152 CHAPTER 3. FIRST-ORDER LOGIC

3.12 First-Order Ground Superposition

Propositional clauses and ground clauses are essentially the same, as long as
equational atoms are not considered. This section deals only with ground clauses
and recalls mostly the material from Section 2.7 for first-order ground clauses.
The main difference is that the atom ordering is more complicated, see Sec-
tion 3.11. Let N be a possibly infinite set of ground clauses.

Definition 3.12.1 (Ground Clause Ordering). Let < be a strict rewrite order-
ing total on ground terms and ground atoms. Then < can be lifted to a total
ordering <, on literals by its multiset extension <, where a positive literal

3.12. FIRST-ORDER GROUND SUPERPOSITION 153

P(ty,...,t,) is mapped to the multiset {P(¢,...,t,)} and a negative literal
—P(t1,...,t,) to the multiset {P(t1,...,t,), P(t1,...,tn)}. The ordering <,
is further lifted to a total ordering on clauses <¢ by considering the multiset
extension of <, for clauses.

Proposition 3.12.2 (Properties of the Ground Clause Ordering). 1. The or-
derings on literals and clauses are total and well-founded.

2. Let C and D be clauses with P(¢1,...,t,) = atom(max(C)),
Q(s1,--.,8m) = atom(max(D)), where max(C') denotes the maximal lit-
eral in C.

(a) If Q(s1,--.,5m) <r P(t1,...,tn) then D <o C.

(b) If P(t1,...,tn) = Q(S1,---,8m), P(t1,...,tn) occurs negatively in C
but only positively in D, then D <o C.

Eventually, as I did for propositional logic, I overload < with <, and <¢. So
if < is applied to literals it denotes <, if it is applied to clauses, it denotes <¢.
Note that < is a total ordering on literals and clauses as well. For superposition,

inferences are restricted to maximal literals with respect to <. For a clause set
N, I define N*¢ ={De N |D <C}.

Definition 3.12.3 (Abstract Redundancy). A ground clause C' is redundant
with respect to a set of ground clauses N if N=¢ = C.

Tautologies are redundant. Subsumed clauses are redundant if C is strict.
Duplicate clauses are anyway eliminated quietly because the calculus operates
on sets of clauses.

Note that for finite N, and any C' € N redundancy N=¢ = C can
be decided but is as hard as testing unsatisfiability for a clause set
N. So the goal is to invent redundancy notions that can be efficiently

decided and that are useful.

Definition 3.12.4 (Selection Function). The selection function sel maps clauses
to one of its negative literals or L. If sel(C) = = P(t1,...,t,) then =P (t1,...,t,)
is called selected in C. If sel(C) = L then no literal in C is selected.

The selection function is, in addition to the ordering, a further means to
restrict superposition inferences. If a negative literal is selected in a clause, any
superposition inference must be on the selected literal.

Definition 3.12.5 (Partial Model Construction). Given a clause set N, an or-
dering <, and a selection function sel the (partial) model Nz for N is inductively

154 CHAPTER 3. FIRST-ORDER LOGIC

constructed as follows:

Ne¢ = UD<C op

{P(t1,...,tn)} i D=D"VP(t1,...,tn), P(t1,...,t,) strictly
dop = maximal, sel(D) = 1 and Np £ D

0 otherwise
Nz = Ucendc

Clauses C with d¢ # () are called productive.

Proposition 3.12.6 (Properties of the Model Operator). Some properties of
the partial model construction.

—

. For every D with (C'V —P(t1,...,t,)) < D we have dp # {P(t1,...,tn)}.
2. If 6¢ = {P(t1,...,tn)} then No Uédc = C.

3. If No = D and D < C then for all C" with C' < C’ we have Nov = D
and in particular Nz = D.

4. There is no clause C with P(t1,...,t,) V P(t1,...,t,) < C such that
dc ={P(t1,...,tn)}.

Please properly distinguish: N is a set of clauses interpreted as the
conjunction of all clauses. N=¢ is of set of clauses from N strictly
smaller than C with respect to <. Nz, N¢o are Herbrand interpreta-

tions (see Proposition 3.5.3). Nz is the overall (partial) model for N, whereas
N¢ is generated from all clauses from N strictly smaller than C.

