
234 CHAPTER 6. DECIDABLE LOGICS

6.2.2 Simplex

The Simplex algorithm is the prime algorithm for solving optimization problems
of systems of linear inequations [59] over the rationals. For automated reasoning
optimization at the level of conjunctions of inequations is not in focus. Rather,
solvability of a set of linear inequations as a subproblem of some theory combi-
nation is the typical application. In this context the simplex algorithm is useful
as well, due to its incremental nature. If an inequation t ◦ c, ◦ ∈ {≤,≥, <,>},
t =

∑
aixi, ai, c ∈ Q, is added to a set N of inequations where the simplex

algorithm has already found a solution for N , the algorithm needs not to start
from scratch. Instead it continues with the solution found for N . In practice, it
turns out that then typically only few steps are needed to derive a solution for
N ∪ {t ◦ d} if it exists.

The simplex algorithm introduced in this section is a simplified version of
the classical dual simplex used for solving optimization problems.

First, I show the case for non-strict inequations. Starting point is a set N
(conjunction) of (non-strict) inequations of the form (

∑
xj∈X ai,jxj) ◦i ci where

◦i ∈ {≥,≤} for all i. Note that an equation
∑
aixi = c can be encoded by two

inequations {
∑
aixi ≤ c,

∑
aixi ≥ c}.

The variables occurring in N are assumed to be totally ordered by some
ordering ≺. The ordering ≺ will eventually guarantee termination of the simplex
algorithm, see Definition 6.2.10 and Theorem 6.2.11 below. I assume the xj
to be all different, without loss of generality xj ≺ xj+1, and I assume that
all coefficients are normalized by the gcd of the ai,j for all j: if the gcd is
different from 1 for one inequation, it is used for division of all coefficients of
the inequation.

6.2. LINEAR ARITHMETIC 235

The goal is to decide whether there exists an assignment β from the xj into Q
such that LRA(β) |=

∧
i[(
∑
xj∈X ai,jxj) ◦i ci], or equivalently, LRA(β) |= N . So

the xj are free variables, i.e., placeholders for concrete values, i.e., existentially
quantified.

The first step is to transform the set N of inequations into two disjoint sets
E, B of equations and simple bounds, respectively. The set E contains equations
of the form yi ≈

∑
xj∈X ai,jxj , where the yi are fresh and the set B contains

the respective simple bounds yi ◦i ci. In case the original inequation from N was
already a simple bound, i.e., of the form xj ◦j cj it is simply moved to B. If in
N left hand sides of inequations (

∑
xj∈X ai,jxj) ◦i ci are shared, it is sufficient

to introduce one equation for the respective left hand side. The yi are also part
of the total ordering ≺ on all variables. Clearly, for any assignment β and its
respective extension on the yi, the two representations are equivalent:

LRA(β) |= N

iff

LRA(β[yi 7→ β(
∑
xj∈X ai,jxj)]) |= E

and

LRA(β[yi 7→ β(
∑
xj∈X ai,jxj)]) |= B.

Given E and B a variable z is called dependent if it occurs on the left hand
side of an equation in E, i.e., there is an equation (z ≈

∑
xj∈X ai,jxj) ∈ E, and

in case such a defining equation for z does not exist in E the variable z is called
independent. Note that by construction the initial yi are all dependent and do
not occur on the right hand side of an equation.

Given a dependant variable x, an independent variable y, and a set of equa-
tions E, the pivot operation exchanges the roles of x, y in E where y occurs
with non-zero coefficient in the defining equation of x. Let (x ≈ ay + t) ∈ E be
the defining equation of x in E. When writing (x ≈ ay + t) for some equation,
I always assume that y 6∈ vars(t). Let E′ be E without the defining equation of
x. Then

piv(E, x, y) := {y ≈ 1

a
x+

1

−a
t} ∪ E′{y 7→ (

1

a
x+

1

−a
t)}.

Given an assignment β, an independent variable y, a rational value c, and a
set of equations E then the update of β with respect to y, c, and E is

upd(β, y, c, E) := β[y 7→ c, {x 7→ β[y 7→ c](t) | x ≈ t ∈ E}].

