Everything You Always Wanted to Know About First-Order CNF and Compactness (And Were Not Afraid to Ask)

First-Order CNF Transformation

Basically, same procedure, same complications as for propositional logic, but we have to take care of variables and quantifiers.

Extending the Notion of a Position

$$pos(x) := \{\epsilon\} \text{ if } x \in \mathcal{X}$$

$$pos(\phi) := \{\epsilon\} \text{ if } \phi \in \{\top, \bot\}$$

$$pos(\neg \phi) := \{\epsilon\} \cup \{1p \mid p \in pos(\phi)\}$$

$$pos(\phi \circ \psi) := \{\epsilon\} \cup \{1p \mid p \in pos(\phi)\} \cup \{2p \mid p \in pos(\psi)\}$$

$$pos(s \approx t) := \{\epsilon\} \cup \{1p \mid p \in pos(s)\} \cup \{2p \mid p \in pos(t)\}$$

$$pos(f(t_1, \dots, t_n)) := \{\epsilon\} \cup \bigcup_{i=1}^n \{ip \mid p \in pos(t_i)\}$$

$$pos(P(t_1, \dots, t_n)) := \{\epsilon\} \cup \bigcup_{i=1}^n \{ip \mid p \in pos(t_i)\}$$

$$pos(\forall x.\phi) := \{\epsilon\} \cup \{1p \mid p \in pos(\phi)\}$$

$$pos(\exists x.\phi) := \{\epsilon\} \cup \{1p \mid p \in pos(\phi)\}$$

Free, Bound, All Variables

The set of *all* variables occurring in a term *t* (formula ϕ) is denoted by vars(*t*) (vars(ϕ)) and formally defined as

$$vars(t) := \{x \in \mathcal{X} \mid x = t|_{p}, p \in pos(t)\}$$

for terms and for formulas

$$\mathsf{vars}(\phi) := \{ x \in \mathcal{X} \mid x = t | \rho, \rho \in \mathsf{pos}(\phi) \}.$$

The set of *free* variables of a formula ϕ (term *t*) is given by $fvars(\phi, \emptyset)$ ($fvars(t, \emptyset)$) and recursively defined by

$$\begin{array}{l} \operatorname{fvars}(\psi_1 \circ \psi_2, B) := \operatorname{fvars}(\psi_1, B) \cup \operatorname{fvars}(\psi_2, B) \\ & \operatorname{where} \circ \in \{ \land, \lor, \rightarrow, \leftrightarrow \} \\ & \operatorname{fvars}(\forall x.\psi, B) := \operatorname{fvars}(\psi, B \cup \{x\}) \\ & \operatorname{fvars}(\exists x.\psi, B) := \operatorname{fvars}(\psi, B \cup \{x\}) \\ & \operatorname{fvars}(\neg \psi, B) := \operatorname{fvars}(\psi, B) \\ & \operatorname{fvars}(L, B) := \operatorname{vars}(L) \setminus B \quad \text{for a literal } L \\ & \operatorname{fvars}(t, B) := \operatorname{vars}(t) \setminus B \quad \text{for a term } t \end{array}$$

For fvars(ϕ , \emptyset) I also write fvars(ϕ).

The set of *bound* variables is defined exactly the same except for the literal (term) case: bvars(L, B) := B (bvars(t, B) := B).

Following the propositional procedure, elimintation of \top, \bot and negation removal is for quantifiers as follows:

ElimTB13	$\chi[\{\forall,\exists\}\mathbf{x}.\top]_{\rho} \Rightarrow_{ACNF} \chi[\top]_{\rho}$
ElimTB14	$\chi[\{\forall,\exists\}\mathbf{X}.\bot]_{\mathbf{\rho}} \Rightarrow_{ACNF} \chi[\bot]_{\mathbf{\rho}}$
PushNeg4	$\chi[\neg \forall \mathbf{X}.\phi]_{\mathbf{p}} \Rightarrow_{ACNF} \chi[\exists \mathbf{X}.\neg\phi]_{\mathbf{p}}$
PushNeg5	$\chi[\neg \exists \mathbf{x}.\phi]_{\boldsymbol{\rho}} \Rightarrow_{ACNF} \chi[\forall \mathbf{x}.\neg\phi]_{\boldsymbol{\rho}}$

