementation

data structures: clauses, trail, and the rules
heuristics: decision literal, forget, restart
space efficiency: forget
quality: restarts
special cases

November 5, 2020 73/91

Preliminaries Propositional Logic

Implementation

data structures: clauses, trail, and the rules
heuristics: decision literal, forget, restart
space efficiency: forget
quality: restarts
special cases

November 5, 2020 73/91

Preliminaries Propositional Logic

Implementation

data structures: clauses, trail, and the rules
heuristics: decision literal, forget, restart
space efficiency: forget
quality: restarts
special cases

November 5, 2020 73/91

Preliminaries Propositional Logic

Data Structures

Idea: Select two literals from each clause for indexing.

2.10.1 Invariant (2-Watched Literal Indexing)
If one of the watched literals is false and the other watched literal
is not true, then all other literals of the clause are false.

November 5, 2020 74/91

Preliminaries Propositional Logic

Data Structures

Idea: Select two literals from each clause for indexing.

2.10.1 Invariant (2-Watched Literal Indexing)
If one of the watched literals is false and the other watched literal
is not true, then all other literals of the clause are false.

November 5, 2020 74/91

Preliminaries Propositional Logic

N = {P ∨ ¬R, P ∨ ¬Q, R ∨Q ∨ P, ¬P ∨ R ∨Q}

P

Q

R

P ¬Q P ¬R¬P R Q

P ¬Q R Q P

P ¬R R Q P ¬P R Q

November 5, 2020 75/91

Preliminaries Propositional Logic

VSIDS: Variable State Independent
Decaying Sum

each propositional variable has a positive score, initially 0
decide the variable with maximal score, remember sign (phase
saving)
increment the score of variables involved in resolution by b
increment the score of variables in learned clauses by b
initially b > 0
at Backtrack set b := c ∗ b where 2 >> c > 1, i.e., bn = cn ∗ b
take care of overflows, i.e., rescale from time to time
sometimes pick a variable randomly

November 5, 2020 76/91

Preliminaries Propositional Logic

VSIDS: Variable State Independent
Decaying Sum

each propositional variable has a positive score, initially 0
decide the variable with maximal score, remember sign (phase
saving)
increment the score of variables involved in resolution by b
increment the score of variables in learned clauses by b
initially b > 0
at Backtrack set b := c ∗ b where 2 >> c > 1, i.e., bn = cn ∗ b
take care of overflows, i.e., rescale from time to time
sometimes pick a variable randomly

November 5, 2020 76/91

Preliminaries Propositional Logic

VSIDS: Variable State Independent
Decaying Sum

each propositional variable has a positive score, initially 0
decide the variable with maximal score, remember sign (phase
saving)
increment the score of variables involved in resolution by b
increment the score of variables in learned clauses by b
initially b > 0
at Backtrack set b := c ∗ b where 2 >> c > 1, i.e., bn = cn ∗ b
take care of overflows, i.e., rescale from time to time
sometimes pick a variable randomly

November 5, 2020 76/91

Preliminaries Propositional Logic

VSIDS: Variable State Independent
Decaying Sum

each propositional variable has a positive score, initially 0
decide the variable with maximal score, remember sign (phase
saving)
increment the score of variables involved in resolution by b
increment the score of variables in learned clauses by b
initially b > 0
at Backtrack set b := c ∗ b where 2 >> c > 1, i.e., bn = cn ∗ b
take care of overflows, i.e., rescale from time to time
sometimes pick a variable randomly

November 5, 2020 76/91

Preliminaries Propositional Logic

VSIDS: Variable State Independent
Decaying Sum

each propositional variable has a positive score, initially 0
decide the variable with maximal score, remember sign (phase
saving)
increment the score of variables involved in resolution by b
increment the score of variables in learned clauses by b
initially b > 0
at Backtrack set b := c ∗ b where 2 >> c > 1, i.e., bn = cn ∗ b
take care of overflows, i.e., rescale from time to time
sometimes pick a variable randomly

November 5, 2020 76/91

Preliminaries Propositional Logic

VSIDS: Variable State Independent
Decaying Sum

each propositional variable has a positive score, initially 0
decide the variable with maximal score, remember sign (phase
saving)
increment the score of variables involved in resolution by b
increment the score of variables in learned clauses by b
initially b > 0
at Backtrack set b := c ∗ b where 2 >> c > 1, i.e., bn = cn ∗ b
take care of overflows, i.e., rescale from time to time
sometimes pick a variable randomly

November 5, 2020 76/91

Preliminaries Propositional Logic

VSIDS: Variable State Independent
Decaying Sum

each propositional variable has a positive score, initially 0
decide the variable with maximal score, remember sign (phase
saving)
increment the score of variables involved in resolution by b
increment the score of variables in learned clauses by b
initially b > 0
at Backtrack set b := c ∗ b where 2 >> c > 1, i.e., bn = cn ∗ b
take care of overflows, i.e., rescale from time to time
sometimes pick a variable randomly

November 5, 2020 76/91

Preliminaries Propositional Logic

VSIDS: Variable State Independent
Decaying Sum

each propositional variable has a positive score, initially 0
decide the variable with maximal score, remember sign (phase
saving)
increment the score of variables involved in resolution by b
increment the score of variables in learned clauses by b
initially b > 0
at Backtrack set b := c ∗ b where 2 >> c > 1, i.e., bn = cn ∗ b
take care of overflows, i.e., rescale from time to time
sometimes pick a variable randomly