A Simplex problem state is a quintuple (E;B;β;S; s) where E is a set of
equations; B a set of simple bounds; β an assignment to all variables in E, B; S a
set of derived bounds, and s the status of the problem with s ∈ {>, IV,DV,⊥}.
The state s = > indicates that LRA(β) |= S; the state s = IV that potentially

236 CHAPTER 6. DECIDABLE LOGICS

LRA(β) 6|= x ◦ c for some independent variable x, x ◦ c ∈ S; the state s = DV
that LRA(β) |= x ◦ c for all independent variables x, x ◦ c ∈ S, but potentially
LRA(β) 6|= x′ ◦ c′ for some dependent variable x′, x′ ◦ c′ ∈ S; and the state
s = ⊥ that the problem is unsatisfiable. In particular, the following states can
be distinguished:

(E;B;β0; ∅;>) is the start state for N and its transformation into E,
B, and assignment β0(x) := 0 for all x ∈ vars(E∪B)

(E; ∅;β;S;>) is a final state, where LRA(β) |= E ∪ S and hence
the problem is solvable

(E;B;β;S;⊥) is a final state, where E ∪B ∪ S has no model

Important invariants of the simplex rules are: (i) for every dependent variable
there is exactly one equation in E defining the variable and (ii) dependent
variables do not occur on the right hand side of an equation, (iii) LRA(β) |= E.
These invariants are maintained by a pivot (piv) or an update (upd) operation.
Here are the rules:

EstablishBound (E;B] {x ◦ c};β;S;>) ⇒SIMP (E;B;β;S ∪ {x ◦ c}; IV)

AckBounds (E;B;β;S; s) ⇒SIMP (E;B;β;S;>)

if LRA(β) |= S, s ∈ {IV,DV}

FixIndepVar (E;B;β;S; IV) ⇒SIMP (E;B; upd(β, x, c, E);S; IV)

if (x ◦ c) ∈ S, LRA(β) 6|= x ◦ c, x independent

AckIndepBound (E;B;β;S; IV) ⇒SIMP (E;B;β;S; DV)

if LRA(β) |= x ◦ c, for all independent variables x with bounds x ◦ c in S

FixDepVar≤ (E;B;β;S; DV) ⇒SIMP (E′;B; upd(β, x, c, E′);S; DV)

if (x ≤ c) ∈ S, x dependent, LRA(β) 6|= x ≤ c, there is an independent variable
y and equation (x ≈ ay+t) ∈ E where (a < 0 and β(y) < c′ for all (y ≤ c′) ∈ S)
or (a > 0 and β(y) > c′ for all (y ≥ c′) ∈ S) and E′ := piv(E, x, y)

FixDepVar≥ (E;B;β;S; DV) ⇒SIMP (E′;B; upd(β, x, c, E′);S; DV)

if (x ≥ c) ∈ S, x dependent, LRA(β) 6|= x ≥ c, there is an independent variable
y and equation (x ≈ ay+t) ∈ E where (a > 0 and β(y) < c′ for all (y ≤ c′) ∈ S)
or (a < 0 and β(y) > c′ for all (y ≥ c′) ∈ S) and E′ := piv(E, x, y)

FailBounds (E;B;β;S;>) ⇒SIMP (E;B;β;S;⊥)

if there are two contradicting bounds x ≤ c1 and x ≥ c2 in B ∪ S for some
variable x

FailDepVar≤ (E;B;β;S; DV) ⇒SIMP (E;B;β;S;⊥)

6.2. LINEAR ARITHMETIC 237

if (x ≤ c) ∈ S, x dependent, LRA(β) 6|= x ≤ c and there is no independent
variable y and equation (x ≈ ay + t) ∈ E where (a < 0 and β(y) < c′ for all
(y ≤ c′) ∈ S) or (a > 0 and β(y) > c′ for all (y ≥ c′) ∈ S)

FailDepVar≥ (E;B;β;S; DV) ⇒SIMP (E;B;β;S;⊥)

if (x ≥ c) ∈ S, x dependent, β 6|=LA x ≥ c and there is no independent variable y
and equation (x ≈ ay+t) ∈ E where (if a > 0 and β(y) < c′ for all (y ≤ c′) ∈ S)
or (if a < 0 and β(y) > c′ for all (y ≥ c′) ∈ S)

The simplex rules satisfy a number of invariants that eventually lead to
proofs for soundness, completeness and termination. A state (E;B;β; ∅;>) is
called an start state if E is a finite set of equations xi ≈

∑
ai,jyj such that

the xi occur only on left hand sides and only once in E, and B is a finite set
of simple bounds zi ◦ c where zi occurs in E and ◦ ∈ {leq,≥}, and β maps all
variables to 0.

