
2.5. NORMAL FORMS 41

standard redundancy elimination rules Tautology Deletion, Condensation, and
Subsumption, see Section 2.6 and Section 2.7, then actually generates ¬Q as the
overall result. Please recall that the above rules apply modulo commutativity of
∨, ∧, e.g., the rule ElimTB1 is both applicable to the formulas φ∧> and >∧φ.

I

The equivalences in Figure 2.1 suggest more potential for simplifi-
cation. For example, the idempotency equivalences (φ ∧ φ) ↔ φ,
(φ∨ φ)↔ φ can be turned into simplification rules by applying them
left to right. However, the way they are stated they can only be applied in
case of identical subformulas. The formula (P ∨ Q) ∧ (Q ∨ P) does this way
not reduce to (Q ∨ P). A solution is to consider identity modulo commuta-
tivity. But then identity modulo commutativity and associativity (AC) as in
((P ∨Q)∨R)∧ (Q∨ (R∨P) is still not detected. On the other hand, in practice,
checking identity modulo AC is often too expensive. An elegant way out of this
situation is to implement AC connectives like ∨ or ∧ with flexible arity, to nor-
malize nested occurrences of the connectives, and finally to sort the arguments
using some total ordering. Applying this to ((P ∨Q) ∨R) ∧ (Q ∨ (R ∨ P) with
ordering R > P > Q the result is (Q ∨ P ∨ R) ∧ (Q ∨ P ∨ R). Now complete
AC simplification is back at the cost of checking for identical subformulas. Note
that in an appropriate implementation, the normalization and ordering process
is only done once at the start and then normalization and argument ordering is
kept as an invariant.

2.5.3 Advanced CNF Transformation

The simple algorithm for CNF transformation Algorithm 2 can be improved in
various ways: (i) more aggressive formula simplification, (ii) renaming, (iii) po-
larity dependant transformations. The before studied Example 2.5.3 serves al-
ready as a nice motivation for (i) and (iii). Firstly, removing > from the formula
¬((P ∨Q)↔ (P → (Q∧>))) first and not in the middle of the algorithm obvi-
ously shortens the overall process. Secondly, if the equivalence is replaced polar-
ity dependant, i.e., using the equivalence (φ↔ ψ)↔ (φ∧ψ)∨(¬φ∧¬ψ) and not
the one used in rule ElimEquiv applied before, a lot of redundancy generated
by ⇒BCNF is prevented. In general, if ψ[φ1 ↔ φ2]p and pol(ψ, p) = −1 then for
CNF transformation the equivalence is replaced by ψ[(φ1 ∧ φ2)∨ (¬φ1 ∧¬φ2)]p
and if pol(ψ, p) = 1 by ψ[(φ1 → φ2) ∧ (φ2 → φ1)]p in ψ.

Item (ii) can be motivated by a formula

P1 ↔ (P2 ↔ (P3 ↔ (. . . (Pn−1 ↔ Pn) . . .)))

where Algorithm 2 generates a CNF with 2n−1 clauses out of this formula. The
way out of this problem is the introduction of additional fresh propositional
variables that rename subformulas. The price to pay is that a renamed formula
is not equivalent to the original formula due to the extra propositional variables,
but satisfiability preserving. A renamed formula for the above formula is

(P1 ↔ (P2 ↔ Q1)) ∧ (Q1 ↔ (P3 ↔ Q2)) ∧ . . .

42 CHAPTER 2. PROPOSITIONAL LOGIC

where the Qi are additional, fresh propositional variables. The number of clauses
of the CNF of this formula is 4(n−1) where each conjunct (Qi ↔ (Pj ↔ Qi+1))
contributes four clauses.

Proposition 2.5.4. Let P be a propositional variable not occurring in ψ[φ]p.

1. If pol(ψ, p) = 1, then ψ[φ]p is satisfiable if and only if ψ[P]p ∧ (P → φ) is
satisfiable.

2. If pol(ψ, p) = −1, then ψ[φ]p is satisfiable if and only if ψ[P]p ∧ (φ→ P)
is satisfiable.

3. If pol(ψ, p) = 0, then ψ[φ]p is satisfiable if and only if ψ[P]p ∧ (P ↔ φ) is
satisfiable.

Proof. Exercise.

