Chapter 4
Equational Logic

From now on First-order Logic is considered with equality. In this chapter, I
investigate properties of a set of unit equations. For a set of unit equations I
write . Full first-order clauses with equality are studied in Chapter 5. I recall
certain definitions from Section 1.6 and Chapter 3.

The main reasoning problem considered in this chapter is given a set of unit
equations E and an additional equation s = ¢, does E |= s & t hold? As usual, all
variables are implicitly universally quantified. The idea is to turn the equations
E into a convergent term rewrite system (TRS) R such that the above problem
can be solved by checking identity of the respective normal forms: s |gr=1t |-
Showing E |= s & t is as difficult as proving validity of any first-order formula,
see Section 3.15.

For example consider the equational ground clauses E = {g(a) =~ b,a = b}
over a signature consisting of the constants a, b and unary function g, all defined
over some unique sort. Then for all algebras A satisfying F, all ground terms
over a, b, and g, are mapped to the same domain element. In particular, it
holds E | g(b) =~ b. Now the idea is to turn F into a convergent term rewrite
system R such that g(b) Jg= b |r. To this end, the equations in E are oriented,
e.g., a first guess might be the TRS Ry = {g(a) — b,a — b}. For Ry we get
9(b) Lro= g(b), b L r,= b, so not the desired result. The TRS Ry is not confluent
an all ground terms, because g(a) — g, b and g(a) =g, g(b), but b and ¢(b)
are Ry normal forms. This problem can be repaired by adding the extra rule
g(b) — band this process is called completion and is studied in this chapter. Now
the extended rewrite system Ry = {g(a) = b,a — b,g(b) — b} is convergent
and ¢(b) g, = b }r,= b. Termination can be shown by using a KBO (or LPO)
with precedence g = a > b. Then the left hand sides of the rules are strictly
larger than the right hand sides. Actually, R; contains some redundancy, even
removing the first rewrite rule g(a) — b from R; does not violate confluence.
Detecting redundant rules is also discussed in this chapter.

Definition 4.0.1 (Equivalence Relation, Congruence Relation). An equivalence
relation ~ on a term set T(3, X) is a reflexive, transitive, symmetric binary
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relation on T'(X, X') such that if s ~ ¢ then sort(s) = sort(¢).

Two terms s and t are called equivalent, if s ~ t.

An equivalence ~ is called a congruence if s ~ t implies u[s] ~ u[t], for all
terms s,t,u € T(X, X). Given a term ¢ € T(3, X), the set of all terms equivalent
to t is called the equivalence class of t by ~, denoted by [t]~ :={¢' € T(X,X) |
t ~th,

If the matter of discussion does not depend on a particular equivalence rela-
tion or it is unambiguously known from the context, [¢] is used instead of [t]..
The above definition is equivalent to Definition 3.2.3.

The set of all equivalence classes in T'(X, X') defined by the equivalence re-
lation is called a quotient by ~, denoted by T(XZ, X)|. = {[t] | t € T(X, X)}.
Let E be a set of equations then ~pg denotes the smallest congruence relation
“containing” E, that is, (I = r) € E implies [ ~g r. The equivalence class [t].
of a term ¢ by the equivalence (congruence) ~pg is usually denoted, for short,
by [t|g. Likewise, T'(X, X)|g is used for the quotient T(X, X)|., of T(X, X) by
the equivalence (congruence) ~g.

4.1 Term Rewrite System

I instantiate the abstract rewrite systems of Section 1.6 with first-order terms.
The main difference is that rewriting takes not only place at the top position of
a term, but also at inner positions.

Definition 4.1.1 (Rewrite Rule, Term Rewrite System). A rewrite rule is an
equation [ ~ r between two terms [ and r so that [ is not a variable and
vars(l) 2 vars(r). A term rewrite system R, or a TRS for short, is a set of
rewrite rules.

