

mpn stat

Automated Reasoning

Martin Bromberger, Sibylle Möhle, Simon Schwarz, Christoph Weidenbach

Max Planck Institute for Informatics

October 26, 2022

Outline

Preliminaries

Propositional Logic

October 26, 2022

Automated Reasoning

Given a specification of a system, develop technology

logics, calculi, algorithms, implementations,

to automatically execute the specification and to automatically prove properties of the specification.

Concept

Slides: Definitions, Lemmas, Theorems, ... Blackboard: Examples, Proofs, ... Speech: Motivate, Explain, ... Script: Slides, partially Blackboard ... Exams: able to calculate \rightarrow pass understand \rightarrow (very) good grade

Orderings

1.4.1 Definition (Orderings)

A (partial) ordering \succeq (or simply ordering) on a set M, denoted (M, \succeq) , is a reflexive, antisymmetric, and transitive binary relation on M.

It is a *total ordering* if it also satisfies the totality property.

A *strict (partial) ordering* \succ is a transitive and irreflexive binary relation on *M*.

A strict ordering is *well-founded*, if there is no infinite descending chain $m_0 \succ m_1 \succ m_2 \succ \ldots$ where $m_i \in M$.

1.4.3 Definition (Minimal and Smallest Elements)

Given a strict ordering (M, \succ) , an element $m \in M$ is called *minimal*, if there is no element $m' \in M$ so that $m \succ m'$.

An element $m \in M$ is called *smallest*, if $m' \succ m$ for all $m' \in M$ different from m.

Preliminaries

Multisets

Given a set *M*, a *multiset S* over *M* is a mapping $S: M \to \mathbb{N}$, where *S* specifies the number of occurrences of elements *m* of the base set *M* within the multiset *S*. I use the standard set notations \in , \subset , \subseteq , \cup , \cap with the analogous meaning for multisets, for example $(S_1 \cup S_2)(m) = S_1(m) + S_2(m)$.

A multiset *S* over a set *M* is *finite* if $\{m \in M \mid S(m) > 0\}$ is finite. For the purpose of this lecture I only consider finite multisets.

1.4.5 Definition (Lexicographic and Multiset Ordering Extensions)

Let (M_1, \succ_1) and (M_2, \succ_2) be two strict orderings.

Their *lexicographic combination* $\succ_{\text{lex}} = (\succ_1, \succ_2)$ on $M_1 \times M_2$ is defined as $(m_1, m_2) \succ (m'_1, m'_2)$ iff $m_1 \succ_1 m'_1$ or $m_1 = m'_1$ and $m_2 \succ_2 m'_2$.

Let (M, \succ) be a strict ordering.

The *multiset extension* \succ_{mul} to multisets over M is defined by $S_1 \succ_{mul} S_2$ iff $S_1 \neq S_2$ and $\forall m \in M[S_2(m) > S_1(m) \rightarrow \exists m' \in M(m' \succ m \land S_1(m') > S_2(m'))].$

1.4.7 Proposition (Properties of \succ_{lex} , \succ_{mul})

Let (M, \succ) , (M_1, \succ_1) , and (M_2, \succ_2) be orderings. Then

- 1. \succ_{lex} is an ordering on $M_1 \times M_2$.
- 2. if (M_1, \succ_1) , (M_2, \succ_2) are well-founded so is \succ_{lex} .
- 3. if (M_1, \succ_1) , (M_2, \succ_2) are total so is \succ_{lex} .
- 4. \succ_{mul} is an ordering on multisets over *M*.
- 5. if (M, \succ) is well-founded so is \succ_{mul} .
- 6. if (M, \succ) is total so is \succ_{mul} .

Please recall that multisets are finite.

Induction

Theorem (Noetherian Induction)

Let (M, \succ) be a well-founded ordering, and let Q be a predicate over elements of M. If for all $m \in M$ the implication

if Q(m'), for all $m' \in M$ so that $m \succ m'$, (induction hypothesis) then Q(m). (induction step)

is satisfied, then the property Q(m) holds for all $m \in M$.