So depending on the formula ψ, the position p where the variable P is in-
troduced, the definition of P is given by

def(ψ, p, P) :=

 (P → ψ|p) if pol(ψ, p) = 1
(ψ|p → P) if pol(ψ, p) = −1
(P ↔ ψ|p) if pol(ψ, p) = 0

C

The polarity dependent definition of some predicate P introduces
fewer clauses in case pol(ψ, p) has polarity 1 or -1. Still, even if al-
ways an equivalence is used to define predicates, for a properly cho-

sen renaming the number of eventually generated clauses remains polynomial.
Depending on the afterwards used calculus the former or latter results in a typ-
ically smaller search space. If a calculus relies on an explicitly building a partial
model, e.g., CDCL, Section ?? and Section 2.9, then always defining predicates
via equivalences is to be preferred. It guarantees that once the valuation of all
variables in ψ|p is determined, also the value P is determined by propagation.
If a calculus relies on building inferences in a syntactic way, e.g., Resolution,
Section 2.6 and Section 2.11, then using a polarity dependent definition of P
results in fewer inference opportunities.

For renaming there are several choices which subformula to choose. Ob-
viously, since a formula has only linearly many subformulas, renaming every
subformula works [62, 53]. However, this produces a number of renamings that
do even increase the size of an eventual CNF. For example renaming in ψ[¬φ]p
the subformulas ¬φ and φ at positions p, p1, respectively, produces more clauses
than just renaming one position out of the two. This will be captured below by
the notion of an obvious position. Then, in the following section a renaming
variant is introduced that actually produces smallest CNFs. For all variants,
renaming relies on a set of positions {p1, . . . , pn} that are replaced by fresh
propositional variables.

2.5. NORMAL FORMS 43

SimpleRenaming φ ⇒SimpRen φ[P1]p1 [P2]p2 . . . [Pn]pn ∧ def(φ, p1, P1) ∧
. . . ∧ def(φ[P1]p1 [P2]p2 . . . [Pn−1]pn−1 , pn, Pn)

provided {p1, . . . , pn} ⊂ pos(φ) and for all i, i + j either pi ‖ pi+j or pi > pi+j
and the Pi are different and new to φ

The term φ[P1]p1
[P2]p2

. . . [Pn]pn is evaluated left to right, i.e., a shorthand
for (. . . ((φ[P1]p1

)[P2]p2
) . . . [Pn]pn). Actually, the rule SimpleRenaming does not

provide an effective way to compute the set {p1, . . . , pn} of positions in φ to be
renamed. Where are several choices. Following Plaisted and Greenbaum [53], the
set contains all positions from φ that do not point to a propositional variable or
a negation symbol. In addition, renaming position ε does not make sense because
it would generate the formula P ∧ (P → φ) which results in more clauses than
just φ. Choosing the set of Plaisted and Greenbaum prevents the explosion in
the number of clauses during CNF transformation. But not all renamings are
needed to this end.

A smaller set of positions from φ, called obvious positions, is still preventing
the explosion and given by the rules: (i) p is an obvious position if φ|p is an
equivalence and there is a position q < p such that φ|q is either an equivalence
or disjunctive in φ or (ii) pq is an obvious position, q 6= ε, if φ|pq is a conjunctive
formula in φ, φ|p is a disjunctive formula in φ and for all positions r with
p < r < pq the formula φ|r is not a conjunctive formula.

A formula φ|p is conjunctive in φ if φ|p is a conjunction and pol(φ, p) ∈ {0, 1}
or φ|p is a disjunction or implication and pol(φ, p) ∈ {0,−1}. Analogously,
a formula φ|p is disjunctive in φ if φ|p is a disjunction or implication and
pol(φ, p) ∈ {0, 1} or φ|p is a conjunction and pol(φ, p) ∈ {0,−1}.

Example 2.5.5. Consider as an example the formula

φ = [¬(¬P ∨ (Q ∧R))]→ [P ∨ (¬Q↔ ¬R)] .

Its tree representation as well as the polarity and position of each node is shown
in Figure 2.9. Then the set of obvious positions is

{22, 112}

where 22 is obvious, because φ|22 is an equivalence and φ|2 is disjunctive, case (i)
of the above definition. The position 112 is obvious, because it is conjunctive
and φ|11 is a disjunctive formula, case (ii) of the above definition. Both positions
are also considered by the Plaisted and Greenbaum definition, but they also add
the positions {11, 2} to this set, resulting in the set

{2, 22, 11, 112}.

