
Chapter 3

First-Order Logic

First-Order logic is a generalization of propositional logic. Propositional logic
can represent propositions, whereas first-order logic can represent individuals
and propositions about individuals. For example, in propositional logic from
“Socrates is a man” and “If Socrates is a man then Socrates is mortal” the
conclusion “Socrates is mortal” can be drawn. In first-order logic this can be
represented much more fine-grained. From “Socrates is a man” and “All man
are mortal” the conclusion “Socrates is mortal” can be drawn.

This chapter introduces first-order logic with equality. However, all calculi
presented here, namely Tableau and Free-Variable Tableau (Sections 3.6, 3.8),
Resolution (Section 3.10), and Superposition (Section 3.12) are presented only
for its restriction without equality. Purely equational logic and first-order logic
with equality are presented separately in Chapter 4 and Chapter 5, respectively.

3.1 Syntax

Most textbooks introduce first-order logic in an unsorted way. Like in program-
ming languages, sorts support distinguishing “apples from oranges” and there-
fore move part of the reasoning to a more complex syntax of formulas. Many-
sorted logic is a generalization of unsorted first-order logic where the universe
is separated into disjoint sets of objects, called sorts. Functions and predicates
are defined with respect to these sorts in a unique way. The resulting language:
many-sorted first-order logic has a very simple, but already useful sort struc-
ture, sometimes also called type structure. It can distinguish apples from oranges
by providing two different, respective sorts, but it cannot express relationships
between sorts. For example, it cannot express the integers to be a subsort of
the reals, because all sorts are assumed to be disjoint. On the other hand, the
simple many-sorted language comes at no extra cost when considering inference
or simplification rules, whereas more expressive sort languages need extra and
sometimes costly reasoning.

115

116 CHAPTER 3. FIRST-ORDER LOGIC

Definition 3.1.1 (Many-Sorted Signature). A many-sorted signature Σ =
(S,Ω,Π) is a triple consisting of a finite non-empty set S of sort symbols, a
non-empty set Ω of operator symbols (also called function symbols) over S and
a set Π of predicate symbols. Every operator symbol f ∈ Ω has a unique sort
declaration f : S1× . . .×Sn → S, indicating the sorts of arguments (also called
domain sorts) and the range sort of f , respectively, for some S1, . . . , Sn, S ∈ S
where n ≥ 0 is called the arity of f , also denoted with arity(f). An operator
symbol f ∈ Ω with arity 0 is called a constant. Every predicate symbol P ∈ Π
has a unique sort declaration P ⊆ S1 × . . . × Sn. A predicate symbol P ∈ Π
with arity 0 is called a propositional variable. For every sort S ∈ S there must
be at least one constant a ∈ Ω with range sort S.

In addition to the signature Σ, a variable set X , disjoint from Ω is assumed, so
that for every sort S ∈ S there exists a countably infinite subset of X consisting
of variables of the sort S. A variable x of sort S is denoted by xS .

Definition 3.1.2 (Term). Given a signature Σ = (S,Ω,Π), a sort S ∈ S and
a variable set X , the set TS(Σ,X) of all terms of sort S is recursively defined
by (i) xS ∈ TS(Σ,X) if xS ∈ X , (ii) f(t1, . . . , tn) ∈ TS(Σ,X) if f ∈ Ω and
f : S1 × . . .× Sn → S and ti ∈ TSi(Σ,X) for every i ∈ {1, . . . , n}.

The sort of a term t is denoted by sort(t), i.e., if t ∈ TS(Σ,X) then sort(t) =
S. A term not containing a variable is called ground.

For the sake of simplicity it is often written: T (Σ,X) for
⋃
S∈S TS(Σ,X), the

set of all terms, TS(Σ) for the set of all ground terms of sort S ∈ S, and T (Σ)
for
⋃
S∈S TS(Σ), the set of all ground terms over Σ.

A term t is called shallow if t is of the form f(x1, . . . , xn). A term t is called
linear if every variable occurs at most once in t.

Note that the sets TS(Σ) are all non-empty, because there is at least one
constant for each sort S in Σ. The sets TS(Σ,X) include infinitely many variables
of sort S.

