Everything You Always Wanted to Know About
First-Order CNF and Compactness
(And Were Not Afraid to Ask)

ini p BN g i January 5, 2023 60179

First-Order CNF Transformation

Basically, same procedure, same complications as for
propositional logic, but we have to take care of variables and
quantifiers.

ini p BN i January 5, 2023 61/79

Extending the Notion of a Position

pos(x) ={e}ifxeX
pos(¢) ={e}ifp€{T, L}
pos(—¢) ={e} U{1p|p € pos(¢)}
pos(¢potp) ={efU{1p|p € pos(¢)}U{2p|p € pos(s)}
pos(s~ 1) ={cU{1p|p e pos(s)}U{2p|p € pos(t)}
pos(f(ty,..., 1)) ={e} UUL {ip| p € pos(t)}
pos(P(t,....t)) ={e} UUiLs{ip| p € pos(t)}
pos(Vx.¢) ={e}U{1p|p € pos(¥)}
pos(Ix.¢) ={etU{1p|p € pos(¢)}

[f p | | O January 5, 2023 62/79

Free, Bound, All Variables

The set of all variables occurring in a term t (formula ¢) is
denoted by vars(t) (vars(¢)) and formally defined as

vars(t) .= {x € X' | x = t|p, p € pos(t)}

for terms and for formulas

vars(¢) = {x € X | x = t]p,p € pos(¢)}.

ini p BN g i January 5, 2023 6379

The set of free variables of a formula ¢ (term t) is given by
fvars(¢, 0) (fvars(t,0)) and recursively defined by

fvars(iq o 19, B) := fvars(¢y1, B) U fvars(i)z, B)
where o € {A,V, —, <>}
fvars(Vx.1, B) := fvars(y, BU {x})
fvars(3x.1, B) := fvars(y, BU {x})
fvars(—1), B) := fvars(v, B)
fvars(L, B) :=vars(L) \ B for a literal L
fvars(t,B) ;= vars(t) \ B foratermt

For fvars(¢, 0) | also write fvars(¢).

The set of bound variables is defined exactly the same except for
the literal (term) case: bvars(L, B) := B (bvars(t, B) := B).

[f p | | O January 5, 2023 64/79

Following the propositional procedure, elimintation of T, L and
negation removal is for quantifiers as follows:

ElimTB13 xH{Y, 3x.Tlp =nacne X[Tlp
ElimTB14 XU, 3}x.Llp =acnF X[L]p
PushNeg4 X[_‘VX-(Z)]p =ACNF X[HX.—!d)]p

PushNegS X[—ElX.qb]p =ACNF X[VX.ﬂqb]p

ini p BN g i January 5, 2023 65/79

Generalizing Renaming

VXn.(P(Xn) = ¢lp) if pol(¢, p) =1
def(1h, p, P(%n)) := { VXn.(lp — P(Xn)) if pol(x,p) = —1
Vo (P(Xn) <> ¥]p) if pol(y,p) =0

ini p BN g i January 5, 2023 66/79

SimpleRenaming ¢ =ncnE O[P(Xn)]p A def(¢, p, P(xn))

provided p € pos(¢) and fvars(¢|p) = {X1,...,Xn} and P is fresh
to ¢

[f p | | O January 5, 2023 67/79

Due to quantifier bindings, application of a substitution ¢ to a
formula is more complicated.

lo:=1 To:=T
(f(t,....th))o == f(to,..., o)
Yo := P(tio,..., tho)
Jo = (So =~ to)
T
)o = ¢o oo
where o € {V, A, —, <}
(Qx.¢)o == Qz.(po[x — 2])
Q € {Vv,3}, z is a fresh variable

RenVar ¢ =pcnF 00 o ={}

ini p BN g i January 5, 2023 68/79

For Skolemization (next slide) mini scoping is important and |
assume that explicit or implicit negations are moved inwards to
the literal level.