Definition 4.1.2 (Rewrite Relation). Let E be a set of (implicitly universally
quantified) equations, i.e., unit clauses containing exactly one positive equation.
The rewrite relation —»gC T(X,X) x T(X, X) is defined by

s —pt iff thereexist (I =) € E,p € pos(s),
and matcher o, so that s|, =lo and t = s[ro],.

Note that in particular for any equation | =~ r € F it holds | —g r, so the
equation can also be written [ — r € E.

Often s = t |g is written to denote that s is a normal form of ¢ with
respect to the rewrite relation — . Notions —>%, —>J1§, —R, <R, etc. are defined
accordingly, see Section 1.6. An instance of the left-hand side of an equation
is called a redex (reducible expression). Contracting a redex means replacing
it with the corresponding instance of the right-hand side of the rule. A term
rewrite system R is called convergent if the rewrite relation — g is confluent
and terminating. A set of equations E or a TRS R is terminating if the rewrite
relation — g or — g has this property. Furthermore, if F is terminating then it
is a TRS. A rewrite system is called right-reduced if for all rewrite rules [ — r
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in R, the term r is irreducible by R. A rewrite system R is called left-reduced
if for all rewrite rules | — r in R, the term [ is irreducible by R\{l — r}. A
rewrite system is called reduced if it is left- and right-reduced.

Lemma 4.1.3 (Left-Reduced TRS). Left-reduced terminating rewrite systems
are convergent. Convergent rewrite systems define unique normal forms.

Lemma 4.1.4 (TRS Termination). A rewrite system R terminates iff there
exists a reduction ordering > so that [ > r, for each rule l — r in R.

4.1.1 E-Algebras

Let E be a set of universally quantified equations. A model A of E is also called
an F-algebra. If E |= V¥ (s = t), i.e., VZ(s ~ t) is valid in all E-algebras, this is
also denoted with s ~p t. The goal is to use the rewrite relation — g to express
the semantic consequence relation syntactically: s ~g t if and only if s <7}, t.
Let E be a set of (well-sorted) equations over T'(X, X) where all variables are
implicitly universally quantified. The following inference system allows to derive
consequences of F:

Reflexivity £ =g EU{t =t}

Symmetry EFW{t=t'} =g FU{t=t}U{t' =t}

Transitivity Ew {t ~ t/,t' = "} =g EU{t~t' ' ~t"}U{t ~ 1"}

Congruence EW {t; = t},....t, ~t,} =g EU{t1 =t,...;tn = ¢,} U
{f(tr,ostn) = [, 1)}

for any function f :sort(t1) x ... x sort(t,) — S for some S
Instance FEw{t=t'} =g FU{t=t'}U{to~to}
for any well-sorted substitution o

Lemma 4.1.5 (Equivalence of <%, and =%). The following properties are
equivalent:

1. sept
2. E =7} s ~tis derivable.

where E =% s & t is an abbreviation for £ =% E' and s~ t € E'.
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Proof. (i)=(ii): s <»g t implies £ =%, s ~ t by induction on the depth of the
position where the rewrite rule is applied; then s <+%; ¢ implies ' =% s =~ t by
induction on the number of rewrite steps in s <7}, ¢.

(ii)=(i): By induction on the size (number of symbols) of the derivation for
E=%s=t. O

Corollary 4.1.6 (Convergence of E). If a set of equations E is convergent then
s ~p tif and only if s <>* ¢ if and only if s =1 |E.

Corollary 4.1.7 (Decidability of ~g). If a set of equations E is finite and
convergent then ~p is decidable.

The above Lemma 4.1.5 shows equivalence of the syntactically defined re-
lations <} and =7%. What is missing, in analogy to Herbrand’s theorem for
first-order logic without equality Theorem 3.5.5, is a semantic characterization
of the relations by a particular algebra.

