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First-Order Logic

First-Order logic is a generalization of propositional logic.
Propositional logic can represent propositions, whereas
first-order logic can represent individuals and propositions about
individuals.

For example, in propositional logic from “Socrates is a man” and
“If Socrates is a man then Socrates is mortal” the conclusion
“Socrates is mortal” can be drawn.

In first-order logic this can be represented much more
fine-grained. From “Socrates is a man” and “All man are mortal”
the conclusion “Socrates is mortal” can be drawn.
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3.1.1 Definition (Many-Sorted Signature)

A many-sorted signature ¥ = (S, 2, ) is a triple consisting of
a finite non-empty set S of sort symbols,

a non-empty set Q of operator symbols (also called function
symbols) over S and

a set I of predicate symbols.
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3.1.1 Definition (Many-Sorted Signature Ctd)

Every operator symbol f € Q has a unique sort declaration
f:51 x...x 8, — S, indicating the sorts of arguments (also
called domain sorts) and the range sort of f, respectively, for
some Sy,..., Sy, S € S where n > 0 is called the arity of f, also
denoted with arity(f). An operator symbol f € Q with arity O is
called a constant.

Every predicate symbol P € I1 has a unique sort declaration

P C S x...x Sy. A predicate symbol P € I with arity 0 is called
a propositional variable. For every sort S € S there must be at
least one constant a € Q with range sort S.
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3.1.1 Definition (Many-Sorted Signature Ctd)

In addition to the signature ¥, a variable set X, disjoint from Q is
assumed, so that for every sort S € S there exists a countably
infinite subset of X’ consisting of variables of the sort S. A
variable x of sort S is denoted by xs.
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3.1.2 Definition (Term)

Given a signature © = (S,Q,M), asort S € S and a variable set
X, the set Tg(X, &) of all terms of sort S is recursively defined by
(i) xs € Tg(X, X) if xg € X, (ii) f(t1,..., 1) € Ts(X, X)if f € Qand
f:S1x...x85 = Sandtje Tg(X,X)foreveryic {1,...,n}.

The sort of a term ¢ is denoted by sort(t), i.e., if t € Tg(X, X) then
sort(t) = S. A term not containing a variable is called ground.
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For the sake of simplicity it is often written: T(X, X) for

Uses Ts(X, &), the set of all terms, Tg(X) for the set of all
ground terms of sort S € §, and T(X) for (Jg.s Ts(X), the set of
all ground terms over %.

Note that the sets Tg(X) are all non-empty, because there is at
least one constant for each sort Siin . The sets Tg(%, X)
include infinitely many variables of sort S.
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3.1.3 Definition (Equation, Atom, Literal)

If s,t € Tg(X, X) then s = tis an equation over the signature ¥.
Any equation is an atom (also called atomic formula) as well as
every P(t,...,th) where t; € Tg (X, X) forevery i € {1,...,n}
and P € MM, arity(P) =n, PC S; x ... x Sp.

An atom or its negation of an atom is called a literal.
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Definition (Formulas)

The set FOL(X, X') of many-sorted first-order formulas with
equality over the signature ¥ is defined as follows for formulas
¢, € Fx(X) and a variable x € X:

FOL(Z, X) Comment
1 false
T true
P(ty,...,th),s~t atom
(—9) negation
(¢ o) o€ {A,V,—, <}
VX.¢ universal quantification
Ix.¢ existential quantification
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3.1.5 Definition (Positions)

The set of positions of a term, formula is inductively defined by:

pos(x) ={e}ifxe X
pos(¢) i={e}if o€ {T, 1}
pos(—¢) ={e} U{1p|p € pos(¢)}
pos(¢potp) = {e} U{1p|p € pos(¢)}U{2p | p € pos(v)}
pos(s~ 1) :={efU{1p|p € pos(s)}U{2p|p € pos(t)}
st ShlEy U, {ip | p € pos(t)}
pos(P(t,....t)) ={e} UUiLs{ip| p € pos(t)}
pos(VX ¢) = {e} U{1p| p € pos(®)}
pos(3x.¢) ={e}U{1p|p € pos(¥)}

where o € {A,V,—,<>}and fje T(X, X) forallie {1,...,n}.
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An term t (formula ¢) is said to contain another term s (formula
V) if tlp = s (¢|p = ). Itis called a strict subexpression if p # e.
The term t (formula ¢) is called an immediate subexpression of s
(formula v) if |p| = 1. For terms a subexpression is called a
subterm and for formulas a subformula, respectively.