Superposition Left (NW{C1VP(t1,...,tn),CaV-P(t1,...,tn)}) =sup
(N U {01 V P(t1, L. ,tn),cg V _|P(t1, - ,tn)} U {Cl V Cg})

where (i) P(t1,...,t,) is strictly maximal in C; V P(t1,...,t,) (ii) no literal in
C1VP(ty,...,t,) isselected (iii) =P(t1, ..., t,) is maximal and no literal selected
in CoV —P(t1,...,tn), or = P(t1,...,t,) is selected in Co V = P(t1,... t,)

Factoring (NW{CV P(ty,...,tn) V P(t1,...,tn)}) =-sup
(NU{CV P(t1,...,tn) V P(t1,...,tn)}U{C V P(t1,...,t4)})
where (i) P(t1,...,t,) is maximal in C'V P(t1,...,t,) V P(t1,...,t,) (il) no
literal is selected in C'V P(ty,...,tn)V P(t1,...,tn)

Note that the superposition factoring rule differs from the resolution factor-
ing rule in that it only applies to positive literals.

Definition 3.12.7 (Saturation). A set N of clauses is called saturated up to
redundancy, if any inference from non-redundant clauses in N yields a redundant
clause with respect to IV or is contained in N.

3.12. FIRST-ORDER GROUND SUPERPOSITION 155

Examples for specific redundancy rules that can be efficiently decided are

Subsumption (NW{C1,Cs}) =sup (NU{C1})
provided C; C Co

;f,a“t‘)“’gy Dele- N w(CV P(t1,....t,) V=P(tr,....tn)}) =sop (N)
1on

Condensation (Nw{C;VLVL}) =sup (NU{C;VL})
Subsumption
Resolution (NW{CyVL,CyV~L}) =sup (NU{C1VL,Ca})

where Cl Q CQ

Proposition 3.12.8 (Completeness of the Reduction Rules). All clauses re-
moved by Subsumption, Tautology Deletion, Condensation and Subsumption
Resolution are redundant with respect to the kept or added clauses.

Theorem 3.12.9 (Completeness). Let N be a, possibly countably infinite, set
of ground clauses. If N is saturated up to redundancy and 1| ¢ N then N is
satisfiable and Nz = N.

Proof. The proof is by contradiction. So I assume: (i) for any clause D derived
by Superposition Left or Factoring from N that D is redundant, i.e., NP |= D,
(ii) L ¢ N and (iii) Nz [~ N. Then there is a minimal, with respect to <, clause
CV L e N such that Nz = CV L and L is a selected literal in C'V L or no literal
in C Vv L is selected and L is maximal. This clause must exist because L ¢ N.

The clause C'V L is not redundant. For otherwise, N<¢Vl |= C' v L and
hence Nz = C'V L, because Nz = N=VE a contradiction.

I distinguish the case L is a positive and no literal selected in C'V L or L
is a negative literal. Firstly, assume L is positive, i.e., L = P(t,...,t,) for
some ground atom P(t1,...,t,). Now if P(t1,...,t,) is strictly maximal in
CV P(ty,...,t,) then actually écyp = {P(t1,...,t,)} and hence Nz = CV P,
a contradiction. So P(t1,...,t,) is not strictly maximal. But then actually C'V
P(t1,...,t,) has the form C{VP(t1,...,t,)VP(t1,...,t,) and Factoring derives
Ci{VP(t1,...,t,) where (C1VP(t1,...,tn)) < (CIVP(t1,...,tn)VP(t1,... tn)).
Now Cy V P(t1,...,t,) is not redundant, strictly smaller than C' V L, we have
CiVP(t1,...,t,) € N and Nz = C{V P(t1,...,t,), a contradiction against the
choice that C'V L is minimal.