Definition 4.1.8 (Quotient Algebra). For sets of unit equations this is a
quotient algebra: Let X be a set of variables. For t € T(3,X) let [t] =
{t'! €« T(£,X)) | E =} t =~ t'} be the congruence class of t. Define a
Y-algebra Zpg, called the quotient algebra, technically T'(X, X)/E, as follows:
STe = {[t] | t € Ts(X, X)} for all sorts S and fZ2([t1],..., [ta]) = [f(t1,---,tn)]
for f:sort(ty) x ... x sort(t,) = T € Q for some sort T.

Lemma 4.1.9 (Zg is an E-algebra). Zgp = T(X, X)/F is an E-algebra.

Proof. Firstly, all functions fZ¢ are well-defined: if [t;] = [t}], then
[f(t1, ... tn)] = [f(t},...,t,)]. This follows directly from the Congruence rule
for =*.

Secondly, let Vi ...z, (s &~ t) be an equation in E. Let 8 be an arbitrary
assignment. It has to be shown that Zg(8)(VZ(s =~ t)) = 1, or equivalently, that
Te(y)(s) = Zp(y)(t) for all v = Blz; ~ [t;] | 1 < i < n] with [t;] € sort(x;)T®
Let 0 = {x1 = t1,..., 2 = Lo}, With t; € Tygr(2,) (X, &), then so € Zp(v)(s)
and to € Zg(v)(t). By the Instance rule, E =* so = to is derivable, hence

Ie(1)(s) = [s0] = [to] = T() (D). .

Lemma 4.1.10 (=g is complete). Let A be a countably infinite set of variables;
let s,t € Tg(X,X). If Iy =VZ(s = t), then E =% s~ t is derivable.

Proof. Assume that Zg | VZ(s &~ t), i.e., Zg(B)(VZ(s

To(3)(s) = Zu()(t) for all 7 = Bla; > [t | 1 < ] it [1] stz 7
Choose t; = x;, then [s] = Zg(v)(s) = Ze(y)(t) so B /2 t is derivable
by definition of Zg. O

~ t)) = 1. Consequently,

Theorem 4.1.11 (Birkhoft’s Theorem). Let X be a countably infinite set of
variables, let E be a set of (universally quantified) equations. Then the following
properties are equivalent for all s,t € Tg(X, X):

1. s<pt.
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2. E =} s =t is derivable.
3. s~pt, e, EEVI(s~t).
4. ITp E=VZ(s = t).

Proof. (1.)<(2.): Lemma 4.1.5.
(2.)=(3.): By induction on the size of the derivation for E =* s ~ t.
(3.)=(4.): Obvious, since Zp = T'(X, X)/E is an E-algebra.
(4.)=(2.): Lemma 4.1.10. O

Universal Algebra
TEX)E=T(E,X)/~p =T(X,X)/+7 is called the free E-algebra with
generating set X /~p = {[z] | € X'}: Every mapping ¢ : X'/~ — B for some
E-algebra B can be extended to a homomorphism ¢ : T'(, X)/E — B.
T(%,0)/E=T(3,0)/~p =T(X,0)/+} is called the initial E-algebra.
g ={(s,t) | E |E s~ t} is called the equational theory of E.
L={(s,t) | T(2,0)/E & s ~ t} is called the inductive theory of E.

R

Example 4.1.12. Let E = {Vz(z 4+ 0 =~ z), YaVy(z + s(y) = s(z +y))}. Then
r+y~Ly+a, butr+ydpy+

4.2 Critical Pairs

By Theorem 4.1.11 the semantics of E and <}, coincide. In order to decide
<} we need to turn —}, in a confluent and terminating relation. If <7}, is
terminating then confluence is equivalent to local confluence, see Newman’s
Lemma, Lemma 1.6.6. Local confluence is the following problem for TRS: if
t1 g4 to —E t2, does there exist a term s so that t; =} s g< t27 If the two
rewrite steps happen in different subtrees (disjoint redexes) then a repetition
of the respective other step yields the common term s. If the two rewrite steps
happen below each other (overlap at or below a variable position) again a rep-
etition of the respective other step yields the common term s. If the left-hand
sides of the two rules overlap at a non-variable position there is no obvious way
to generate s.