Then applying SimpleRenaming to φ with respect to obvious positions results
in

[¬(¬P ∨ P1)]→ [P ∨ P2] ∧ (P1 → (Q ∧R)) ∧ (P2 → (¬Q↔ ¬R))

44 CHAPTER 2. PROPOSITIONAL LOGIC

and applying SimpleRenaming with respect to the Plaisted Greenbaum positions
results in

[¬P3]→ [P4] ∧ (P1 → (Q ∧R)) ∧ (P2 → (¬Q↔ ¬R)) ∧
(P3 → (¬P ∨ P1)) ∧ (P4 → (P ∨ P2))

where I applied in both cases a polarity dependent definition of the freshly
introduced propositional variables. A CNF generated by bcnf out of the renamed
formula using obvious positions results in 5 clauses, where the renamed formula
using the Plaisted Greenbaum positions results in 7 clauses.

I

Formulas are naturally implemented by trees in the style of the tree
in Figure 2.9. Every node contains the connective of the respective
subtree and an array with pointers to its children. Optionally, there

is also a back-pointer to the father of a node. Then a subformula at a particular
position can be represented by a pointer to the respective subtree. The polarity
or position of a subformula can either be a stored additionally in each node, or,
if back-pointers are available, it can be efficiently computed by traversing all
nodes up to the root.

The before mentioned polarity dependent transformations for equivalences
are realized by the following two rules:

ElimEquiv1 χ[(φ↔ ψ)]p ⇒ACNF χ[(φ→ ψ) ∧ (ψ → φ)]p

provided pol(χ, p) ∈ {0, 1}

ElimEquiv2 χ[(φ↔ ψ)]p ⇒ACNF χ[(φ ∧ ψ) ∨ (¬φ ∧ ¬ψ)]p

provided pol(χ, p) = −1

Furthermore, the advanced algorithm eliminates > and ⊥ before eliminating
↔ and →. Therefore the respective rules are added:

ElimTB7 χ[φ→ ⊥]p ⇒ACNF χ[¬φ]p
ElimTB8 χ[⊥ → φ]p ⇒ACNF χ[>]p
ElimTB9 χ[φ→ >]p ⇒ACNF χ[>]p
ElimTB10 χ[> → φ]p ⇒ACNF χ[φ]p
ElimTB11 χ[φ↔ ⊥]p ⇒ACNF χ[¬φ]p
ElimTB12 χ[φ↔ >]p ⇒ACNF χ[φ]p

where the two rules ElimTB11, ElimTB12 for equivalences are applied with
respect to commutativity of ↔.

I

For an implementation the Algorithm 3 can be further improved. For
example, once equivalences are eliminated the polarity of each literal
is exactly known. So eliminating implications and pushing negations

inside is not needed. Instead the eventual CNF can be directly constructed from
the formula.

2.5. NORMAL FORMS 45

Algorithm 3: acnf(φ)

Input : A formula φ.
Output: A formula ψ in CNF satisfiability preserving to φ.

1 whilerule (ElimTB1(φ),. . .,ElimTB12(φ)) do ;
2 SimpleRenaming(φ) on obvious positions;
3 whilerule (ElimEquiv1(φ),ElimEquiv2(φ)) do ;
4 whilerule (ElimImp(φ)) do ;
5 whilerule (PushNeg1(φ),. . .,PushNeg3(φ)) do ;
6 whilerule (PushDisj(φ)) do ;
7 return φ;

Proposition 2.5.6 (Models of Renamed Formulas). Let φ be a formula and
φ′ a renamed CNF of φ computed by acnf. Then any (partial) model A of φ′ is
also a model for φ.

Proof. By an inductive argument it is sufficient to consider one renaming appli-
cation, i.e., φ′ = φ[P]p∧def(φ, p, P). There are three cases depending on the po-
larity. (i) if pol(φ, p) = 1 then φ′ = φ[P]p∧P → φ|p. IfA(P) = 1 thenA(φ|p) = 1
and hence A(φ) = 1. The interesting case is A(P) = 0 and A(φ|p) = 1. But
then because pol(φ, p) = 1 also A(φ) = 1 by Lemma 2.2.7. (ii) if pol(φ, p) = −1
the case is symmetric to the previous one. Finally, (iii) if pol(φ, p) = 0 for any
A satisfying φ′ it holds A(φ|p) = A(P) and hence A(φ) = 1.