Definition 3.1.3 (Equation, Atom, Literal). If s, t ∈ TS(Σ,X) then s ≈ t is an
equation over the signature Σ. Any equation is an atom (also called atomic for-
mula) as well as every P (t1, . . . , tn) where ti ∈ TSi(Σ,X) for every i ∈ {1, . . . , n}
and P ∈ Π, arity(P) = n, P ⊆ S1 × . . . × Sn. An atom or its negation of an
atom is called a literal.

The literal s
.
≈ t denotes either s ≈ t or t ≈ s. A literal is positive if it is an

atom and negative otherwise. A negative equational literal ¬(s ≈ t) is written
as s 6≈ t.

C

Non equational atoms can be transformed into equations: For this a
given signature is extended for every predicate symbol P as follows:
(i) add a distinct sort Bool to S, (ii) introduce a fresh constant true

of the sort Bool to Ω, (iii) for every predicate P , P ⊆ S1 × . . .× Sn add a fresh
function fP : S1, . . . , Sn → Bool to Ω, and (iv) encode every atom P (t1, . . . , tn)
as an equation fP (t1, . . . , tn) ≈ true, see Section 3.4. Definition 3.1.3 implicitly

3.1. SYNTAX 117

overloads the equality symbol for all sorts S. An alternative would be to have a
separate equality symbol for each sort.

Definition 3.1.4 (Formulas). The set FOL(Σ,X) of many-sorted first-order
formulas with equality over the signature Σ is defined as follows for formulas
φ, ψ ∈ FΣ(X) and a variable x ∈ X :

FOL(Σ,X) Comment
⊥ false
> true

P (t1, . . . , tn), s ≈ t atom
(¬φ) negation

(φ ∧ ψ) conjunction
(φ ∨ ψ) disjunction
(φ→ ψ) implication
(φ↔ ψ) equivalence
∀x.φ universal quantification
∃x.φ existential quantification

A consequence of the above definition is that PROP(Σ) ⊆ FOL(Σ′,X) if
the propositional variables of Σ are contained in Σ′ as predicates of arity 0. A
formula not containing a quantifier is called quantifier-free.

Definition 3.1.5 (Positions). It follows from the definitions of terms and for-
mulas that they have a tree-like structure. For referring to a certain subtree,
called subterm or subformula, respectively, sequences of natural numbers are
used, called positions (as introduced in Chapter 2.1.3). The set of positions of
a term, formula is inductively defined by:

pos(x) := {ε} if x ∈ X
pos(φ) := {ε} if φ ∈ {>,⊥}

pos(¬φ) := {ε} ∪ {1p | p ∈ pos(φ)}
pos(φ ◦ ψ) := {ε} ∪ {1p | p ∈ pos(φ)} ∪ {2p | p ∈ pos(ψ)}
pos(s ≈ t) := {ε} ∪ {1p | p ∈ pos(s)} ∪ {2p | p ∈ pos(t)}

pos(f(t1, . . . , tn)) := {ε} ∪
⋃n
i=1{ip | p ∈ pos(ti)}

pos(P (t1, . . . , tn)) := {ε} ∪
⋃n
i=1{ip | p ∈ pos(ti)}

pos(∀x.φ) := {ε} ∪ {1p | p ∈ pos(φ)}
pos(∃x.φ) := {ε} ∪ {1p | p ∈ pos(φ)}

where ◦ ∈ {∧,∨,→,↔} and ti ∈ T (Σ,X) for all i ∈ {1, . . . , n}.

The prefix orders (above, strictly above and parallel), the selection and re-
placement with respect to positions are defined exactly as in Chapter 2.1.3.

An term t (formula φ) is said to contain another term s (formula ψ) if t|p = s
(φ|p = ψ). It is called a strict subexpression if p 6= ε. The term t (formula φ)
is called an immediate subexpression of s (formula ψ) if |p| = 1. For terms a
subexpression is called a subterm and for formulas a subformula, respectively.