Secondly, let us assume L is negative, i.e., L = —P(t1,...,t,) for some
ground atom P(t1,...,t,). Then, since Nz = C V =P(t1,...,t,) we know
P(ty,...,t,) € Nz. So there is a clause D V P(ty,...,t,) € N where
ODVP(ty,.tn) = {P(t1,...,ty)} and P(ty,...,t,) is strictly maximal in D Vv
P(t1,...,ty) and (D V P(t1,...,t,)) < (C'V =P(t1,...,t,)). So Superposition
Left derives C'V D where (C'V D) < (C V =P(t1,...,t,)). The derived clause

156 CHAPTER 3. FIRST-ORDER LOGIC

C V D cannot be redundant, because for otherwise either N=<PVFP(ti:tn) =
DV P(ty,...,t,) or NXCV=Pltrtn) = O =P(ty,...,t,). So CV D € N and
Nz £ CV D, a contradiction against the choice that C'V L is the minimal false
clause. 0

So the proof actually tells us that at any point in time we need only to
consider either a superposition left inference between a minimal false clause and
a productive clause or a factoring inference on a minimal false clause.

Theorem 3.12.10 (Compactness of First-Order Logic). Let N be a, possibly
countably infinite, set of first-order logic ground clauses. Then N is unsatisfiable
iff there is a finite subset N/ C N such that N’ is unsatisfiable.

Proof. If N is unsatisfiable, saturation via superposition generates L. So there
is an i such that N =%;p N’ and L € N’. The clause L is the result of at
most i-many superposition inferences, reductions on clauses {C1,...,Cp,} C N.
Superposition is sound, so {C1, ..., C,} is a finite, unsatisfiable subset of N. O

Corollary 3.12.11 (Compactness of First-Order Logic: Classical). A set N of
clauses is satisfiable iff all finite subsets of IV are satisfiable.

Theorem 3.12.12 (Soundness and Completeness of Ground Superposition). A
first-order -sentence ¢ is valid iff there exists a ground superposition refutation
for grd(%, cnf(—¢)).

Proof. A first-order sentence ¢ is valid iff —¢ is unsatisfiable iff acnf(—¢) is unsat-
isfiable iff grd(%, cnf(—¢)) is unsatisfiable iff superposition provides a refutation
of grd (X, cnf(—¢)). O

Theorem 3.12.13 (Semi-Decidability of First-Order Logic by Ground Super-
position). If a first-order X-sentence ¢ is valid then a ground superposition
refutation can be computed.

Proof. In a fair way enumerate grd(3, acnf(—¢)) and perform superposition in-
ference steps. The enumeration can, e.g., be done by considering Herbrand terms
of increasing size. O

Example 3.12.14 (Ground Superposition). Consider the below clauses 1-4
and superposition refutation with respect a KBO with precedence P = @ >
g > f = c > b > a where the weight function w returns 1 for all signature
symbols. Maximal literals are marked with a *.

L =P(f) V-P(Ie) v Q@) (lnput)
2 P(f{e)) v Q(b) (Input)
3. 2P(g(b,c))" v —Q(b) (Input)
4. P(g(b,c)* (Input)
5. =P(f(0)" v Q) (Cond(1))
6. Q)" v Q) (Sup(5.2))
7. Qb)* (Fact(6))
8 ~QU) (Sup(3,4))
10. L (Sup(8,7))

3.13. FIRST-ORDER SUPERPOSITION 157

Note that clause 5 cannot be derived by Factoring whereas clause 7 can also be
derived by Condensation. Clause 8 is also the result of a Subsumption Resolution
application to clauses 3, 4.

Theorem 3.12.15 (Craig Theorem [24]). Let ¢ and 1 be two propositional
(first-order ground) formulas so that ¢ = 1. Then there exists a formula x
(called the interpolant for ¢ |= 1), so that x contains only propositional variables
(first-order signature symbols) occurring both in ¢ and in ¢ so that ¢ = x and

X E .

Proof. Translate ¢ and —1 into CNF. Let N and M, respectively, denote the
resulting clause set. Choose an atom ordering > for which the propositional
variables that occur in ¢ but not in ¢ are maximal. Saturate N into N* us-
ing =gyp with an empty selection function sel. Then saturate N* U M using
=gup to derive 1. As N* is already saturated, due to the ordering restrictions
only inferences need to be considered where premises, if they are from N*, only
contain symbols that also occur in . The conjunction of these premises is an
interpolant x. The theorem also holds for first-order formulas. For universal for-
mulas the above proof can be easily extended. In the general case, a proof based
on superposition technology is more complicated because of Skolemization. [