Note that Proposition 2.5.6 does not hold the other way round. Whenever a
formula is manipulated by introducing fresh symbols, the truth of the original
formula does not depend on the truth of the fresh symbols. For example, consider
the formula

φ ∨ ψ

which is renamed to

φ ∨ P ∧ P → ψ

.
Then any interpretation A with A(φ) = 1 is a model for φ ∨ ψ. It is not

necessarily a model for φ ∨ P ∧ P → ψ. If A(P) = 1 and A(ψ) = 0 it does not
satisfy φ ∨ P ∧ P → ψ.

C

The introduction of fresh symbols typically does not preserve validity
but only satisfiability of formulas. Hence, it is well-suited for refuta-
tional reasoning based on a CNF, but not for equivalence reasoning
based on a DNF. On the other hand renaming is mandatory to prevent a po-
tential explosion of the formula size by normal form transformation. This is
one explanation while typical automated reasoning calculi rely on a CNF. An
alternative would be to develop automated reasoning calculi like resolution or

2.6 Propositional Resolution

The propositional resolution calculus operates on a set of clauses and tests
unsatisfiability. This enables advanced CNF transformation and, in particular,
renaming, see Section 2.5.3. In order to check validity of a formula φ we check
unsatisfiability of the clauses generated from ¬φ.

Recall, see Section 2.1, that for clauses I switch between the notation as a
disjunction, e.g., P ∨Q∨P ∨¬R, and the multiset notation, e.g., {P,Q, P,¬R}.
This makes no difference as we consider ∨ in the context of clauses always
modulo AC. Note that ⊥, the empty disjunction, corresponds to ∅, the empty
multiset. Clauses are typically denoted by letters C, D, possibly with subscript.

52 CHAPTER 2. PROPOSITIONAL LOGIC

The resolution calculus consists of the inference rules Resolution and Fac-
toring. So, if we consider clause sets N as states,] is disjoint union, we get the
inference rules

Resolution (N]{C1∨P,C2∨¬P}) ⇒RES (N∪{C1∨P,C2∨¬P}∪{C1∨C2})

Factoring (N] {C ∨ L ∨ L}) ⇒RES (N ∪ {C ∨ L ∨ L} ∪ {C ∨ L})

Theorem 2.6.1. The resolution calculus is sound and complete:
N is unsatisfiable iff N ⇒∗RES N

′ and ⊥ ∈ N ′ for some N ′

Proof. (⇐) Soundness means for all rules that N |= N ′ where N ′ is the clause
set obtained from N after applying Resolution or Factoring. For Resolution it
is sufficient to show that C1 ∨ P,C2 ∨ ¬P |= C1 ∨ C2. This is obvious by a case
analysis of valuations satisfying C1∨P,C2∨¬P : if P is true in such a valuation
so must be C2, hence C1 ∨ C2. If P is false in some valuation then C1 must
be true and so C1 ∨ C2. Soundness for Factoring is obvious this way because it
simply removes a duplicate literal in the respective clause.

(⇒) The traditional method of proving resolution completeness are semantic
trees. A semantic tree is a binary tree where the edges are labeled with literals
such that: (i) edges of children of the same parent are labeled with L and
comp(L), (ii) any node has either no or two children, and (iii) for any path from
the root to a leaf, each propositional variable occurs at most once. Therefore,
each path corresponds to a partial valuation. Now for an unsatisfiable clause
set N there is a finite semantic tree such that for each leaf of the tree there is
a clause from N that is false with respect to the partial valuation at that leaf.
By structural induction on the size of the tree we prove completeness. If the
tree consists of the root node, then ⊥ ∈ N . Now consider two sister leaves of
the same parent of this tree, where the edges are labeled with L and comp(L),
respectively. Let C1 and C2 be the two false clauses at the respective leaves. If
some Ci does neither contain L or comp(L) then Ci is also false at the parent,
finishing the case. So assume both C1 and C2 contain L or comp(L): C1 = C ′1∨L
and C2 = C ′2 ∨ ¬L. If C1 (or C2) contains further occurrences of L (or C2 of
comp(L)), then the rule Factoring is applied to eventually remove all additional
occurrences. Therefore, eventually L 6∈ C ′1 and comp(L) 6∈ C ′2. Note that if
some Ci contains both L and comp(L), the clause is a tautology, contradicting
the assumption that Ci is false at its leaf. A resolution step between these two
clauses on L yields C ′1∨C ′2 which is false at the parent of the two leaves, because
the resolvent neither contains L nor comp(L). Furthermore, the resulting tree
is smaller, proving completeness.

