
Preliminaries Propositional Logic

Propositional Superposition

Propositional Superposition refines the propositional resolution
calculus by

(i) ordering and selection restrictions on inferences,
(ii) an abstract redundancy notion,
(iii) the notion of a partial model, based on the ordering for

inference guidance
(iv) a saturation concept.
Important: No implicit Condensation of literals!
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2.7.1 Definition (Clause Ordering)
Let ≺ be a total strict ordering on Σ.

Then ≺ can be lifted to a total ordering on literals by ≺⊆≺L and
P ≺L ¬P and ¬P ≺L Q, ¬P ≺L ¬Q for all P ≺ Q.

The ordering ≺L can be lifted to a total ordering on clauses ≺C by
considering the multiset extension of ≺L for clauses.
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2.7.2 Proposition (Properties of the Clause Ordering)
(i) The orderings on literals and clauses are total and
well-founded.
(ii) Let C and D be clauses with P = atom(max(C)),
Q = atom(max(D)), where max(C) denotes the maximal literal in
C.

(i) If Q ≺L P then D ≺C C.
(ii) If P = Q, P occurs negatively in C but only positively in D,

then D ≺C C.

Eventually, I overload ≺ with ≺L and ≺C .

For a clause set N, I define N≺C = {D ∈ N | D ≺ C}.
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Definition (Abstract Redundancy)
A clause C is redundant with respect to a clause set N if
N≺C |= C.
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2.7.5 Definition (Selection Function)
The selection function sel maps clauses to one of its negative
literals or ⊥.

If sel(C) = ¬P then ¬P is called selected in C.

If sel(C) = ⊥ then no literal in C is selected.
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2.7.6 Definition (Partial Model Construction)
Given a clause set N and an ordering ≺ we can construct a
(partial) Herbrand model NI for N inductively as follows:

NC :=
⋃

D≺C δD

δD :=


{P} if D = D′ ∨ P,P strictly maximal, no literal

selected in D and ND 6|= D
∅ otherwise

NI :=
⋃

C∈N δC

Clauses C with δC 6= ∅ are called productive.
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2.7.7 Proposition (Model Construction Properties)
Some properties of the partial model construction.

(i) For every D with (C ∨ ¬P) ≺ D we have δD 6= {P}.
(ii) If δC = {P} then NC ∪ δC |= C.
(iii) If NC |= D and D ≺ C then for all C′ with C ≺ C′ we have

NC′ |= D and in particular NI |= D.
(iv) There is no clause C with P ∨ P ≺ C such that δC = {P}.
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Superposition Inference Rules

Superposition Left (N ] {C1 ∨ P,C2 ∨ ¬P}) ⇒SUP
(N ∪ {C1 ∨ P,C2 ∨ ¬P} ∪ {C1 ∨ C2})
where (i) P is strictly maximal in C1 ∨ P (ii) no literal in C1 ∨ P is
selected (iii) ¬P is maximal and no literal selected in C2 ∨ ¬P, or
¬P is selected in C2 ∨ ¬P

Factoring (N ] {C ∨ P ∨ P}) ⇒SUP
(N ∪ {C ∨ P ∨ P} ∪ {C ∨ P})
where (i) P is maximal in C ∨ P ∨ P (ii) no literal is selected in
C ∨ P ∨ P
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2.7.8 Definition (Saturation)
A set N of clauses is called saturated up to redundancy, if any
inference from non-redundant clauses in N yields a redundant
clause with respect to N or is already contained in N.
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Superposition Reduction Rules

Subsumption (N ] {C1,C2}) ⇒SUP (N ∪ {C1})
provided C1 ⊂ C2

Tautology Deletion (N ] {C ∨ P ∨ ¬P}) ⇒SUP (N)

Condensation (N ]{C1∨L∨L}) ⇒SUP (N ∪{C1∨L})

Subsumption Resolution (N ] {C1 ∨ L,C2 ∨ comp(L)}) ⇒SUP
(N ∪ {C1 ∨ L,C2})
where C1 ⊆ C2
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2.7.9 Proposition (Reduction Rules)
All clauses removed by Subsumption, Tautology Deletion,
Condensation and Subsumption Resolution are redundant with
respect to the kept or added clauses.

2.7.10 Corollary (Soundness)
Superposition is sound.

2.7.11 Theorem (Completeness)
If N is saturated up to redundancy and ⊥ /∈ N then N is
satisfiable and NI |= N.
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