The size of a term t (formula φ), written |t| (|φ|), is the cardinality of pos(t),
i.e., |t| := |pos(t)| (|φ| := |pos(φ)|). The depth of a term, formula is the maximal

118 CHAPTER 3. FIRST-ORDER LOGIC

length of a position in the term, formula: depth(t) := max{|p| | p ∈ pos(t)}
(depth(φ) := max{|p| | p ∈ pos(φ)}).

The set of all variables occurring in a term t (formula φ) is denoted by
vars(t) (vars(φ)) and formally defined as vars(t) := {x ∈ X | x = t|p, p ∈ pos(t)}
(vars(φ) := {x ∈ X | x = φ|p, p ∈ pos(φ)}). A term t (formula φ) is
ground if vars(t) = ∅ (vars(φ) = ∅). Note that vars(∀x.a ≈ b) = ∅ where
a, b are constants. This is justified by the fact that the formula does not de-
pend on the quantifier, see the semantics below. The set of free variables of
a formula φ (term t) is given by fvars(φ, ∅) (fvars(t, ∅)) and recursively de-
fined by fvars(ψ1 ◦ ψ2, B) := fvars(ψ1, B) ∪ fvars(ψ2, B) where ◦ ∈ {∧,∨,→
,↔}, fvars(∀x.ψ,B) := fvars(ψ,B ∪ {x}), fvars(∃x.ψ,B) := fvars(ψ,B ∪ {x}),
fvars(¬ψ,B) := fvars(ψ,B), fvars(L,B) := vars(L)\B (fvars(t, B) := vars(t)\B.
For fvars(φ, ∅) I also write fvars(φ).

The function top maps terms to their top symbols, i.e., top(f(t1, . . . , tn)) :=
f and top(x) := x for some variable x.

In ∀x.φ (∃x.φ) the formula φ is called the scope of the quantifier. An oc-
currence q of a variable x in a formula φ (φ|q = x) is called bound if there is
some p < q with φ|p = ∀x.φ′ or φ|p = ∃x.φ′. Any other occurrence of a vari-
able is called free. A formula not containing a free occurrence of a variable is
called closed. If {x1, . . . , xn} are the variables freely occurring in a formula
φ then ∀x1, . . . , xn.φ and ∃x1, . . . , xn.φ (abbreviations for ∀x1.∀x2 . . . ∀xn.φ,
∃x1.∃x2 . . . ∃xn.φ, respectively) are the universal and the existential closure of
φ, respectively.

Example 3.1.6. For the literal ¬P (f(x, g(a))) the atom P (f(x, g(a))) is an
immediate subformula occurring at position 1. The terms x and g(a) are
strict subterms occurring at positions 111 and 112, respectively. The for-
mula ¬P (f(x, g(a)))[b]111 = ¬P (f(b, g(a))) is obtained by replacing x with b.
pos(¬P (f(x, g(a)))) = {ε, 1, 11, 111, 112, 1121} meaning its size is 6, its depth 4
and vars(¬P (f(x, g(a)))) = {x}.

Definition 3.1.7 (Polarity). The polarity of a subformula ψ = φ|p at position
p is pol(φ, p) where pol is recursively defined by

pol(φ, ε) := 1
pol(¬φ, 1p) := −pol(φ, p)

pol(φ1 ◦ φ2, ip) := pol(φi, p) if ◦ ∈ {∧,∨}
pol(φ1 → φ2, 1p) := −pol(φ1, p)
pol(φ1 → φ2, 2p) := pol(φ2, p)
pol(φ1 ↔ φ2, ip) := 0

pol(P (t1, . . . , tn), p) := 1
pol(t ≈ s, p) := 1

pol(∀x.φ, 1p) := pol(φ, p)
pol(∃x.φ, 1p) := pol(φ, p)

3.2. SEMANTICS 119

3.2 Semantics

Definition 3.2.1 (Σ-algebra). Let Σ = (S,Ω,Π) be a signature with set of
sorts S, operator set Ω and predicate set Π. A Σ-algebra A, also called Σ-
interpretation, is a mapping that assigns (i) a non-empty carrier set SA to every
sort S ∈ S, so that (S1)A∩(S2)A = ∅ for any distinct sorts S1, S2 ∈ S, (ii) a total
function fA : (S1)A× . . .×(Sn)A → (S)A to every operator f ∈ Ω, arity(f) = n
where f : S1 × . . . × Sn → S, (iii) a relation PA ⊆ ((S1)A × . . . × (Sm)A) to
every predicate symbol P ∈ Π, arity(P) = m. (iv) the equality relation becomes
≈A= {(e, e) | e ∈ UA} where the set UA :=

⋃
S∈S(S)A is called the universe of

A.