2.6. PROPOSITIONAL RESOLUTION 53

TIn the proof of Theorem 2.6.1 it is not required that the semantic
tree for some clause set is minimal. Instead, in case it is not mini-
mal, one of the leaf clauses is simply moved to the parent level and the tree
shrinks. The proof can also be done using minimal semantic trees. A semantic
tree is minimal if no clause can be moved upwards without violating a semantic
tree property. However, this complicates the proof a lot, because after a resolu-
tion step, the resulting semantic tree is not guaranteed to be minimal anymore.
Sometimes minimality assumptions help in proving completeness, see the com-
pleteness proof for propositional superposision, Section 2.7, but sometimes they
complicate proofs a lot.

Example 2.6.2 (Resolution Refutation Showing the Respective Semantic
Tree). Consider the clause set

N0 = {¬P ∨Q, P ∨ ¬Q, ¬P ∨ ¬Q, P ∨Q ∨ S, P ∨Q ∨ ¬S}

and the below sequence of semantic trees and resolution steps. The leaves are
always labeled with clauses that are falsified at the respective partial valuation:

[¬P ∨ ¬Q]

Q

[¬P ∨Q]

¬Q

P

[P ∨ ¬Q]

Q

[P ∨Q ∨ ¬S]

S

[P ∨Q ∨ S]

¬S

¬Q

¬P

The first inference cuts the rightmost branch

1 N0 ⇒RES N0 ∪ {P ∨ P ∨Q ∨Q}

by resolving on literal S. The clause set of the ith inference is always referred
Ni, e.g., the above resulting clause set is N1 = N0 ∪ {P ∨ P ∨ Q ∨ Q}. The
duplicate literals can be eliminated by two factoring steps.

2 N1 ⇒RES N1 ∪ {P ∨Q ∨Q}
3 N2 ⇒RES N2 ∪ {P ∨Q}

and the semantic tree is cut using the clause P ∨Q.

54 CHAPTER 2. PROPOSITIONAL LOGIC

[¬P ∨ ¬Q]

Q

[¬P ∨Q]

¬Q

P

[P ∨ ¬Q]

Q

[P ∨Q]

¬Q

¬P

The next inferences result in cuts to both the left branch and the right branch
by resolving on the respective Q literals and removing resulting duplicate literal
occurrences by Factoring applications.

4 N3 ⇒RES N3 ∪ {¬P ∨ ¬P}
5 N4 ⇒RES N4 ∪ {¬P}
6 N5 ⇒RES N5 ∪ {P ∨ P}
7 N6 ⇒RES N6 ∪ {P}

[¬P]

P

[P]

¬P

Finally, a resolution step between the clauses P and ¬P yields the empty clause
⊥.

[⊥]

Example 2.6.3 (Resolution Completeness). The semantic tree for the clause
set

P ∨Q ∨ S, ¬P ∨Q ∨ S, P ∨ ¬Q ∨ S, ¬P ∨ ¬Q ∨ S,
P ∨Q ∨ ¬S, ¬P ∨Q ∨ ¬S, P ∨ ¬Q ∨ ¬S, ¬P ∨ ¬Q ∨ ¬S

is shown in Figure 2.13.

The resolution calculus is complete just by using Resolution and Factoring.
But the rules always extend a clause set. It gets larger both with respect to
the number of clauses and the overall number of literals. It is practically very
important to keep clause sets small. Therefore, so called reduction rules have
been invented that actually reduce a clause set with respect to the number of
clauses or overall number of literals.

The crucial question is whether adding such rules preserves completeness.
This can become non-obvious. For the resolution calculus, the below rules are
commonly used.

Subsumption (N] {C1, C2}) ⇒RES (N ∪ {C1})

2.6. PROPOSITIONAL RESOLUTION 55

provided C1 ⊂ C2

Tautology Dele-
tion

(N] {C ∨ P ∨ ¬P}) ⇒RES (N)

Condensation (N] {C1 ∨ L ∨ L}) ⇒RES (N ∪ {C1 ∨ L})

Subsumption
Resolution

(N] {C1 ∨L,C2 ∨ comp(L)}) ⇒RES (N ∪ {C1 ∨L,C2})

where C1 ⊆ C2

Note the different nature of inference rules and reduction rules. Resolution
and Factorization only add clauses to the set whereas Subsumption, Tautol-
ogy Deletion and Condensation delete clauses or replace clauses by “simpler”
ones. In the next section, Section 2.7, I will show what “simpler” means. For
the resolution calculus, the semantic tree proof can actually be reformulated
incorporating the four reduction rules, see Exercise ??.