The size of a term t (formula ¢), written || (|¢|), is the cardinality
of pos(t), i.e., |t| := | pos(t)| (|¢| := | pos(¢)|). The depth of a term,
formula is the maximal length of a position in the term, formula:
depth(f) := max{|p| | p € pos(t)}

(depth(¢) := max{|p| | p € pos(¢)}).
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The set of all variables occurring in a term t (formula ¢) is
denoted by vars(t) (vars(¢)) and formally defined as

vars(t) .= {x € X | x = t|p, p € pos(t)}

(vars(9) := {X € X | X = ¢|p. p € pos(4)}).

A term t (formula ¢) is ground if vars(t) = () (vars(¢) = 0). Note
that vars(Vx.a ~ b) = () where a, b are constants. This is justified
by the fact that the formula does not depend on the quantifier,
see the semantics below. The set of free variables of a formula ¢
(term t) is given by fvars(¢, 0) (fvars(t,?)) and recursively defined
by fvars(11 o 1o, B) := fvars(vy1, B) U fvars(y2, B) where

o€ {A,V,—, <>}, fvars(Vx.4), B) := fvars(y), BU {x}),

fvars(3x.4, B) := fvars(yp, BU {x}), fvars(—, B) := fvars(y, B),
fvars(L, B) := vars(L) \ B (fvars(t, B) := vars(t) \ B.

For fvars(¢, D) | also write fvars(¢).
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In Vx.¢ (3x.¢) the formula ¢ is called the scope of the quantifier.
An occurrence q of a variable x in a formula ¢ (¢|q = x) is called
bound if there is some p < g with ¢|, = Vx.¢' or ¢|p, = Ix.¢'. Any
other occurrence of a variable is called free.

A formula not containing a free occurrence of a variable is called
closed. If {x1,...,Xxn} are the variables freely occurring in a
formula ¢ then Vxq, ..., Xp.¢ and 3xq, ..., Xn.¢ (abbreviations for
VX1.VX2...VXn.¢, IX1.3X2 . . . IXp.¢, respectively) are the universal
and the existential closure of ¢, respectively.
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3.1.7 Definition (Polarity)

The polarity of a subformula ¢ = ¢|p at position p is pol(¢, p)
where pol is recursively defined by

pol(¢p,e) =1
pOl(“QS, 1p) = p0|(¢7p)
pol(¢1 0 ¢2,ip) = pol(¢;, p) if o € {A,V}
pol(¢1 — ¢2,1p) = —pol(¢1,p)
pol(p1 — ¢2,2p) = pol(p2, p)
pol(¢1 < ¢, ip; =0
)
)
)

pol(P(ty,...,th),p) =1
pol(t = s,p) =1
pol(¥x.6,1p) = pol(6, p)
pol(3x.¢,1p) = pol(¢, p)
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Semantics

3.2.1 Definition (X-algebra)

Let X = (S,Q, M) be a signature with set of sorts S, operator set
Q and predicate set I. A X -algebra A, also called

Y -interpretation, is a mapping that assigns (i) a non-empty carrier
set SA to every sort S € S, so that (S;)4 N (Sz)* = 0 for any
distinct sorts Sq, S, € S, (ii) a total function

A (S)A x ... x (Sp)* — (S)™ to every operator f € Q,
arity(f) = nwhere f: S; x ... x S, — S, (iii) a relation

PA C ((S1)A x ... x (Sm)A) to every predicate symbol P < I,
arity(P) = m. (iv) the equality relation becomes