A (variable) assignment, also called a valuation for an algebra A is a function
β : X → UA so that β(x) ∈ SA for every variable x ∈ X , where S = sort(x). A
modification β[x 7→ e] of an assignment β at a variable x ∈ X , where e ∈ SA
and S = sort(x), is the assignment defined as follows:

β[x 7→ e](y) =

{
e if x = y

β(y) otherwise.

Informally speaking, the assignment β[x 7→ e] is identical to β for every variable
except x, which is mapped by β[x 7→ e] to e.

The homomorphic extension A(β) of β onto terms is a mapping T (Σ,X)→
UA defined as (i) A(β)(x) = β(x), where x ∈ X and (ii) A(β)(f(t1, . . . , tn)) =
fA(A(β)(t1), . . . ,A(β)(tn)), where f ∈ Ω, arity(f) = n.

Given a term t ∈ T (Σ,X), the value A(β)(t) is called the interpretation of
t under A and β. If the term t is ground, the value A(β)(t) does not depend
on a particular choice of β, for which reason the interpretation of t under A is
denoted by A(t).

An algebra A is called term-generated, if every element e of the universe UA
of A is the image of some ground term t, i.e., A(t) = e.

Definition 3.2.2 (Semantics). An algebra A and an assignment β are extended
to formulas φ ∈ FOL(Σ,X) by

A(β)(⊥) := 0
A(β)(>) := 1

A(β)(s ≈ t) := 1 if A(β)(s) = A(β)(t) and 0 otherwise
A(β)(P (t1, . . . , tn)) := 1 if (A(β)(t1), . . . ,A(β)(tn)) ∈ PA and 0 otherwise

A(β)(¬φ) := 1−A(β)(φ)
A(β)(φ ∧ ψ) := min({A(β)(φ),A(β)(ψ)})
A(β)(φ ∨ ψ) := max({A(β)(φ),A(β)(ψ)})
A(β)(φ→ ψ) := max({(1−A(β)(φ)),A(β)(ψ)})
A(β)(φ↔ ψ) := if A(β)(φ) = A(β)(ψ) then 1 else 0
A(β)(∃xS .φ) := 1 if A(β[x 7→ e])(φ) = 1 for some e ∈ SA and 0 otherwise
A(β)(∀xS .φ) := 1 if A(β[x 7→ e])(φ) = 1 for all e ∈ SA and 0 otherwise

120 CHAPTER 3. FIRST-ORDER LOGIC

A formula φ is called satisfiable by A under β (or valid in A under β) if
A, β |= φ; in this case, φ is also called consistent ; satisfiable by A if A, β |= φ
for some assignment β; satisfiable if A, β |= φ for some algebra A and some
assignment β; valid in A, written A |= φ, if A, β |= φ for any assignment β; in
this case, A is called a model of φ; valid, written |= φ, if A, β |= φ for any algebra
A and any assignment β; in this case, φ is also called a tautology ; unsatisfiable
if A, β 6|= φ for any algebra A and any assignment β; in this case φ is also called
inconsistent.

Note that ⊥ is inconsistent whereas > is valid. If φ is a sentence that is a
formula not containing a free variable, it is valid in A if and only if it is satisfiable
by A. This means the truth of a sentence does not depend on the choice of an
assignment.