Example 2.6.4 (Refutation by Simplification). Consider the clause set

N = {P ∨Q, P ∨ ¬Q, ¬P ∨Q, ¬P ∨ ¬Q}

that can be deterministically refuted by Subsumption Resolution:

({P ∨Q, P ∨ ¬Q, ¬P ∨Q, ¬P ∨ ¬Q})
⇒SubRes

RES ({P ∨Q, P, ¬P ∨Q, ¬P ∨ ¬Q})
⇒SubRes

RES ({P, ¬P ∨Q, ¬P ∨ ¬Q})
⇒SubRes

RES ({P, Q, ¬P ∨ ¬Q})
⇒SubRes

RES ({P, Q, ¬Q})
⇒SubRes

RES ({P, Q, ⊥})

where I abbreviated the rule Subsumption Resolution by SubRes.

While the above example can be refuted by the rule Subsumption Resolution,
the Resolution rule itself may derive redundant clauses, e.g., a tautology.

({P ∨Q, P ∨ ¬Q, ¬P ∨Q, ¬P ∨ ¬Q})
⇒Resolution

RES ({P ∨Q, P ∨ ¬Q, ¬P ∨Q, ¬P ∨ ¬Q, Q ∨ ¬Q})

For three variables, the respective clause set is

({P ∨Q ∨R, P ∨ ¬Q ∨R, ¬P ∨Q ∨R, ¬P ∨ ¬Q ∨R,
P ∨Q ∨ ¬R, P ∨ ¬Q ∨ ¬R, ¬P ∨Q ∨ ¬R, ¬P ∨ ¬Q ∨ ¬R})

56 CHAPTER 2. PROPOSITIONAL LOGIC

C The above deterministic, linear resolution refutation, Example 2.6.4,
cannot be simulated by the tableau calculus without generating an ex-

ponential overhead, see also the comment on page 37. At first, it looks strange to
have the same rule, namely Factorization and Condensation, both as a reduction
rules and as an inference rule. On the propositional level there is obviously no
difference and it is possible to get rid of one of the two. In Section 3.10 the reso-
lution calculus is lifted to first-order logic. In first-order logic Factorization and
Condensation are actually different, i.e., a Factorization inference is no longer a
Condensation simplification, in general. They are separated here to eventually
obtain the same set of rules propositional and first-order logic. This is needed
for a proper lifting proof of first-order completeness that us actually reduced to
the ground fragment of first-order logic that can be considered as a variant of
propositional logic.

Proposition 2.6.5. The reduction rules Subsumption, Tautology Deletion,
Condensation and Subsumption Resolution are sound.

Proof. This is obvious for Tautology Deletion and Condensation. For Subsump-
tion we have to show that C1 |= C2, because this guarantees that if N ∪ {C1}
has a model, N] {C1, C2} has a model too. So assume A(C1) = 1 for an arbi-
trary A. Then there is some literal L ∈ C1 with A(L) = 1. Since C1 ⊆ C2, also
L ∈ C2 and therefore A(C2) = 1. Subsumption Resolution is the combination
of a Resolution application followed by a Subsumption application.

Theorem 2.6.6 (Resolution Termination). If reduction rules are preferred over
inference rules and no inference rule is applied twice to the same clause(s), then
⇒+

RES is well-founded.

Proof. If reduction rules are preferred over inference rules, then the overall
length if a clause cannot exceed n, where n is the number of variables. Mul-
tiple occurrences of the same literal are removed by rule Condensation, multiple
occurrences of the same variable with different sign result in an application of
rule Tautology Deletion. The number of such clauses can be overestimated by
3n because every variable occurs at most once positively, negatively or not at all
in clause. Hence, there are at most 2n3n different resolution applications.

C

Of course, what needs to be shown is that the strategy employed in
Theorem 2.6.6 is still complete. This is not completely trivial. This
result becomes a particular instance of superposition completeness.

Exercise ?? contains the completeness part when the reduction rules are pre-
ferred over inference rules.

2.7 Propositional Superposition

Superposition was originally developed for first-order logic with equality [8].
Here I introduce its projection to propositional logic. Compared to the resolution