Example 6.2.5 (Simplex Detecting Satisfiability). Consider the equational sys-
tem E = {2y + x ≥ 1, y − x ≤ −2, x ≥ 0} which results after preprocessing in
the sets E0 = {z1 ≈ 2y + x, z2 ≈ y − x} and B0 = {z1 ≥ 1, z2 ≤ −2, x ≥ 0}.
Starting with an initial assignment β0 that maps all variables to 0 and hence
satisfies E0, a Simplex run is as follows. Each line gets a number and I make
references to the components of the simplex state of previous lines with respect
to the line number.

(E0, B0, β0, ∅,>)

(1)⇒EstablishBound
SIMP (E0, B0 \ {x ≥ 0}, β0, {x ≥ 0}, IV)

(2)⇒AckBounds
SIMP (E0, B1, β0, {x ≥ 0},>)

(3)⇒EstablishBound
SIMP (E0, {z2 ≤ −2}, β0, {x ≥ 0, z1 ≥ 1}, IV)

(4)⇒AckIndepBound
SIMP (E0, {z2 ≤ −2}, β0, {x ≥ 0, z1 ≥ 1},DV)

Now the bound z1 ≥ 1 is clearly not satisfied by β0, so in order to fix it rule
FixDepVar≥ is applied. In order to increase z1 with respect to z1 ≈ 2y+x either
y or x need to be increased. Variable y, is not contained in S4 and x is only
bound from below, so both variables can be selected for pivoting. Here I select
x, resulting in the new equational system E5 = {x ≈ −2y + z1, z2 ≈ 3y − z1}
and assignment β5 = {z1 7→ 1, y 7→ 0, x 7→ 1, z2 7→ −1}.

(5)⇒FixDepVar≥
SIMP (E5, {z2 ≤ −2}, β5, {x ≥ 0, z1 ≥ 1},DV)

(6)⇒AckBounds
SIMP (E5, {z2 ≤ −2}, β5, S5,>)

(7)⇒EstablishBound
SIMP (E5, ∅, β5, S5 ∪ {z2 ≤ −2}, IV)

(8)⇒AckIndepBound
SIMP (E5, ∅, β5, S7,DV)

Now the bound z2 ≤ −2 is not satisfied by β5, because β5(z2) = −1. Pivoting
on z2 ≈ 3y−z1 on y yields E9 = {x ≈ − 2

3z2+ 1
3z1, y ≈ 1

3 (z2+z1)} and assignment
β9 = {z2 7→ −2, z1 7→ 1, x 7→ 5

3 , y 7→ −
1
3}.

(9)⇒FixDepVar≤
SIMP (E9, ∅, β9, {z1 ≥ 1, z2 ≤ −2, x ≥ 0},DV)

(10)⇒AckBounds
SIMP (E9, ∅, β9, S9,>)

Now B10 is empty and β10 satisfies all bounds and hence constitutes a solu-
tion to the initial problem.

238 CHAPTER 6. DECIDABLE LOGICS

The equational system and the respective bounds of Example 6.2.5 can be
interpreted geometrically. Then a FixDepVar rule application corresponds to
testing the intersection points between two of the three initial straights for a
solution.

Example 6.2.6 (Simplex Detecting Unsatisfiability). Consider the equational
system E = {x + 2y ≥ 1, x − y ≤ 3, x ≥ 0, y ≤ −1} which results after prepro-
cessing in the sets E0 = {z1 ≈ x+2y, z2 ≈ x−y} and B0 = {z1 ≥ 1, z2 ≤ 3, x ≥
0, y ≤ −1}. Starting with an initial assignment β0 that maps all variables to 0
and hence satisfies E0, a Simplex run is as follows. Again, each line gets a num-
ber and I make references to the components of the simplex state of previous
lines with respect to the line number.

