
First-Order Logic

First-Order Ground Superposition

Propositional clauses and ground clauses are essentially the
same, as long as equational atoms are not considered. This
section deals only with ground clauses and recalls mostly the
material from Section 2.7 for first-order ground clauses. The main
difference is that the atom ordering is more complicated, see
Section 3.11.

From now on let N be a possibly infinite set of ground clauses.

December 15, 2022 72/134

First-Order Logic

3.12.1 Definition (Ground Clause Ordering)
Let ≺ be a strict rewrite ordering total on ground terms and
ground atoms. Then ≺ can be lifted to a total ordering ≺L on
literals by its multiset extension ≺mul where a positive literal
P(t1, . . . , tn) is mapped to the multiset {P(t1, . . . , tn)} and a
negative literal ¬P(t1, . . . , tn) to the multiset
{P(t1, . . . , tn),P(t1, . . . , tn)}.

The ordering ≺L is further lifted to a total ordering on clauses ≺C
by considering the multiset extension of ≺L for clauses.

December 15, 2022 73/134

First-Order Logic

3.12.2 Proposition (Properties of the Ground Clause
Ordering)

1. The orderings on literals and clauses are total and
well-founded.

2. Let C and D be clauses with P(t1, . . . , tn) = atom(max(C)),
Q(s1, . . . , sm) = atom(max(D)), where max(C) denotes the
maximal literal in C.
(a) If Q(s1, . . . , sm) ≺L P(t1, . . . , tn) then D ≺C C.
(b) If P(t1, . . . , tn) = Q(s1, . . . , sm), P(t1, . . . , tn) occurs negatively in

C but only positively in D, then D ≺C C.

December 15, 2022 74/134

First-Order Logic

Eventually, as I did for propositional logic, I overload ≺ with ≺L
and ≺C . So if ≺ is applied to literals it denotes ≺L, if it is applied
to clauses, it denotes ≺C .

Note that ≺ is a total ordering on literals and clauses as well. For
superposition, inferences are restricted to maximal literals with
respect to ≺.

For a clause set N, I define N≺C = {D ∈ N | D ≺ C}.

December 15, 2022 75/134

First-Order Logic

3.12.3 Definition (Abstract Redundancy)
A ground clause C is redundant with respect to a set of ground
clauses N if N≺C |= C.

Tautologies are redundant. Subsumed clauses are redundant if
⊆ is strict. Duplicate clauses are anyway eliminated quietly
because the calculus operates on sets of clauses.

December 15, 2022 76/134

First-Order Logic

3.12.4 Definition (Selection Function)
The selection function sel maps clauses to one of its negative
literals or ⊥. If sel(C) = ¬P(t1, . . . , tn) then ¬P(t1, . . . , tn) is called
selected in C. If sel(C) = ⊥ then no literal in C is selected.

The selection function is, in addition to the ordering, a further
means to restrict superposition inferences. If a negative literal is
selected in a clause, any superposition inference must be on the
selected literal.

December 15, 2022 77/134

First-Order Logic

3.12.5 Definition (Partial Model Construction)
Given a clause set N and an ordering ≺ we can construct a
(partial) model NI for N inductively as follows:

NC :=
⋃

D≺C δD

δD :=


{P(t1, . . . , tn)} if D = D′ ∨ P(t1, . . . , tn),

P(t1, . . . , tn) strictly maximal, no literal
selected in D and ND ̸|= D

∅ otherwise
NI :=

⋃
C∈N δC

Clauses C with δC ̸= ∅ are called productive.

December 15, 2022 78/134

First-Order Logic

3.12.6 Proposition (Propertied of the Model Operator)
Some properties of the partial model construction.

1. For every D with (C ∨ ¬P(t1, . . . , tn)) ≺ D we have
δD ̸= {P(t1, . . . , tn)}.

2. If δC = {P(t1, . . . , tn)} then NC ∪ δC |= C.
3. If NC |= D and D ≺ C then for all C′ with C ≺ C′ we have

NC′ |= D and in particular NI |= D.
4. There is no clause C with P(t1, . . . , tn) ∨ P(t1, . . . , tn) ≺ C such

that δC = {P(t1, . . . , tn)}.

December 15, 2022 79/134

First-Order Logic

Please properly distinguish: N is a set of clauses interpreted as
the conjunction of all clauses.

N≺C is of set of clauses from N strictly smaller than C with
respect to ≺.

NI , NC are Herbrand interpretations (see Proposition 3.5.3).

NI is the overall (partial) model for N, whereas NC is generated
from all clauses from N strictly smaller than C.