November 5, 2020 76/91

Preliminaries Propositional Logic

Forget

fix a limit d on the number of learned clauses
if more than |U| > d start forgetting
remove redundant clauses
sort the learned clauses according to a score
typical elements of the score are clause length, the VSIDS
score, dependency on decisions
remove the k% clauses with minimal score from U
d := d + e for some e, e >> 1
do a Restart

November 5, 2020 77/91

Preliminaries Propositional Logic

Forget

fix a limit d on the number of learned clauses
if more than |U| > d start forgetting
remove redundant clauses
sort the learned clauses according to a score
typical elements of the score are clause length, the VSIDS
score, dependency on decisions
remove the k% clauses with minimal score from U
d := d + e for some e, e >> 1
do a Restart

November 5, 2020 77/91

Preliminaries Propositional Logic

Forget

fix a limit d on the number of learned clauses
if more than |U| > d start forgetting
remove redundant clauses
sort the learned clauses according to a score
typical elements of the score are clause length, the VSIDS
score, dependency on decisions
remove the k% clauses with minimal score from U
d := d + e for some e, e >> 1
do a Restart

November 5, 2020 77/91

Preliminaries Propositional Logic

Forget

fix a limit d on the number of learned clauses
if more than |U| > d start forgetting
remove redundant clauses
sort the learned clauses according to a score
typical elements of the score are clause length, the VSIDS
score, dependency on decisions
remove the k% clauses with minimal score from U
d := d + e for some e, e >> 1
do a Restart

November 5, 2020 77/91

Preliminaries Propositional Logic

Forget

fix a limit d on the number of learned clauses
if more than |U| > d start forgetting
remove redundant clauses
sort the learned clauses according to a score
typical elements of the score are clause length, the VSIDS
score, dependency on decisions
remove the k% clauses with minimal score from U
d := d + e for some e, e >> 1
do a Restart

November 5, 2020 77/91

Preliminaries Propositional Logic

Forget

fix a limit d on the number of learned clauses
if more than |U| > d start forgetting
remove redundant clauses
sort the learned clauses according to a score
typical elements of the score are clause length, the VSIDS
score, dependency on decisions
remove the k% clauses with minimal score from U
d := d + e for some e, e >> 1
do a Restart

November 5, 2020 77/91

Preliminaries Propositional Logic

Forget

fix a limit d on the number of learned clauses
if more than |U| > d start forgetting
remove redundant clauses
sort the learned clauses according to a score
typical elements of the score are clause length, the VSIDS
score, dependency on decisions
remove the k% clauses with minimal score from U
d := d + e for some e, e >> 1
do a Restart

November 5, 2020 77/91

Preliminaries Propositional Logic

Forget

fix a limit d on the number of learned clauses
if more than |U| > d start forgetting
remove redundant clauses
sort the learned clauses according to a score
typical elements of the score are clause length, the VSIDS
score, dependency on decisions
remove the k% clauses with minimal score from U
d := d + e for some e, e >> 1
do a Restart

November 5, 2020 77/91

Preliminaries Propositional Logic

Restart

after forgetting do a restart
if a unit is learned do a restart
restart often at the beginning of a run
classics: Luby sequence 1, 1, 2, 1, 1, 2, 4, . . .
(u1, v1) := (1,1),
(un+1, vn+1) := ((un &− un) = vn?(un + 1,1) : (un,2 ∗ vn))

November 5, 2020 78/91

Preliminaries Propositional Logic

Restart

after forgetting do a restart
if a unit is learned do a restart
restart often at the beginning of a run
classics: Luby sequence 1, 1, 2, 1, 1, 2, 4, . . .
(u1, v1) := (1,1),
(un+1, vn+1) := ((un &− un) = vn?(un + 1,1) : (un,2 ∗ vn))

November 5, 2020 78/91

Preliminaries Propositional Logic

Restart

after forgetting do a restart
if a unit is learned do a restart
restart often at the beginning of a run
classics: Luby sequence 1, 1, 2, 1, 1, 2, 4, . . .
(u1, v1) := (1,1),
(un+1, vn+1) := ((un &− un) = vn?(un + 1,1) : (un,2 ∗ vn))

November 5, 2020 78/91

Preliminaries Propositional Logic

Restart

after forgetting do a restart
if a unit is learned do a restart
restart often at the beginning of a run
classics: Luby sequence 1, 1, 2, 1, 1, 2, 4, . . .
(u1, v1) := (1,1),
(un+1, vn+1) := ((un &− un) = vn?(un + 1,1) : (un,2 ∗ vn))

November 5, 2020 78/91

Preliminaries Propositional Logic

Memory Matters: SPASS-SATT

Forget-Start 800 108800
Restarts 412 369
Conflicts 153640 133403

Decisions 184034 159005
Propagations 17770298 15544812

Time 11 23
Memory 16 41

November 5, 2020 79/91

Preliminaries Propositional Logic

Propositional Logic Calculi

1. Tableau: classics, natural from the semantics
2. Resolution: classics, first-order, prepares for CDCL
3. CDCL: current prime calculus for propositional logic
4. Superposition: first-order, prepares for first-order

November 5, 2020 80/91