(E0, B0, β0, ∅,>)

(1)⇒EstablishBound
SIMP (E0, B0 \ {x ≥ 0}, β0, {x ≥ 0}, IV)

(2)⇒AckBounds
SIMP (E0, B1, β0, {x ≥ 0},>)

(3)⇒EstablishBound
SIMP (E0, B1 \ {y ≤ −1}, β0, {x ≥ 0, y ≤ −1}, IV)

(4)⇒FixIndepVar
SIMP (E0, B3, {x 7→ 0, y 7→ −1, z1 7→ −2, z2 7→ 1}, S3, IV)

(5)⇒AckBounds
SIMP (E0, B3, β4, S3,>)

(6)⇒EstablishBound
SIMP (E0, B3 \ {z1 ≥ 1}, β4, S3 ∪ {z1 ≥ 1}, IV)

(7)⇒AckIndepBound
SIMP (E0, B6, β4, S6,DV)

The bound z1 ≥ 1 is not satisfied by β7 because β7(z1) = −2. Pivoting on x
in z1 ≈ x+ 2y yields E8 = {x ≈ z1 − 2y, z2 ≈ z1 − 3y} and β8 = {z1 7→ 1, y 7→
−1, x 7→ 3, z2 7→ 4}.

(8)⇒FixDepVar≥
SIMP (E8, B6, β8, {x ≥ 0, y ≤ −1, z1 ≥ 1},DV)

(9)⇒AckBounds
SIMP (E8, B6, β8, S8,>)

(10)⇒EstablishBound
SIMP (E8, ∅, β8, S8 ∪ {z2 ≤ 3}, IV)

(11)⇒AckIndepBound
SIMP (E8, ∅, β8, S10,DV)

(12)⇒FailDepVar≤
SIMP (E8, ∅, β8, S10,⊥)

The bound z2 ≤ 3 is not satisfied by β8 because β8(z2) = 4. In order to meet
the bound the value of z2 needs to be decreased using the equation z2 ≈ z1−3y.
So either z1 needs to be decreased, but β8(z1) = 1 and z1 is bounded below by
z1 ≥ 1, or y needs to be increased, but β8(y) = −1 and y is bounded above
by y ≤ −1. Therefore, rule FailDepVar≤ is applicable, the initial system is
unsatisfiable.

Lemma 6.2.7 (Simplex State Invariants). The following invariants hold for
any state (Ei;Bi;βi;Si; si) derived by⇒SIMP on a start state (E0;B0;β0; ∅;>):

1. for every dependent variable there is exactly one equation in E defining
the variable

2. dependent variables do not occur on the right hand side of an equation

3. LRA(β) |= Ei

6.2. LINEAR ARITHMETIC 239

4. for all in dependant variables x either βi(x) = 0 or βi(x) = c for some
bound x ◦ c ∈ Si

5. for all assignments α it holds LRA(α) |= E0 iff LRA(α) |= Ei

Proof. 1, 2. By induction on the length of a ⇒SIMP derivation. A consequence
of the definition of piv.

3. By induction on the length of a ⇒SIMP derivation. A consequence of the
definition of upd.

4. By induction on the length of a ⇒SIMP derivation and a case analysis for
all rules changing βi. Recall that initially β0 maps all variables to 0.

5. The piv operation is equivalence preserving, i.e., an assignment α satisfies
E iff it satisfies piv(E, x, y) for a dependent variable x and an independent
variable y.

Lemma 6.2.8 (Simplex Run Invariants). For any run of ⇒SIMP from start
state (E0;B0;β0; ∅;>)⇒SIMP (E1;B1;β1;S1; s1)⇒SIMP . . .:

1. the set {βo, β1, . . .} is finite

2. if the sets of dependent and independent variables for two equational sys-
tems Ei, Ej coincide, then Ei = Ej

3. the set {Eo, E1, . . .} is finite

4. let Si not contain contradictory bounds, then (Ei;Bi;βi;Si; si)⇒FixIndepVar,∗
SIMP

is finite

Proof. 1. By induction on the length of a⇒SIMP derivation. Variables are bound
by the βi to constants occurring B0. This set is finite. Furthermore, the domain
of each βi is constant. Hence the set {βo, β1, . . .} is finite.