Given two formulas φ and ψ, φ entails ψ, or ψ is a consequence of φ, written
φ |= ψ, if for any algebra A and assignment β, if A, β |= φ then A, β |= ψ. The
formulas φ and ψ are called equivalent, written φ |=| ψ, if φ |= ψ and ψ |= φ. Two
formulas φ and ψ are called equisatisfiable, if φ is satisfiable iff ψ is satisfiable (not
necessarily in the same models). Note that if φ and ψ are equivalent then they
are equisatisfiable, but not the other way around. The notions of “entailment”,
“equivalence” and “equisatisfiability” are naturally extended to sets of formulas,
that are treated as conjunctions of single formulas. Thus, given formula sets M1

and M2, the set M1 entails M2, written M1 |= M2, if for any algebra A and
assignment β, ifA, β |= φ for every φ ∈M1 thenA, β |= ψ for every ψ ∈M2. The
sets M1 and M2 are equivalent, written M1 |=|M2, if M1 |= M2 and M2 |= M1.
Given an arbitrary formula φ and formula set M , M |= φ is written to denote
M |= {φ}; analogously, φ |= M stands for {φ} |= M .

Clauses are implicitly universally quantified disjunctions of literals. A clause
C is satisfiable by an algebra A if for every assignment β there is a literal L ∈ C
with A, β |= L. Note that if C = {L1, . . . , Lk} is a ground clause, i.e., every Li
is a ground literal, then A |= C if and only if there is a literal Lj in C so that
A |= Lj . A clause set N is satisfiable iff all clauses C ∈ N are satisfiable by the
same algebra A. Accordingly, if N and M are two clause sets, N |= M iff every
model A of N is also a model of M .

Definition 3.2.3 (Congruence). Let Σ = (S,Ω,Π) be a signature and A a
Σ-algebra. A congruence ∼ is an equivalence relation on (S1)A ∪ . . . ∪ (Sn)A

such that

1. if a ∼ b then there is an S ∈ S such that a ∈ SA and b ∈ SA

2. for all ai ∼ bi, ai, bi ∈ (Si)
A and all functions f : S1 × . . . × Sn → S it

holds fA(a1, . . . , an) ∼ fA(b1, . . . , bn)

3. for all ai ∼ bi, ai, bi ∈ (Si)
A and all predicates P ⊆ S1 × . . .× Sn it holds

(a1, . . . , an) ∈ PA iff (b1, . . . , bn) ∈ PA

The first condition guarantees that a congruence ∼ respects the disjoint sort
structure. The second requires compatibility with function applications and the
third compatibility with predicate definitions. Actually, for any Σ-algebra A the

3.3. SUBSTITUTIONS 121

interpretation of equality ≈A is a congruence, Exercise ??. Further on in this
chapter I will also show that the other way round can hold as well: given a
suitable congruence on some set, the equivalence classes of the congruence can
then serve as the domain of a Σ-algebra providing a suitable interpretation for
equality.

3.3 Substitutions

For a concrete propositional logic interpretation, it is sufficient select a valuation,
i.e., truth values for the propositional variables, see Section 2.2. In first-order
logic this becomes more versatile. The truth values for propositional variables
correspond to n-ary relations on the domain with respect to valuations for the
first-order variables, see Section 3.2. So in addition to the 0-relations for propo-
sitional variables, n-ary relations need to be considered under an assignment
β for the first-order variables. When calculi for propositional logic considered
partial interpretations, e.g., Tableau (Section 2.4) or CDCL (Section ??)), they
are presented by sets of propositional literals taken from the processed clause
set. For first-order logic this corresponds to taking first-order literals from the
clause set and then instantiating the variables in these literals with terms in
order to detect conflicts or for propagation. For example, a first-order clause
¬P (x) ∨ T (x) with universally quantified x propagates the literal T (f(y)) un-
der the partial interpretation P (f(y)) where x is instantiated with f(y). This
instantiation is the syntactic counterpart of an assignment and represented by
substitutions represented below.

Definition 3.3.1 (Substitution (well-sorted)). A well-sorted substitution is a
mapping σ : X → T (Σ,X) so that

1. σ(x) 6= x for only finitely many variables x and

2. sort(x) = sort(σ(x)) for every variable x ∈ X .