Generalizing Renaming

$$def(\psi, p, P(\vec{x}_n)) := \begin{cases} \forall \vec{x}_n . (P(\vec{x}_n) \to \psi|_p) & \text{if } pol(\psi, p) = 1 \\ \forall \vec{x}_n . (\psi|_p \to P(\vec{x}_n)) & \text{if } pol(\psi, p) = -1 \\ \forall \vec{x}_n . (P(\vec{x}_n) \leftrightarrow \psi|_p) & \text{if } pol(\psi, p) = 0 \end{cases}$$

SimpleRenaming $\phi \Rightarrow_{ACNF} \phi[P(\vec{x}_n)]_p \land def(\phi, p, P(\vec{x}_n))$ provided $p \in pos(\phi)$ and $fvars(\phi|_p) = \{x_1, \dots, x_n\}$ and P is fresh to ϕ

Due to quantifier bindings, application of a substitution σ to a formula is more complicated.

$$\begin{split} \bot \sigma &:= \bot \qquad \forall \sigma := \top \\ (f(t_1, \dots, t_n))\sigma &:= f(t_1\sigma, \dots, t_n\sigma) \\ (P(t_1, \dots, t_n))\sigma &:= P(t_1\sigma, \dots, t_n\sigma) \\ (s \approx t)\sigma &:= (s\sigma \approx t\sigma) \\ (\neg \phi)\sigma &:= \neg (\phi\sigma) \\ (\phi \circ \psi)\sigma &:= \phi\sigma \circ \psi\sigma \\ & \text{where } \circ \in \{\lor, \land, \rightarrow, \leftrightarrow\} \\ (Qx.\phi)\sigma &:= Qz.(\phi\sigma[x \mapsto z]) \\ Q \in \{\forall, \exists\}, z \text{ is a fresh variable} \end{split}$$

RenVar $\phi \Rightarrow_{\mathsf{ACNF}} \phi \sigma \quad \sigma = \{\}$

For Skolemization (next slide) mini scoping is important and I assume that explicit or implicit negations are moved inwards to the literal level.

MiniScope1 $\chi[\forall x.(\psi_1 \circ \psi_2)]_{\rho} \Rightarrow_{\mathsf{ACNF}} \chi[(\forall x.\psi_1) \circ \psi_2]_{\rho}$ provided $\circ \in \{\land, \lor\}, x \notin \mathsf{fvars}(\psi_2)$

MiniScope2 $\chi[\exists x.(\psi_1 \circ \psi_2)]_{\rho} \Rightarrow_{\mathsf{ACNF}} \chi[(\exists x.\psi_1) \circ \psi_2]_{\rho}$ provided $\circ \in \{\land,\lor\}, x \notin \mathsf{fvars}(\psi_2)$

MiniScope3 $\chi[\forall x.(\psi_1 \land \psi_2)]_{\rho} \Rightarrow_{\mathsf{ACNF}} \chi[(\forall x.\psi_1) \land (\forall x.\psi_2)\sigma]_{\rho}$ where $\sigma = \{\}, x \in (\mathsf{fvars}(\psi_1) \cap \mathsf{fvars}(\psi_2))$

MiniScope4 $\chi[\exists x.(\psi_1 \lor \psi_2)]_{\rho} \Rightarrow_{\mathsf{ACNF}} \chi[(\exists x.\psi_1) \lor (\exists x.\psi_2)\sigma]_{\rho}$ where $\sigma = \{\}, x \in (\mathsf{fvars}(\psi_1) \cap \mathsf{fvars}(\psi_2))$

For Skolemization I assume that explicit or implicit negations are moved inwards to the literal level.