More technically two rewrite rules [y — r1 and l; — 79 overlap if there exist
some non-variable subterm l1], such that Iy and l1], have a common instance
(l1]p)or = laoa. If the two rewrite rules do not have common variables, then
only a single substitution is necessary, the mgu o of (I1|,) and ls.

Definition 4.2.1 (Critical Pair). Let [; — r; (¢ = 1,2) be two rewrite rules in
a TRS R without common variables, i.e., vars(ly) Nvars(l2) = (). Let p € pos(ly)
be a position so that {1|, is not a variable and o is an mgu of |, and l5. Then
r0 < lio = (l10)[r20]p. (ri0o, (lio)[reo],) is called a critical pair of R. The
critical pair is joinable (or: converges), if ro g (l10)[r20],.
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Recall that vars(l;) D vars(r;) for the two rewrite rules by Definition 4.1.1.
Furthermore, the definition of the rule includes overalaps of a rule with itself.
Such overlaps on top-level are always joinable.

Theorem 4.2.2 (“Critical Pair Theorem”). A TRS R is locally confluent iff
all its critical pairs are joinable.

Proof. (=) Obvious, since joinability of a critical pair is a special case of local
confluence.

(«=) Suppose s rewrites to t; and to using rewrite rules [; — r; € R at positions
p; € pos(s), where ¢ = 1,2. The two rules are variable disjoint, hence s|,, = ;o
and t; = s[r;o]p,. There are two cases to be considered:

1. Either p; and ps are in disjoint subtrees (py || p2) or
2. one is a prefix of the other (w.l.o.g., p1 < po).

Case 1: p1 || p2. Then s = s[ly0]p, [l20]p,, and therefore t1 = s[rio]p, [l20]p,
and to = s[l10]p, [r20]p,- Let to = s[r10]p, [r2o]p,. Then clearly t1 — g to using
12 — 19 and to — R o USil’lg ll — T1.

Case 2: p1 < ps.

Case 2.1: ps = p1¢1q2, where l1]4, is some variable z. In other words, the second
rewrite step takes place at or below a variable in the first rule. Suppose that x
occurs m times in {; and n times in 7y (where m > 1 and n > 0). Then t; =7 to
by applying ls — 79 at all positions p1q’qe, where ¢’ is a position of z in 7.
Conversely, to =% to by applying lo — 72 at all positions p1gge, where ¢ is a
position of z in [; different from ¢;, and by applying l; — r; at p; with the
substitution ¢’, where ¢’ = o[z — (20)[r20]g,].

Case 2.2: py = p1p, where p is a non-variable position of 1. Then s|,, = lao
and s|p, = (s|p,)]p = (l10)|p = (li|p)o, so o is a unifier of Iy and l;|,.Let o’ be
the mgu of Iy and [y |, then 0 = 700’ and (ri0’, (l10”)[r20'],) is a critical pair.
By assumption, it is joinable, so ro’ —} v 7§ (l10”)[r20'],. Consequently,
b = slrioly, = o'y, —% slotly, and ta = slraoly, = s[(h0)raclyly, =
[0 7)[r20" Tyl = sl((110") [r20")) 7y = 5[0 O

Please note that critical pairs between a rule and (a renamed variant of)
itself must be considered, except if the overlap is at the root, i.e., p = €, because
this critical pair always joins.

Corollary 4.2.3. A terminating TRS R is confluent if and only if all its critical
pairs are joinable.

Proof. By the Theorem 4.2.2 and because every locally confluent and terminat-
ing relation — is confluent, Newman’s Lemma, Lemma 1.6.6. O

Corollary 4.2.4. For a finite terminating TRS, confluence is decidable.