December 15, 2022 80/134

First-Order Logic

Superposition Left
(N ⊎ {C1 ∨ P(t1, . . . , tn),C2 ∨ ¬P(t1, . . . , tn)}) ⇒SUP
(N ∪ {C1 ∨ P(t1, . . . , tn),C2 ∨ ¬P(t1, . . . , tn)} ∪ {C1 ∨ C2})
where (i) P(t1, . . . , tn) is strictly maximal in C1 ∨ P(t1, . . . , tn)
(ii) no literal in C1 ∨ P(t1, . . . , tn) is selected
(iii) ¬P(t1, . . . , tn) is maximal and no literal selected in
C2 ∨ ¬P(t1, . . . , tn), or ¬P(t1, . . . , tn) is selected in
C2 ∨ ¬P(t1, . . . , tn)

Factoring (N ⊎ {C ∨ P(t1, . . . , tn) ∨ P(t1, . . . , tn)}) ⇒SUP
(N ∪ {C ∨ P(t1, . . . , tn) ∨ P(t1, . . . , tn)} ∪ {C ∨ P(t1, . . . , tn)})
where (i) P(t1, . . . , tn) is maximal in
C ∨ P(t1, . . . , tn) ∨ P(t1, . . . , tn)
(ii) no literal is selected in C ∨ P(t1, . . . , tn) ∨ P(t1, . . . , tn)

December 15, 2022 81/134

First-Order Logic

3.12.7 Definition (Saturation)
A set N of clauses is called saturated up to redundancy, if any
inference from non-redundant clauses in N yields a redundant
clause with respect to N or is contained in N.

December 15, 2022 82/134

First-Order Logic

Subsumption (N ⊎ {C1,C2}) ⇒SUP (N ∪ {C1})
provided C1 ⊂ C2

Tautology Deletion (N ⊎ {C ∨P(t1, . . . , tn)∨¬P(t1, . . . , tn)})
⇒SUP (N)

Condensation (N ⊎{C1 ∨L∨L}) ⇒SUP (N ∪{C1 ∨L})

Subsumption Resolu-
tion

(N ⊎ {C1 ∨ L,C2 ∨ ¬L}) ⇒SUP

(N ∪ {C1 ∨ L,C2})
where C1 ⊆ C2

December 15, 2022 83/134

First-Order Logic

3.12.8 Proposition (Completeness of the Reduction Rules)
All clauses removed by Subsumption, Tautology Deletion,
Condensation and Subsumption Resolution are redundant with
respect to the kept or added clauses.

3.12.9 Theorem (Completeness)
Let N be a, possibly countably infinite, set of ground clauses. If N
is saturated up to redundancy and ⊥ /∈ N then N is satisfiable
and NI |= N.

December 15, 2022 84/134

First-Order Logic

3.12.10 Theorem (Compactness of First-Order Logic)
Let N be a, possibly countably infinite, set of first-order logic
ground clauses. Then N is unsatisfiable iff there is a finite subset
N ′ ⊆ N such that N ′ is unsatisfiable.

3.12.11 Corollary (Compactness of First-Order Logic:
Classical)
A set N of clauses is satisfiable iff all finite subsets of N are
satisfiable.

December 15, 2022 85/134

First-Order Logic

3.12.12 Theorem (Soundness and Completeness of
Ground Superposition)
A first-order Σ-sentence ϕ is valid iff there exists a ground
superposition refutation for grd(Σ, cnf(¬ϕ)).

3.12.13 Theorem (Semi-Decidability of First-Order Logic by
Ground Superposition)
If a first-order Σ-sentence ϕ is valid then a ground superposition
refutation can be computed.

December 15, 2022 86/134

First-Order Logic

3.12.15 Theorem (Craig’s Theorem)
Let ϕ and ψ be two propositional (first-order ground) formulas so
that ϕ |= ψ. Then there exists a formula χ (called the interpolant
for ϕ |= ψ), so that χ contains only propositional variables
(first-order signature symbols) occurring both in ϕ and in ψ so
that ϕ |= χ and χ |= ψ.

December 15, 2022 87/134

First-Order Logic

First-Order Superposition

Now the result for ground superposition are lifted to superposition
on first-order clauses with variables, still without equality.

The completeness proof of ground superposition above talks
about (strictly) maximal literals of ground clauses. The
non-ground calculus considers those literals that correspond to
(strictly) maximal literals of ground instances.

The used ordering is exactly the ordering of Definition 3.12.1
where clauses with variables are projected to their ground
instances for ordering computations.