~A={(e, ) | e € U™} where the set U* := [Jg.5(S)" is called
the universe of A.
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A (variable) assignment, also called a valuation for an algebra A
is a function 5 : X — U4 so that 8(x) € S4 for every variable

x € X, where S = sort(x). A modification 3[x — €] of an
assignment 3 at a variable x € X, where e € S4 and S = sort(x),
is the assignment defined as follows:

e ifx=y

Blx = el(y) = B(y) otherwise.
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The homomorphic extension A(3) of 5 onto terms is a mapping
T(X, X) — U4 defined as (i) A(8)(x) = 5(x), where x € X and
(i) AB)(F(tr, . tn)) = Fa(A(B) (), ., A(B)(tn)), where f € Q,
arity(f) = n.

Given aterm t € T(X, X), the value A(5)(t) is called the
interpretation of t under A and 3. If the term t is ground, the
value A(3)(t) does not depend on a particular choice of 3, for
which reason the interpretation of t under A is denoted by A(t).
An algebra A is called term-generated, if every element e of the
universe U 4 of A is the image of some ground term ¢, i.e.,

A(t) = e.
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3.2.2 Definition (Semantics)

An algebra A and an assignment 5 are extended to formulas
¢ € FOL(X, X) by

AB) (L) =0 A(B)(T) =1

AB)(s=1) = 'f A(B)(s) = A(B)( ) else 0

AB)P(t, ... 1) = Tif(AB)(t), ..., A(B)(tn)) € Paelse O

A(B)(=0) = A(B)(¢)

AB) o NY) = mm({A(ﬁ)(¢) A(B)(¥)})

AB) ¢V y) = max({A(B)(), A(B)(¥)})

AB) o =) = max({(1 - A(B)(9)), A(B)(¥)})

A(B)(¢ < ¢) = lf A(B)(¢) = A(B)(¢) then 1 else 0

A(B)(Bxs.9) = TifA(L[x — e])(¢) =1

for some e € SA and 0 otherwise

A(B)(vxs.9) = Tif A(B[x — e])(¢) =1

for all e € S4 and 0 otherwise
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A formula ¢ is called satisfiable by A under g (or valid in A under
B) if A, B = ¢; in this case, ¢ is also called consistent;

satisfiable by A'if A, 5 |= ¢ for some assignment j3;

satisfiable if A, 5 = ¢ for some algebra A and some assignment
B;

valid in A, written A |= ¢, if A, 8 = ¢ for any assignment ; in this
case, A is called a model of ¢;

valid, written = ¢, if A, B |= ¢ for any algebra A and any
assignment j3; in this case, ¢ is also called a tautology;

unsatisfiable if A, B [~ ¢ for any algebra A and any assignment g;
in this case ¢ is also called inconsistent.
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3.2.3 Definition (Congruence)
Let X = (S,Q, M) be a signature and A a X-algebra. A
congruence ~ is an equivalence relation on (S;)A U ... U (Sp)4
such that
1. if a~ bthenthereis an S € S such that a € S#A and b € S4
2. forall a; ~ bj, a;, b € (S;)* and all functions
f:S1x...x8,— Sitholds fA(ay,...,a,) ~ fA(bq,...,bn)
3. for all a; ~ b;, a;, b € (S;)* and all predicates
PC Sy x...xSyitholds (ay,...,an) € PAiff
(by,...,bp) € PA
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Given two formulas ¢ and v, ¢ entails 1), or ) is a consequence
of ¢, written ¢ = v, if for any algebra .4 and assignment 3, if
A, B E ¢then A 5 = .

The formulas ¢ and v are called equivalent, written ¢ H 1, if

¢ Epandy ¢

Two formulas ¢ and v are called equisatisfiable, if ¢ is satisfiable
iff ¢ is satisfiable (not necessarily in the same models).

The notions of “entailment”, “equivalence” and “equisatisfiability”
are naturally extended to sets of formulas, that are treated as
conjunctions of single formulas.
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Clauses are implicitly universally quantified disjunctions of
literals. A clause C is satisfiable by an algebra A if for every
assignment S there is a literal L € C with A, 3 = L.

