
Everything You Always Wanted to Know About
First-Order CNF and Compactness

(And Were Not Afraid to Ask)

January 5, 2023 60/79

First-Order CNF Transformation

Basically, same procedure, same complications as for
propositional logic, but we have to take care of variables and
quantifiers.

January 5, 2023 61/79

Extending the Notion of a Position

pos(x) := {ϵ} if x ∈ X
pos(ϕ) := {ϵ} if ϕ ∈ {⊤,⊥}

pos(¬ϕ) := {ϵ} ∪ {1p | p ∈ pos(ϕ)}
pos(ϕ ◦ ψ) := {ϵ} ∪ {1p | p ∈ pos(ϕ)} ∪ {2p | p ∈ pos(ψ)}
pos(s ≈ t) := {ϵ} ∪ {1p | p ∈ pos(s)} ∪ {2p | p ∈ pos(t)}

pos(f (t1, . . . , tn)) := {ϵ} ∪
⋃n

i=1{ip | p ∈ pos(ti)}
pos(P(t1, . . . , tn)) := {ϵ} ∪

⋃n
i=1{ip | p ∈ pos(ti)}

pos(∀x .ϕ) := {ϵ} ∪ {1p | p ∈ pos(ϕ)}
pos(∃x .ϕ) := {ϵ} ∪ {1p | p ∈ pos(ϕ)}

January 5, 2023 62/79

Free, Bound, All Variables

The set of all variables occurring in a term t (formula ϕ) is
denoted by vars(t) (vars(ϕ)) and formally defined as

vars(t) := {x ∈ X | x = t |p,p ∈ pos(t)}

for terms and for formulas

vars(ϕ) := {x ∈ X | x = t |p,p ∈ pos(ϕ)}.

January 5, 2023 63/79

The set of free variables of a formula ϕ (term t) is given by
fvars(ϕ, ∅) (fvars(t , ∅)) and recursively defined by

fvars(ψ1 ◦ ψ2,B) := fvars(ψ1,B) ∪ fvars(ψ2,B)

where ◦ ∈ {∧,∨,→,↔}
fvars(∀x .ψ,B) := fvars(ψ,B ∪ {x})
fvars(∃x .ψ,B) := fvars(ψ,B ∪ {x})
fvars(¬ψ,B) := fvars(ψ,B)

fvars(L,B) := vars(L) \ B for a literal L
fvars(t ,B) := vars(t) \ B for a term t

For fvars(ϕ, ∅) I also write fvars(ϕ).
The set of bound variables is defined exactly the same except for
the literal (term) case: bvars(L,B) := B (bvars(t ,B) := B).

January 5, 2023 64/79

Following the propositional procedure, elimintation of ⊤,⊥ and
negation removal is for quantifiers as follows:

ElimTB13 χ[{∀,∃}x .⊤]p ⇒ACNF χ[⊤]p

ElimTB14 χ[{∀,∃}x .⊥]p ⇒ACNF χ[⊥]p

PushNeg4 χ[¬∀x .ϕ]p ⇒ACNF χ[∃x .¬ϕ]p

PushNeg5 χ[¬∃x .ϕ]p ⇒ACNF χ[∀x .¬ϕ]p

January 5, 2023 65/79

Generalizing Renaming

def(ψ,p,P(x⃗n)) :=

∀x⃗n.(P(x⃗n) → ψ|p) if pol(ψ,p) = 1
∀x⃗n.(ψ|p → P(x⃗n)) if pol(ψ,p) = −1
∀x⃗n.(P(x⃗n) ↔ ψ|p) if pol(ψ,p) = 0

January 5, 2023 66/79

SimpleRenaming ϕ ⇒ACNF ϕ[P(x⃗n)]p ∧ def(ϕ,p,P(x⃗n))

provided p ∈ pos(ϕ) and fvars(ϕ|p) = {x1, . . . , xn} and P is fresh
to ϕ

January 5, 2023 67/79

Due to quantifier bindings, application of a substitution σ to a
formula is more complicated.

⊥σ := ⊥ ⊤σ := ⊤
(f (t1, . . . , tn))σ := f (t1σ, . . . , tnσ)
(P(t1, . . . , tn))σ := P(t1σ, . . . , tnσ)

(s ≈ t)σ := (sσ ≈ tσ)
(¬ϕ)σ := ¬(ϕσ)

(ϕ ◦ ψ)σ := ϕσ ◦ ψσ
where ◦ ∈ {∨,∧,→,↔}

(Qx .ϕ)σ := Qz.(ϕσ[x 7→ z])
Q ∈ {∀,∃}, z is a fresh variable

RenVar ϕ ⇒ACNF ϕσ σ = {}

January 5, 2023 68/79

For Skolemization (next slide) mini scoping is important and I
assume that explicit or implicit negations are moved inwards to
the literal level.

