
3.13. FIRST-ORDER SUPERPOSITION 157

3.13 First-Order Superposition

Now the result for ground superposition are lifted to superposition on first-order
clauses with variables, still without equality. The completeness proof of ground
superposition above talks about (strictly) maximal literals of ground clauses.
The non-ground calculus considers those literals that correspond to (strictly)
maximal literals of ground instances.

The used ordering is exactly the ordering of Definition 3.12.1 where clauses
with variables are projected to their ground instances for ordering computations.

Definition 3.13.1 (Maximal Literal). A literal L is called maximal in a clause
C if and only if there exists a grounding substitution σ so that Lσ is maximal
in Cσ, i.e., there is no different L′ ∈ C: Lσ ≺ L′σ. The literal L is called strictly
maximal if there is no different L′ ∈ C such that Lσ � L′σ.

The selection function on ground clauses, Definition 3.12.4, is lifted to first-
order clauses including variables.

Definition 3.13.2 (Selection Function). The selection function sel maps clauses
to one of its negative literals or ⊥. If sel(C) = ¬P (t1, . . . , tn) then ¬P (t1, . . . , tn)
is called selected in C. If sel(C) = ⊥ then no literal in C is selected. Selec-
tion is stable under substitutions: if sel(C) = ¬P (t1, . . . , tn) then sel(Cσ) =
¬P (t1, . . . , tn)σ for any substitution σ.



158 CHAPTER 3. FIRST-ORDER LOGIC

Note that the orderings KBO and LPO cannot be total on atoms with vari-
ables, because they are stable under substitutions. Therefore, maximality can
also be defined on the basis of absence of greater literals. A literal L is called
maximal in a clause C if L 6≺ L′ for all other literals L′ ∈ C. It is called strictly
maximal in a clause C if L 6� L′ for all other literals L′ ∈ C.

Superposition Left (N]{C1∨P (t1, . . . , tn), C2∨¬P (s1, . . . , sn)}) ⇒SUP

(N ∪ {C1 ∨ P (t1, . . . , tn), C2 ∨ ¬P (s1, . . . , sn)} ∪ {(C1 ∨ C2)σ})
where (i) P (t1, . . . , tn)σ is strictly maximal in (C1 ∨ P (t1, . . . , tn))σ (ii) no
literal in C1 ∨ P (t1, . . . , tn) is selected (iii) ¬P (s1, . . . , sn)σ is maximal and
no literal selected in (C2 ∨ ¬P (s1, . . . , sn))σ, or ¬P (s1, . . . , sn)σ is selected in
(C2 ∨ ¬P (s1, . . . , sn))σ (iv) σ is the mgu of P (t1, . . . , tn) and P (s1, . . . , sn)

Factoring (N ] {C ∨ P (t1, . . . , tn) ∨ P (s1, . . . , sn)}) ⇒SUP

(N ∪ {C ∨ P (t1, . . . , tn) ∨ P (s1, . . . , sn)} ∪ {(C ∨ P (t1, . . . , tn))σ})
where (i) P (t1, . . . , tn)σ is maximal in (C ∨ P (t1, . . . , tn) ∨ P (s1, . . . , sn))σ
(ii) no literal is selected in C ∨P (t1, . . . , tn)∨P (s1, . . . , sn) (iii) σ is the mgu of
P (t1, . . . , tn) and P (s1, . . . , sn)

Note that the above inference rules Superposition Left and Factoring are
generalizations of their respective counterparts from the ground superposition
calculus above. Therefore, on ground clauses they coincide. Therefore, we can
safely overload them in the sequel. Please recall that the selection function sel
is stable under substitutions.

Definition 3.13.3 (Abstract Redundancy). A clause C is redundant with
respect to a clause set N if for all ground instances Cσ there are clauses
{C1, . . . , Cn} ⊆ N with ground instances C1τ1, . . . , Cnτn such that Ciτi ≺ Cσ
for all i and C1τ1, . . . , Cnτn |= Cσ.

Definition 3.13.4 (Saturation). A set N of clauses is called saturated up to
redundancy, if any inference from non-redundant clauses in N yields a redundant
clause with respect to N or is contained in N .

In contrast to the ground case, the above abstract notion of redundancy is
not effective, i.e., it is undecidable for some clause C whether it is redundant, in
general. Nevertheless, the concrete ground redundancy notions carry over to the
non-ground case. Note also that a clause C is contained in N modulo renaming
of variables.

Let rdup be a function from clauses to clauses that removes duplicate literals,
i.e., rdup(C) = C ′ where C ′ ⊆ C, C ′ does not contain any duplicate literals,
and for each L ∈ C also L ∈ C ′.