The application σ(x) of a substitution σ to a variable x is often written in
postfix notation as xσ. The variable set dom(σ) := {x ∈ X | xσ 6= x} is called
the domain of σ. The term set codom(σ) := {xσ | x ∈ dom(σ)} is called the
codomain of σ. From the above definition it follows that dom(σ) is finite for
any substitution σ. The composition of two substitutions σ and τ is written as
a juxtaposition στ , i.e., tστ = (tσ)τ . A substitution σ is more general than a
substitution τ if there is a substitution δ such that σδ = τ and we write σ ≤ τ .
A substitution σ is called idempotent if σσ = σ. A substitution σ is idempotent
iff dom(σ) ∩ vars(codom(σ)) = ∅.

Substitutions are often written as sets of pairs {x1 7→ t1, . . . , xn 7→ tn} if
dom(σ) = {x1, . . . , xn} and xiσ = ti for every i ∈ {1, . . . , n}. The modification
of a substitution σ at a variable x is defined as follows:

σ[x 7→ t](y) =

{
t if y = x
σ(y) otherwise

122 CHAPTER 3. FIRST-ORDER LOGIC

A substitution σ is identified with its extension to formulas and defined as
follows:

1. ⊥σ = ⊥,

2. >σ = >,

3. (f(t1, . . . , tn))σ = f(t1σ, . . . , tnσ),

4. (P (t1, . . . , tn))σ = P (t1σ, . . . , tnσ),

5. (s ≈ t)σ = (sσ ≈ tσ),

6. (¬φ)σ = ¬(φσ),

7. (φ ◦ ψ)σ = φσ ◦ ψσ where ◦ ∈ {∨,∧},

8. (Qxφ)σ = Qz(φσ[x 7→ z]) where Q ∈ {∀,∃}, z and x are of the same sort
and z is a fresh variable.

The result tσ (φσ) of applying a substitution σ to a term t (formula φ)
is called an instance of t (φ). The substitution σ is called ground if it maps
every domain variable to a ground term, i.e., the codomain of σ consists of
ground terms only. If the application of a substitution σ to a term t (formula
φ) produces a ground term tσ (a variable-free formula, vars(φσ) = ∅), then tσ
(φσ) is called ground instance of t (φ) and σ is called grounding for t (φ). The
set of ground instances of a clause set N is given by grd(Σ, N) = {Cσ | C ∈
N, σ is grounding for C} is the set of ground instances of N . A substitution σ
is called a variable renaming if codom(σ) ⊆ X and for any x, y ∈ X , if x 6= y
then xσ 6= yσ, i.e., σ is a bijection X into X .

The following lemma establishes the relationship between substitutions and
assignments.

Lemma 3.3.2 (Substitutions and Assignments). Let β be an assignment of
some interpretation A of a term t and σ a substitution. Then

β(tσ) = β[x1 7→ β(x1σ), . . . , xn 7→ β(xnσ)](t)

where dom(σ) = {x1, . . . , xn}.
Proof. By structural induction on t. If t = a is a constant, then β(aσ) = aA =
β[x1 7→ β(x1σ), . . . , xn 7→ β(xnσ)](a). The case t = x is a variable and x /∈
dom(σ) is identical to the case that t is a constant. So t = xi is a variable
and xi ∈ dom(σ), where xiσ = s. If s is a variable, then β(tσ) = β(xiσ) =
β(s) = β[xi 7→ β(s)](xi) = β[x1 7→ β(x1σ), . . . , xn 7→ β(xnσ)](t). The case
s is a constant is analogous to the case t is a constant. So let xiσ = s =
f(s1, . . . , sm). β(xiσ) = β(f(s1, . . . , sm)) = fA(β(s1), . . . , β(sm)) = β[xi 7→
f(s1, . . . , sm)](xi) = β[x1 7→ β(x1σ), . . . , xn 7→ β(xnσ)](t).
For the inductive case let t = f(t1, . . . , tm). Then β(tσ) = fA(β(t1σ), . . . , β(tmσ)) =
fA(β[x1 7→ β(x1σ), . . . , xn 7→ β(xnσ)](t1), . . . , β[x1 7→ β(x1σ), . . . , xn 7→
β(xnσ)](tm)) = β[x1 7→ β(x1σ), . . . , xn 7→ β(xnσ)](t).