December 15, 2022 88/134

First-Order Logic

3.13.1 Definition (Maximal Literal)
A literal L is called maximal in a clause C if and only if there
exists a grounding substitution σ so that Lσ is maximal in Cσ, i.e.,
there is no different L′ ∈ C: Lσ ≺ L′σ. The literal L is called
strictly maximal if there is no different L′ ∈ C such that Lσ ⪯ L′σ.

Note that the orderings KBO and LPO cannot be total on atoms
with variables, because they are stable under substitutions.
Therefore, maximality can also be defined on the basis of
absence of greater literals. A literal L is called maximal in a
clause C if L ̸≺ L′ for all other literals L′ ∈ C. It is called strictly
maximal in a clause C if L ̸⪯ L′ for all other literals L′ ∈ C.

December 15, 2022 89/134

First-Order Logic

Superposition Left
(N ⊎ {C1 ∨ P(t1, . . . , tn),C2 ∨ ¬P(s1, . . . , sn)}) ⇒SUP
(N ∪ {C1 ∨ P(t1, . . . , tn),C2 ∨ ¬P(s1, . . . , sn)} ∪ {(C1 ∨ C2)σ})
where (i) P(t1, . . . , tn)σ is strictly maximal in (C1 ∨ P(t1, . . . , tn))σ
(ii) no literal in C1 ∨ P(t1, . . . , tn) is selected (iii) ¬P(s1, . . . , sn)σ is
maximal and no literal selected in (C2 ∨ ¬P(s1, . . . , sn))σ, or
¬P(s1, . . . , sn) is selected in (C2 ∨ ¬P(s1, . . . , sn))σ (iv) σ is the
mgu of P(t1, . . . , tn) and P(s1, . . . , sn)

Factoring
(N ⊎ {C ∨ P(t1, . . . , tn) ∨ P(s1, . . . , sn)}) ⇒SUP
(N ∪ {C ∨ P(t1, . . . , tn) ∨ P(s1, . . . , sn)} ∪ {(C ∨ P(t1, . . . , tn))σ})
where (i) P(t1, . . . , tn)σ is maximal in
(C ∨ P(t1, . . . , tn) ∨ P(s1, . . . , sn))σ (ii) no literal is selected in
C ∨ P(t1, . . . , tn) ∨ P(s1, . . . , sn) (iii) σ is the mgu of P(t1, . . . , tn)
and P(s1, . . . , sn)

December 15, 2022 90/134

First-Order Logic

Note that the above inference rules Superposition Left and
Factoring are generalizations of their respective counterparts
from the ground superposition calculus above. Therefore, on
ground clauses they coincide. Therefore, we can safely overload
them in the sequel.

3.13.3 Definition (Abstract Redundancy)
A clause C is redundant with respect to a clause set N if for all
ground instances Cσ there are clauses {C1, . . . ,Cn} ⊆ N with
ground instances C1τ1, . . . ,Cnτn such that Ciτi ≺ Cσ for all i and
C1τ1, . . . ,Cnτn |= Cσ.

December 15, 2022 91/134

First-Order Logic

3.13.4 Definition (Saturation)
A set N of clauses is called saturated up to redundancy, if any
inference from non-redundant clauses in N yields a redundant
clause with respect to N or is contained in N.

In contrast to the ground case, the above abstract notion of
redundancy is not effective, i.e., it is undecidable for some clause
C whether it is redundant, in general. Nevertheless, the concrete
ground redundancy notions carry over to the non-ground case.
Note also that a clause C is contained in N modulo renaming of
variables.

December 15, 2022 92/134

First-Order Logic

Subsumption (N ⊎ {C1,C2}) ⇒SUP (N ∪ {C1})
provided C1σ ⊂ C2 for some σ

Tautology Deletion (N ⊎ {C ∨P(t1, . . . , tn)∨¬P(t1, . . . , tn)})
⇒SUP (N)

December 15, 2022 93/134

First-Order Logic

Let rdup be a function from clauses to clauses that removes
duplicate literals, i.e., rdup(C) = C′ where C′ ⊆ C, C′ does not
contain any duplicate literals, and for each L ∈ C also L ∈ C′.

Condensation (N ⊎ {C1 ∨ L ∨ L′}) ⇒SUP
(N ∪ {rdup((C1 ∨ L ∨ L′)σ)})
provided Lσ = L′ and rdup((C1 ∨ L ∨ L′)σ) subsumes C1 ∨ L ∨ L′

for some σ

Subsumption Resolution (N ⊎ {C1 ∨ L,C2 ∨ L′}) ⇒SUP
(N ∪ {C1 ∨ L,C2})
where Lσ = ¬L′ and C1σ ⊆ C2 for some σ

December 15, 2022 94/134