Subsumption (N ] {C1, C2}) ⇒SUP (N ∪ {C1})
provided C1σ ⊂ C2 for some σ

Tautology Dele-
tion

(N ] {C ∨ P (t1, . . . , tn) ∨ ¬P (t1, . . . , tn)}) ⇒SUP (N)



3.13. FIRST-ORDER SUPERPOSITION 159

Condensation (N ]{C1 ∨L∨L′}) ⇒SUP (N ∪{rdup((C1 ∨L∨L′)σ)})
provided Lσ = L′ and rdup((C1 ∨ L ∨ L′)σ) subsumes C1 ∨ L ∨ L′ for some σ

Subsumption
Resolution

(N ] {C1 ∨ L,C2 ∨ L′}) ⇒SUP (N ∪ {C1 ∨ L,C2})

where Lσ = ¬L′ and C1σ ⊆ C2 for some σ

Lemma 3.13.5. All reduction rules are instances of the abstract redundancy
criterion.

Proof. Do it

Lemma 3.13.6 (Subsumption is NP-complete). Subsumption is NP-complete.

Proof. Let C1 subsume C2 with substitution σ Subsumption is in NP because
the size of σ is bounded by the size of C2 and the subset relation can be checked
in time at most quadratic in the size of C1 and C2.

Propositional SAT can be reduced as follows. Assume a 3-SAT clause set
N . Consider a 3-place predicate R and a unary function g and a mapping from
propositional variables P to first order variables xP .

Lemma 3.13.7 (Lifting). Let D∨L and C∨L′ be variable-disjoint clauses and
σ a grounding substitution for C ∨L and D ∨L′. If there is a superposition left
inference

(N ] {(D ∨ L)σ, (C ∨ L′)σ})⇒SUP (N ∪ {(D ∨ L)σ, (C ∨ L′)σ} ∪ {Dσ ∨ Cσ})

and if sel((D ∨ L)σ) = sel((D ∨ L))σ, sel((C ∨ L′)σ) = sel((C ∨ L′))σ , then
there exists a mgu τ such that

(N ] {D ∨ L,C ∨ L′})⇒SUP (N ∪ {D ∨ L,C ∨ L′} ∪ {(D ∨ C)τ}).

Let C ∨L∨L′ be a clause and σ a grounding substitution for C ∨L∨L′. If
there is a factoring inference

(N ] {(C ∨ L ∨ L′)σ})⇒SUP (N ∪ {(C ∨ L ∨ L′)σ} ∪ {(C ∨ L)σ})

and if sel((C ∨ L ∨ L′)σ) = sel((C ∨ L ∨ L′))σ , then there exists a mgu τ such
that

(N ] {C ∨ L ∨ L′})⇒SUP (N ∪ {C ∨ L ∨ L′} ∪ {(C ∨ L)τ})

Note that in the above lemma the clause Dσ∨Cσ is an instance of the clause
(D∨C)τ . The reduction rules cannot be lifted in the same way as the following
example shows.

Example 3.13.8 (First-Order Reductions are not Liftable). Consider the two
clauses P (x) ∨ Q(x), P (g(y)) and grounding substitution {x 7→ g(a), y 7→ a}.
Then P (g(y))σ subsumes (P (x)∨Q(x))σ but P (g(y)) does not subsume P (x)∨
Q(x). For all other reduction rules similar examples can be constructed.



160 CHAPTER 3. FIRST-ORDER LOGIC

Lemma 3.13.9 (Soundness and Completeness). First-Order Superposition is
sound and complete.

Proof. Soundness is obvious. For completeness, Theorem 3.12.12 proves the
ground case. Now by applying Lemma 3.13.7 to this proof it can be lifted to the
first-order level, as argued in the following.

Let N be a an unsatisfiable set of first-order clauses. By Theorem 3.5.5 and
Lemma 3.6.10 there exist a finite unsatisfiable set N ′ of ground instances from
clauses from N such that for each clause Cσ ∈ N ′ there is a clause C ∈ N . Now
ground superposition is complete, Theorem 3.12.12, so there exists a derivation
of the empty clause by ground superposition from N ′: N ′ = N ′0 ⇒SUP . . .⇒SUP

N ′k and ⊥ ∈ N ′k. Now by an inductive argument on the length of the derivation
k this derivation can be lifted to the first-order level. The invariant is: for any
ground clause Cσ ∈ N ′i used in the ground proof, there is a clause C ∈ Ni on
the first-order level. The induction base holds for N and N ′ by construction.
For the induction step Lemma 3.13.7 delivers the result.

There are questions left open by Lemma 3.13.9. It just says that a ground
refutation can be lifted to a first-order refutation. But what about abstract
redundancy, Definition 3.13.3? Can first-order redundant clauses be deleted
without harming completeness? And what about the ground model operator
with respect to clause sets N saturated on the first-order level. Is in this case
grd(Σ, N)I a model? The next two lemmas answer these questions positively.

Lemma 3.13.10 (Redundant Clauses are Obsolete). If a clause set N is unsat-
isfiable, then there is a derivation N ⇒∗SUP N

′ such that ⊥ ∈ N ′ and no clause
in the derivation of ⊥ is redundant.