Note that if C = {L4,..., L} is a ground clause, i.e., every L; is a
ground literal, then A |= C if and only if there is a literal L; in C so
that A = L;. A clause set N is satisfiable iff all clauses C € N are
satisfiable by the same algebra A. Accordingly, if N and M are
two clause sets, N = M iff every model A of N is also a model of
M.
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3.3.1 Definition (Substitution (well-sorted))

A well-sorted substitution is a mapping o : X — T(X, X) so that
1. o(x) # x for only finitely many variables x and
2. sort(x) = sort(c(x)) for every variable x € X'.

The application o(x) of a substitution ¢ to a variable x is often
written in postfix notation as xo. The variable set
dom(c) ;= {x € X | xo # x} is called the domain of o.
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The term set codom(o) := {xo | x € dom(c)} is called the
codomain of o. From the above definition it follows that dom(o) is
finite for any substitution o. The composition of two substitutions
o and 7 is written as a juxtaposition o7, i.e., tor = (to)r.

A substitution o is called idempotent if o = o. A substitution o is
idempotent iff dom (o) N vars(codom(c)) = 0.

Substitutions are often written as sets of pairs
{x1 = t,...,Xn—= ty} if dom(c) = {x1,...,xn} and xjo = {; for

everyie{1,...,n}.
The modification of a substitution o at a variable x is defined as
follows:

t ify=x
a(y) otherwise

b 10 = {
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A substitution ¢ is identified with its extension to formulas and
defined as follows:

1. lo =1,

2. To=T,

3. (f(ty,...,th))o =f(to,..., tho),

4. (P(ty, th))o = P(t10',...,tn0'),

5 (s~ t) (SO’ ~ to),

6. (-¢)o = ~(¢0),

7. (po1p)o = ¢po oo where o € {V, A},

8. (Qx¢)o = Qz(¢po[x — z]) where Q € {V,3}, z and x are of

the same sort and z is a fresh variable.

The result to (¢po) of applying a substitution o to a term t (formula
¢) is called an instance of t (¢).
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The substitution ¢ is called ground if it maps every domain
variable to a ground term, i.e., the codomain of ¢ consists of
ground terms only.

If the application of a substitution o to a term t (formula ¢)
produces a ground term to (a variable-free formula,

vars(¢o) = (), then to (¢0o) is called ground instance of t (¢) and
o is called grounding for t (¢). The set of ground instances of a
clause set N is given by

grd(X,N) = {Co | C € N, is grounding for C} is the set of
ground instances of N.

A substitution o is called a variable renaming if codom(c) C X
and for any x,y € &, if x # y then xo # yo.
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3.3.2 Lemma (Substitutions and Assignments)

Let 5 be an assignment of some interpretation A of a term f and
o a substitution. Then

B(to) = B[x1 = B(x10), ..., Xn = B(Xno)](1)

where dom(o) = {x1,...,Xp}.
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Firstly, we define the classic Herbrand interpretations for formulas
without equality.

3.5.1 Definition (Herbrand Interpretation)
A Herbrand Interpretation (over ¥) is a ¥-algebra # such that
1. 8" .= Tg(X) forevery sort Se S
2. f1:(sq1,...,80) > f(S1,...,8n) where f € Q, arity(f) = n,
S € 8,7“ and f: Sy x ... x S, — S is the sort declaration for f
3. PH C (St x...x S}t) where P € I, arity(P) = m and
P C Sy x...x Sy isthe sort declaration for P
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3.5.2 Lemma (Herbrand Interpretations are Well-Defined)
Every Herbrand Interpretation is a ¥-algebra.
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3.5.3 Proposition (Representing Herbrand Interpretations)

A Herbrand interpretation .A can be uniquely determined by a set
of ground atoms /

(s1,...,8n) € PA iff P(sy,...,8p) €l
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3.5.5 Theorem (Herbrand)

Let N be a finite set of X-clauses. Then N is satisfiable iff N has
a Herbrand model over X iff grd(X, N) has a Herbrand model over
Y.
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