MiniScopel x[Vx.(11 o ¥2)lp =acNF X[(VX.41) 0 ¥2]p
provided o € {A, V}, x & fvars(¢))

MiniScope2 x[3x.(v1 o ¥2)]p =acNF Xx[(3X.¥1) 0 2]p
provided o € {A, V}, x ¢ fvars(¢)

MiniScope3 x[Vx.(v1 Av2)lp =racnF X[(VX.901) A (VX.402)0]p
where o = {}, x € (fvars(¢1) N fvars(y2))

MiniScope4 x[3x.(¥1V ¥2)lp =acnF X[(3X-¥1) V (3X.42)0]p
where o = {}, x € (fvars(¢1) N fvars(y2))

[f p | | O January 5, 2023 69/79

For Skolemization | assume that explicit or implicit negations are
moved inwards to the literal level.

Skolemization x[3x.8lo =acne X[e{x = f(y1,.. ., ¥n)}p
provided there is no position q, g < p with x|q = 3z.¢,
fvars(3x.¢) = {y1,...,¥n}, f i sort(y1) x ... x sort(yn) — sort(x) is
a fresh function symbol

[f p | | O January 5, 2023 7079

Finally universal quantifiers are dropped
RemForall x[VX4Ylp =acnNF X[Y]p

and then the actual CNF is then done by distributivity, exactly as
it is done in propositional logic.

[f p | | O January 5, 2023 7179

© 0 N O g b ODN =

- -
- O

Algorithm 2: acnf(¢)

Input : A first-order formula ¢.

Output A formula ¢ in CNF satisfiability preserving to ¢.

whilerule (ElimTB1(¢),...,ElimTB14(¢)) do ;
RenVar(¢);

SimpleRenaming(¢) on obvious positions;
whilerule (ElimEquiv1(¢),ElimEquiv2(¢)) do ;
whilerule (Elimimp(¢)) do ;

whilerule (PushNeg1(¢),...,PushNeg5(¢)) do ;
whilerule (MiniScope1(¢),. . .,MiniScope4(¢)) do ;
whilerule (Skolemization(¢)) do ;

whilerule (RemForall(¢)) do ;

whilerule (PushDisj(¢)) do ;

return ¢

ax planck institut
[f p | [I O January 5, 2023

72/79

Superposition Saturation Formally

Definition (Inferences & Redundancy)

Red(N) := {C | N=¢ = C}
Sup(N) :=NU{C| N =gyp NU{C}}

Definition (Saturation)

N is called saturated up to redundancy if
Sup(N \ Red(N)) € N U Red(N)

Theorem (Superposition Completeness)
Let N be saturated up to redundancy, then N = L iff L € N.

Proof.
Follows from Theorem 3.13.9. O

ina p | [e January 5, 2023 7379

Computing Saturated Sets

Definition (Run)
A run of the superposition calculus is a sequence
No = Ny = No = ... such that
1. if C € (Nix1 \ N) then N; =gyp N; U {C}
2. if C € (N;\ Ni1) then C € Red(N))

For a run define

N*=[JN and N =[JN

i>0 i>0j>i

where N* is called the set of persistent clauses of the run.

ina p | | O January 5, 2023 74/79

Definition (Fair Run)

A run is called fair, if for every C € Sup(N* \ Red(N*)) there is
some i with C € (N; U Red(N;)).

Theorem (Dynamic Completeness)

Let N* be the limit of a fair run Ng = Ny = Then N is
satisfiable iff L ¢ N*.

Proof.

=-: Obvious because Ny = N*.

«<: By fairness, N* is saturated up to redundancy. If 1. ¢ N* then
(grd(X, N*))z = N*. For every clause C € N, either C € N* or

C € Red(N*), therefore (grd(X, N*))z = Np. O

ina p | | O January 5, 2023 75/79

Now if 1. € N* then L € N; for some minimal / and therefore there
is a subset N’ C Np with N' = L.

Practically, fairness can be guaranteed by always considering
minimal clauses of with respect to a well-founded ordering < such
that for any clause C € N there are only finitely many clauses D
with D < C. Counting the number of symbols in a clause together
with < is an example for such an ordering.

[f p | | O January 5, 2023 76/79