Proof. If N is unsatisfiable then there is a ground superposition refutation of
grd(Σ, N) such that no ground clause in the refutation is redundant. Now ac-
cording to Lemma 3.13.9 this proof can be lifted to the first-order level. Now
assume some clause C in the first-order proof is redundant that is the lifting of
some clause Cσ from the ground proof with respect to a grounding substitution
σ. The clause C is redundant by Definition 3.13.3 if all its ground instances are,
in particular, Cσ. But this contradicts the fact that the lifted ground proof does
not contain redundant clauses.

Lemma 3.13.11 (Model Property). If N is a saturated clause set and ⊥ 6∈ N
then grd(Σ, N)I |= N .

Proof. As usual we assume that selection on the ground and respective non-
ground clauses is identical. Assume grd(Σ, N)I 6|= N . Then there is a minimal
ground clause Cσ, C 6= ⊥, C ∈ N such that grd(Σ, N)I 6|= Cσ. Note that
Cσ is not redundant as for otherwise grd(Σ, N)I |= Cσ. So grd(Σ, N) is not
saturated. If Cσ is productive, i.e., Cσ = (C ′ ∨ L)σ such that L is positive, Lσ
strictly maximal in (C ′∨L)σ then Lσ ∈ grd(Σ, N)I and hence grd(Σ, N)I |= Cσ
contradicting grd(Σ, N)I 6|= Cσ.



3.13. FIRST-ORDER SUPERPOSITION 161

If Cσ = (C ′∨L∨L′)σ such that L is positive, Lσ maximal in (C ′∨L∨L′)σ
then, because N is saturated, there is a clause (C ′ ∨ L)τ ∈ N such that (C ′ ∨
L)τσ = (C ′ ∨ L)σ. Now (C ′ ∨ L)τ is not redundant, grd(Σ, N)I 6|= (C ′ ∨ L)τ ,
contradicting the minimal choice of Cσ.

If Cσ = (C ′∨L)σ such that L is selected, or negative and maximal then there
is a clause (D′∨L′) ∈ N and grounding substitution ρ, such that L′ρ is a strictly
maximal positive literal in (D′∨L′)ρ, L′ρ ∈ grd(Σ, N)I and L′ρ = ¬Lσ. Again,
since N is saturated, there is variable disjoint clause (C ′ ∨D′)τ ∈ N for some
unifier τ , (C ′ ∨ D′)τσρ ≺ Cσ, and grd(Σ, N)I 6|= (C ′ ∨ D′)τσρ contradicting
the minimal choice of Cσ.

Dynamic stuff: a clause C is called persistent in a derivation N →∗SUP N
′ if

there is some i such that C ∈ Ni for N →i
SUP Ni and for all j > i, N →j

SUP Nj
then C ∈ Nj . A derivation N →∗SUP N ′ is called fair if any two persistent
clauses C, D and any superposition inference C ′ out of the two clauses, there is
an index j such with N →j

SUP Nj →∗SUP N
′ such that C ′ ∈ Nj .

Definition 3.13.12 (Persistent Clause). Let N0 ⇒SUP N1 ⇒SUP . . . be a,
possibly infinite, superposition derivation. A clause C is called persistent in this
derivation if C ∈ Ni for some i and for all j > i also C ∈ Nj .

Definition 3.13.13 (Fair Derivation). A derivation N0 ⇒SUP N1 ⇒SUP . . . is
called fair if for any persistent clause C ∈ Ni where factoring is applicable to
C, there is a j such that the factor of C ′ ∈ Nj or ⊥ ∈ Nj . If {C,D} ⊆ Ni are
persistent clauses such that superposition left is applicable to C, D then the
superposition left result is also in Nj for some j or ⊥ ∈ Nj .

Theorem 3.13.14 (Dynamic Superposition Completeness). If N is unsatisfi-
able and N = N0 ⇒SUP N1 ⇒SUP . . . is a fair derivation, then there is ⊥ ∈ Nj
for some j.

Proof. If N is unsatisfiable, then by Lemma 3.13.9 there is a derivation of ⊥
by superposition. Furthermore, no clause contributing to the derivation of ⊥ is
redundant (Lemma 3.13.10). So all clauses in the derivation of ⊥ are persistent.
The derivation N0 ⇒SUP N1 ⇒SUP . . . is fair, hence ⊥ ∈ Nj for some j.

Lemma 3.13.15. Let red(N) be all clauses that are redundant with respect to
the clauses in N and N , M be clause sets. Then

1. if N ⊆M then red(N) ⊆ red(M)

2. if M ⊆ red(N) then red(N) ⊆ red(N \M)

It follows that redundancy is preserved when, during a theorem proving
process, new clauses are added (or derived) or redundant clauses are deleted.
Furthermore, red(N) may include clauses that are not in N .