2. By Lemma 6.2.7.1 and 2, for any dependent variable z there is exactly one
equation z ≈ a1x1 + . . . + anxn in every E. Now assume that dependent and
independent variables for two equational systems Ei, Ej coincide but actually
Ei and Ej differ in one equation (z ≈ a1x1 + . . . + anxn) ∈ Ei and (z ≈
b1y1 + . . .+ bmym) ∈ Ej . By Lemma 6.2.7.5 it must hold xi = yi and n = m. It
remains to show that the coefficients are identical. For n = 1 this is obvious. For
n ≥ 2 this follows again from Lemma 6.2.7.5 by the following two assignments
γ, γ′, assuming a1 6= b1. The first assignment is defined by γ(z) = n, and
γ(xk) = 1

ak
for 1 ≤ k ≤ n and the second by γ′(z) = n − 2, γ′(x1) = − 1

a1
and

γ′(xk) = 1
ak

for 2 ≤ k ≤ n. Both assignments satisfy the defining equations for
z and can be extended to satisfy Ei and Ej . Then from γ we can conclude

a1
1

a1
> b1

1

a1
iff a2

1

a2
+ . . .+ an

1

an
< b2

1

a2
+ . . .+ bn

1

an

and from γ′ accordingly

a1
1

a1
> b1

1

a1
iff a2

1

a2
+ . . .+ an

1

an
> b2

1

a2
+ . . .+ bn

1

an

240 CHAPTER 6. DECIDABLE LOGICS

a contradiction.
3. A consequence of 2.
4. The independent variables are in fact independent from each other. Thus

any bound on an independent can be eventually satisfied by rule FixIndepVar.

Corollary 6.2.9 (Infinite Runs Contain a Cycle). Let (E0;B0;β0; ∅;>)⇒SIMP

(E1;B1;β1;S1; s1) ⇒SIMP . . . be an infinite run. Then there are two states
(Ei;Bi;βi;Si; si), (Ek;Bk;βk;Sk; sk) such that i 6= k and (Ei;Bi;βi;Si; si) =
(Ek;Bk;βk;Sk; sk).

Proof. The initial sets are all finite. No rule adds a simple bound to any Bi , they
can only be moved to some Si and stay there. So there are only finitely many
such configurations Bi , Si during a run. By Lemma 6.2.8.1 there are only finitely
many different βi. By Lemma 6.2.8.3 there are only finitely many different Ei.
In sum, any infinite run must contain two identical states, a cycle.

Definition 6.2.10 (Reasonable Strategy). A reasonable strategy prefers Fail-
Bounds over EstablishBounds and the FixDepVar rules select minimal variables
x, y in the ordering ≺.

Theorem 6.2.11 (Simplex Soundness, Completeness & Termination). Given
a reasonable strategy and initial set N of inequations and its separation into E
and B :

1. ⇒SIMP terminates on (E0;B0;β0; ∅;>)

2. if (E;B;β0; ∅;>)⇒∗SIMP (E′;B′;β;S;⊥) then N has no solution

3. if (E;B;β0; ∅;>) ⇒∗SIMP (E′; ∅;β;B;>) and (E; ∅;β;B;>) is a normal
form, then LRA(β) |= N

4. all final states (E;B;β;S; s) match either 2. or 3.

Proof. 1. (Idea) An infinite run must contain a cycle due to Corollary 6.2.9.
Runs always selecting minimal variables for the FixDepVar rules cannot contain
cycles.

2. (Scetch) The fail rules are correct, given Lemma 6.2.7.5.
3. By Lemma 6.2.7.5 and all initial bounds are satisfied by β, because Ack-

Bounds is the only rule generating >.
4. A state (E;B;β;S; IV) can always be rewritten to a state (E;B;β′;S;>)

or (E;B;β′;S; DV). Any state (E;B;β;S; DV) is either rewritten to a final
state (E;B;β;S;⊥) or again a state (E′;B;β′;S; DV). The rest follows from
termination.

In case of strict bounds the idea is to introduce an infinitesimal small constant
δ > 0 and to replace the strict bound by a non-strict one. So, for example, a
bound x < 5 is replaced by x ≤ 5−δ. Now δ is treated symbolically through the

6.2. LINEAR ARITHMETIC 241

overall computation, i.e., we extend Q to Qδ with new pairs (q, k) with q, k ∈ Q
where (q, k) represents q + kδ and the operations, relations on Q are lifted to
Qδ:

(q1, k1) + (q2, k2) := (q1 + q2, k1 + k2)
p(q, k) := (pq, pk)

(q1, k1) ≤ (q2, k2) := (q1 < q2) ∨ (q1 = q2 ∧ k1 ≤ k2)