Abstract Rewrite Systems

1.6.1 Definition (Rewrite System)

A *rewrite system* is a pair (M, \rightarrow) , where *M* is a non-empty set and $\rightarrow \subseteq M \times M$ is a binary relation on *M*.

$$\begin{array}{rcl} \rightarrow^{0} &= \{ (a,a) \mid a \in M \} \\ \rightarrow^{i+1} &= \rightarrow^{i} \circ \rightarrow \\ \rightarrow^{+} &= \bigcup_{i > 0} \rightarrow^{i} \\ \rightarrow^{*} &= \bigcup_{i \geq 0} \rightarrow^{i} = \rightarrow^{+} \cup \rightarrow^{0} \\ \rightarrow^{=} &= \rightarrow \cup \rightarrow^{0} \\ \rightarrow^{-1} &= \leftarrow = \{ (b,c) \mid c \rightarrow b \} \\ \leftrightarrow &= \rightarrow \cup \leftarrow \\ \leftrightarrow^{+} &= (\leftrightarrow)^{+} \\ \leftrightarrow^{*} &= (\leftrightarrow)^{*} \end{array}$$

identity *i* + 1-fold composition transitive closure reflexive transitive closure reflexive closure inverse symmetric closure transitive symmetric closure refl. trans. symmetric closure

1.6.2 Definition (Reducible)

Let (M, \rightarrow) be a rewrite system. An element $a \in M$ is *reducible*, if there is a $b \in M$ such that $a \rightarrow b$.

An element $a \in M$ is *in normal form (irreducible)*, if it is not reducible.

An element $c \in M$ is a *normal form* of *b*, if $b \rightarrow^* c$ and *c* is in normal form, denoted by $c = b \downarrow$.

Two elements *b* and *c* are *joinable*, if there is an *a* so that $b \rightarrow^* a \stackrel{*}{\leftarrow} c$, denoted by $b \downarrow c$.

1.6.3 Definition (Properties of \rightarrow)

A relation \rightarrow is called

Church-Rosser confluent locally confluent terminating

normalizing convergent

if $b \leftrightarrow^* c$ implies $b \downarrow c$ if $b^* \leftarrow a \rightarrow^* c$ implies $b \downarrow c$ if $b \leftarrow a \rightarrow c$ implies $b \downarrow c$ if there is no infinite descending chain $b_0 \rightarrow b_1 \rightarrow b_2 \dots$ if every $b \in A$ has a normal form if it is confluent and terminating

1.6.4 Lemma (Termination vs. Normalization)

If \rightarrow is terminating, then it is normalizing.

1.6.5 Theorem (Church-Rosser vs. Confluence)

The following properties are equivalent for any (M, \rightarrow) :

- (i) \rightarrow has the Church-Rosser property.
- (ii) \rightarrow is confluent.

1.6.6 Lemma (Newman's Lemma)

Let (M, \rightarrow) be a terminating rewrite system. Then the following properties are equivalent:

- $(i) \rightarrow is \ confluent$
- (ii) \rightarrow is locally confluent

LA Equations Rewrite System

M is the set of all LA equations sets *N* over \mathbb{Q}

 \doteq includes normalizing the equation

Eliminate $\{x \doteq s, x \doteq t\} \uplus N \Rightarrow_{\mathsf{LAE}} \{x \doteq s, x \doteq t, s \doteq t\} \cup N$ provided $s \neq t$, and $s \doteq t \notin N$

 $\begin{array}{ll} \textbf{Fail} & \{q_1 \doteq q_2\} \uplus N \Rightarrow_{\mathsf{LAE}} \emptyset \\ \text{provided } q_1, q_2 \in \mathbb{Q}, \ q_1 \neq q_2 \end{array}$

LAE Redundancy

Subsume $\{s \doteq t, s' \doteq t'\} \uplus N \Rightarrow_{\mathsf{LAE}} \{s \doteq t\} \cup N$ provided $s \doteq t$ and $qs' \doteq qt'$ are identical for some $q \in \mathbb{Q}$

Rewrite Systems on Logics: Calculi

	Validity	Satisfiability
Sound	If the calculus derives a proof of validity for the formula, it is valid.	If the calculus derives satisfiability of the for- mula, it has a model.
Complete	If the formula is valid, a proof of validity is deriv- able by the calculus.	If the formula has a model, the calculus de- rives satisfiability.
Strongly Complete	For any validity proof of the formula, there is a derivation in the calcu- lus producing this proof.	For any model of the formula, there is a derivation in the cal- culus producing this model.

