3.13.7 Lemma (Lifting)

planek institut

Let $D \vee L$ and $C \vee L'$ be variable-disjoint clauses and σ a grounding substitution for *C* ∨ *L* and *D* ∨ *L* ′ . If there is a superposition left inference $(N \uplus \{(D \lor L) \sigma, (C \lor L') \sigma\}) \Rightarrow_{\textsf{SUP}}$ $(N \cup \{(D \vee L)\sigma, (C \vee L')\sigma\} \cup \{D\sigma \vee C\sigma\})$ and if $\mathsf{sel}((D \lor L)\sigma) = \mathsf{sel}((D \lor L))\sigma, \, \mathsf{sel}((C \lor L')\sigma) = \mathsf{sel}((C \lor L'))\sigma \;,$ then there exists a mgu τ such that $(N \uplus \{D \vee L, C \vee L'\}) \Rightarrow_{\text{SUP}} (N \cup \{D \vee L, C \vee L'\} \cup \{(D \vee C)\tau\}).$

Let *C* ∨ *L* ∨ *L'* be a clause and σ a grounding substitution for *C* ∨ *L* ∨ *L'*. If there is a factoring inference $(N \uplus \{(C \vee L \vee L')\sigma\}) \Rightarrow_{\text{SUP}} (N \cup \{(C \vee L \vee L')\sigma\} \cup \{(C \vee L)\sigma\})$ and if sel($(C \vee L \vee L')\sigma) =$ sel($(C \vee L \vee L')\sigma$, then there exists a mgu τ such that $(N \uplus \{ C \vee L \vee L' \}) \Rightarrow_{\text{SUP}} (N \cup \{ C \vee L \vee L' \} \cup \{ (C \vee L) \tau \})$

3.13.8 Example (First-Order Reductions are not Liftable)

Consider the two clauses $P(x) \vee Q(x)$, $P(g(y))$ and grounding substitution $\{x \mapsto q(a), y \mapsto a\}$. Then $P(q(y))\sigma$ subsumes $(P(x) \vee Q(x))$ _{*σ*} but $P(g(y))$ does not subsume $P(x) \vee Q(x)$. For all other reduction rules similar examples can be constructed.

3.13.9 Lemma (Soundness and Completeness)

First-Order Superposition is sound and complete.

3.13.10 Lemma (Redundant Clauses are Obsolete)

If a clause set *N* is unsatisfiable, then there is a derivation *N* ⇒_{SUP} *N'* such that $\bot \in$ *N'* and no clause in the derivation of \bot is redundant.

3.13.11 Lemma (Model Property)

If *N* is a saturated clause set and $\perp \notin N$ then grd(Σ , N) $\tau \models N$.

Decision Procedures for BS

3.15.3 Definition (Bernays-Schoenfinkel Fragment (BS))

A formula of the Bernays-Schoenfinkel fragment has the form ∃⃗*x*.∀⃗*y*.ϕ such that ϕ does not contain quantifiers nor non-constant function symbols.

3.15.4 Theorem (BS is decidable)

Unsatisfiability of a BS clause set is decidable.

$$
1: \neg R(x,y) \vee \neg R(y,z) \vee R(x,z)
$$

$$
2: R(x,y) \vee R(y,x)
$$

A state is now a set of clause sets. Let *k* be the number of different constants a_1, \ldots, a_k in the initial clause set N. Then the initial state is the set $M = \{N\}$, Superposition Left is adopted to the new setting, Factoring is no longer needed and the rules Instantiate and Split are added. The variables x_1, \ldots, x_k constitute a *variable chain* between literals *L*1, *L^k* inside a clause *C*, if there are literals $\{L_1, \ldots, L_k\} \subseteq C$ such that *x*_{*i*} ∈ (vars(L *i*) ∩ vars(L _{*i*+1})), 1 < *i* < *k*.

Superposition BS

M ⊎ {*N* ⊎ {*P*(*t*₁, . . . , *t*_n), *C* ∨ ¬*P*(*s*₁, . . . , *s*_n)}} ⇒ SUPBS *M* ∪ { P (*t*₁, . . . , *t_n*), *C* ∨ ¬ P (s_1 , . . . , s_n)} ∪ { C σ}} where (i) $\neg P(s_1, \ldots, s_n)$ is selected in $(C \vee \neg P(s_1, \ldots, s_n))\sigma$ (ii) σ is the mgu of $P(t_1, \ldots, t_n)$ and $P(s_1, \ldots, s_n)$ (iii) $C ∨ ¬P(s₁, …, sₙ)$ is a Horn clause

Instantiation $M \oplus \{N \oplus \{C \vee A_1 \vee A_2\}\} \Rightarrow$ SUPBS *M* ∪ {*N* ∪ {(*C* ∨ *A*₁ ∨ *A*₂) σ _{*i*} | σ _{*i*} = {*x* \mapsto *a*_{*i*}}, 1 ≤ *i* ≤ *k*}}} where x occurs in a variable chain between A_1 and A_2

Split $M \oplus \{N \oplus \{C_1 \vee A_1 \vee C_2 \vee A_2\}\}\$ \Rightarrow SUPBS $M \cup \{N \cup \{C_1 \vee A_1\}, N \cup \{C_2 \vee A_2\}\}\$ where vars($C_1 \vee A_1$) ∩ vars($C_2 \vee A_2$) = \emptyset

3.16.1 Definition (Rigorous Selection Strategy)

A selection strategy is *rigorous* of in any clause containing a negative literal, a negative literal is selected.

3.16.2 Lemma (SUPBS Basic Properties)

The SUPBS rules have the following properties:

- 1. Superposition BS is sound.
- 2. Instantiation is sound and complete.
- 3. Split is sound and complete.

Alternative Condensation Rule

The Condensation-BS rule turns Superposition (Resolution) into a decision procedure for the Bernays-Schönfinkel fragment and is an alternative to the SUPBS calculus.

Condensation-BS $(N \oplus \{L_1 \vee \cdots \vee L_n\}) \Rightarrow$ SUP $(N \cup \{\mathsf{rdup}((\mathsf{L}_1 \vee \ldots \mathsf{L}_n)\sigma_{i,j}) \mid \sigma_{i,j} = \mathsf{mgu}(\mathsf{L}_i, \mathsf{L}_j) \text{ and } \sigma_{i,j} \neq \bot\})$ provided any ground instance $(L_1 \vee \cdots \vee L_n)\delta$ contains at least two duplicate literals