MiniScope1 χ[∀x .(ψ1 ◦ ψ2)]p ⇒ACNF χ[(∀x .ψ1) ◦ ψ2]p

provided ◦ ∈ {∧,∨}, x ̸∈ fvars(ψ2)

MiniScope2 χ[∃x .(ψ1 ◦ ψ2)]p ⇒ACNF χ[(∃x .ψ1) ◦ ψ2]p

provided ◦ ∈ {∧,∨}, x ̸∈ fvars(ψ2)

MiniScope3 χ[∀x .(ψ1 ∧ ψ2)]p ⇒ACNF χ[(∀x .ψ1) ∧ (∀x .ψ2)σ]p

where σ = {}, x ∈ (fvars(ψ1) ∩ fvars(ψ2))

MiniScope4 χ[∃x .(ψ1 ∨ ψ2)]p ⇒ACNF χ[(∃x .ψ1) ∨ (∃x .ψ2)σ]p

where σ = {}, x ∈ (fvars(ψ1) ∩ fvars(ψ2))

January 5, 2023 69/79

For Skolemization I assume that explicit or implicit negations are
moved inwards to the literal level.

Skolemization χ[∃x .ϕ]p ⇒ACNF χ[ϕ{x 7→ f (y1, . . . , yn)}]p
provided there is no position q, q < p with χ|q = ∃z.ψ,
fvars(∃x .ϕ) = {y1, . . . , yn}, f : sort(y1)× . . .× sort(yn) → sort(x) is
a fresh function symbol

January 5, 2023 70/79

Finally universal quantifiers are dropped

RemForall χ[∀x .ψ]p ⇒ACNF χ[ψ]p

and then the actual CNF is then done by distributivity, exactly as
it is done in propositional logic.

January 5, 2023 71/79

Algorithm 2: acnf(ϕ)

Input : A first-order formula ϕ.
Output
:

A formula ψ in CNF satisfiability preserving to ϕ.

1 whilerule (ElimTB1(ϕ),. . .,ElimTB14(ϕ)) do ;
2 RenVar(ϕ);
3 SimpleRenaming(ϕ) on obvious positions;
4 whilerule (ElimEquiv1(ϕ),ElimEquiv2(ϕ)) do ;
5 whilerule (ElimImp(ϕ)) do ;
6 whilerule (PushNeg1(ϕ),. . .,PushNeg5(ϕ)) do ;
7 whilerule (MiniScope1(ϕ),. . .,MiniScope4(ϕ)) do ;
8 whilerule (Skolemization(ϕ)) do ;
9 whilerule (RemForall(ϕ)) do ;

10 whilerule (PushDisj(ϕ)) do ;
11 return ϕ

January 5, 2023 72/79

Superposition Saturation Formally

Definition (Inferences & Redundancy)

Red(N) := {C | N≺C |= C}
Sup(N) := N ∪ {C | N ⇒SUP N ∪ {C}}

Definition (Saturation)
N is called saturated up to redundancy if

Sup(N \ Red(N)) ⊆ N ∪ Red(N)

Theorem (Superposition Completeness)
Let N be saturated up to redundancy, then N |= ⊥ iff ⊥ ∈ N.

Proof.
Follows from Theorem 3.13.9.

January 5, 2023 73/79

Computing Saturated Sets

Definition (Run)
A run of the superposition calculus is a sequence
N0 ⊢ N1 ⊢ N2 ⊢ . . . such that

1. if C ∈ (Ni+1 \ Ni) then Ni ⇒SUP Ni ∪ {C}
2. if C ∈ (Ni \ Ni+1) then C ∈ Red(Ni)

For a run define

N∞ =
⋃
i≥0

Ni and N∗ =
⋃
i≥0

⋂
j≥i

Nj

where N∗ is called the set of persistent clauses of the run.

January 5, 2023 74/79

Definition (Fair Run)
A run is called fair, if for every C ∈ Sup(N∗ \ Red(N∗)) there is
some i with C ∈ (Ni ∪ Red(Ni)).

Theorem (Dynamic Completeness)
Let N∗ be the limit of a fair run N0 ⊢ N1 ⊢ Then N0 is
satisfiable iff ⊥ ̸∈ N∗.

Proof.
⇒: Obvious because N0 |= N∗.
⇐: By fairness, N∗ is saturated up to redundancy. If ⊥ ̸∈ N∗ then
(grd(Σ,N∗))I |= N∗. For every clause C ∈ N0 either C ∈ N∗ or
C ∈ Red(N∗), therefore (grd(Σ,N∗))I |= N0.

January 5, 2023 75/79

Now if ⊥ ∈ N∗ then ⊥ ∈ Ni for some minimal i and therefore there
is a subset N ′ ⊆ N0 with N ′ |= ⊥.

Practically, fairness can be guaranteed by always considering
minimal clauses of with respect to a well-founded ordering ◁ such
that for any clause C ∈ N there are only finitely many clauses D
with D ◁ C. Counting the number of symbols in a clause together
with < is an example for such an ordering.

January 5, 2023 76/79