Skolemization $\chi[\exists x.\phi]_{\rho} \Rightarrow_{\mathsf{ACNF}} \chi[\phi\{x \mapsto f(y_1,\ldots,y_n)\}]_{\rho}$ provided there is no position $q, q < \rho$ with $\chi|_q = \exists z.\psi$, fvars $(\exists x.\phi) = \{y_1,\ldots,y_n\}, f: \operatorname{sort}(y_1) \times \ldots \times \operatorname{sort}(y_n) \to \operatorname{sort}(x)$ is a fresh function symbol

Finally universal quantifiers are dropped

RemForall $\chi[\forall x.\psi]_{\rho} \Rightarrow_{\mathsf{ACNF}} \chi[\psi]_{\rho}$

and then the actual CNF is then done by distributivity, exactly as it is done in propositional logic.

Algorithm 2: $acnf(\phi)$

Input : A first-order formula ϕ .

Output A formula ψ in CNF satisfiability preserving to ϕ .

- ¹ whilerule (ElimTB1(ϕ),...,ElimTB14(ϕ)) do ;
- 2 **RenVar**(ϕ);
- **3** SimpleRenaming(ϕ) on obvious positions;
- 4 whilerule (ElimEquiv1(ϕ),ElimEquiv2(ϕ)) do ;
- 5 whilerule (ElimImp(ϕ)) do ;
- 6 whilerule (PushNeg1(ϕ),...,PushNeg5(ϕ)) do ;
- 7 whilerule (MiniScope1(ϕ),...,MiniScope4(ϕ)) do ;
- 8 whilerule (Skolemization(ϕ)) do ;
- 9 whilerule (RemForall(ϕ)) do ;
- 10 whilerule (PushDisj(ϕ)) do ;
- 11 return ϕ

Superposition Saturation Formally

Definition (Inferences & Redundancy)

$$\mathsf{Red}(N) := \{ C \mid N^{\prec C} \models C \}$$
$$\mathsf{Sup}(N) := N \cup \{ C \mid N \Rightarrow_{SUP} N \cup \{ C \} \}$$

Definition (Saturation)

N is called *saturated up to redundancy* if $Sup(N \setminus Red(N)) \subseteq N \cup Red(N)$

Theorem (Superposition Completeness)

Let *N* be saturated up to redundancy, then $N \models \bot$ iff $\bot \in N$.

Proof.

Follows from Theorem 3.13.9.

Computing Saturated Sets

Definition (Run)

A *run* of the superposition calculus is a sequence $N_0 \vdash N_1 \vdash N_2 \vdash \dots$ such that 1. if $C \in (N_{i+1} \setminus N_i)$ then $N_i \Rightarrow_{SUP} N_i \cup \{C\}$ 2. if $C \in (N_i \setminus N_{i+1})$ then $C \in \text{Red}(N_i)$

For a run define

$$N^{\infty} = \bigcup_{i \ge 0} N_i$$
 and $N^* = \bigcup_{i \ge 0} \bigcap_{j \ge i} N_j$

where N^* is called the set of *persistent clauses* of the run.

Definition (Fair Run)

A run is called *fair*, if for every $C \in \text{Sup}(N^* \setminus \text{Red}(N^*))$ there is some *i* with $C \in (N_i \cup \text{Red}(N_i))$.

Theorem (Dynamic Completeness)

Let N^* be the limit of a fair run $N_0 \vdash N_1 \vdash \ldots$ Then N_0 is satisfiable iff $\perp \notin N^*$.

Proof.

⇒: Obvious because $N_0 \models N^*$. ⇐: By fairness, N^* is saturated up to redundancy. If $\perp \notin N^*$ then $(\operatorname{grd}(\Sigma, N^*))_{\mathcal{I}} \models N^*$. For every clause $C \in N_0$ either $C \in N^*$ or $C \in \operatorname{Red}(N^*)$, therefore $(\operatorname{grd}(\Sigma, N^*))_{\mathcal{I}} \models N_0$.

Now if $\bot \in N^*$ then $\bot \in N_i$ for some minimal *i* and therefore there is a subset $N' \subseteq N_0$ with $N' \models \bot$.

Practically, fairness can be guaranteed by always considering minimal clauses of with respect to a well-founded ordering \triangleleft such that for any clause $C \in N$ there are only finitely many clauses D with $D \triangleleft C$. Counting the number of symbols in a clause together with < is an example for such an ordering.

