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Equational Logic

In the next couple of lectures we combine first-order logic with
equalities.
In general, satisfiability of first-order formulas with respect to
equality is undecidable. Even the word problem for conjunctions
of equations is undecidable. However, satisfiability for ground
first-order formulas is decidable.
Therefore, we start investigating equational logic by investigating
conjunctions/sets of ground unit equations. For a set of unit
(in)equations we write E .

The theory of equational logic is also known as EUF (equality
with uninterpreted function symbols) and is one of the standard
theories considered in SMT (Satisfiability Modulo Theories).
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Equivalent formulations
An equational clause

∀x⃗ (t1 ≈ s1 ∨ . . . ∨ tn ≈ sn ∨ l1 ̸≈ r1 ∨ . . . ∨ lk ̸≈ rk )

is valid iff

∃x⃗ (t1 ̸≈ s1 ∧ . . . ∧ tn ̸≈ sn ∧ l1 ≈ r1 ∧ . . . ∧ lk ≈ rk )

is unsatisfiable iff the Skolemized (ground!) formula

(t1 ̸≈ s1 ∧ . . . ∧ tn ̸≈ sn ∧ l1 ≈ r1 ∧ . . . ∧ lk ≈ rk ){x⃗ 7→ c⃗}

is unsatisfiable iff the formula

(t1 ≈ s1 ∨ . . . ∨ tn ≈ sn ∨ l1 ̸≈ r1 ∨ . . . ∨ lk ̸≈ rk ){x⃗ 7→ c⃗}

is valid.
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Equivalent formulations

Please note validity of these transformations depends on the
shape of the (starting) formula. Validity is not preserved in case
of a quantifier alternation or an existentially quantified formula, in
general, or the eventual formula must not be ground. There is no
way to transform a first-order (equational) formula into a ground
formula preserving validity, in general.
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Congruence Closure

Input: t1 ̸≈ s1 ∧ . . . ∧ tn ̸≈ sn ∧ l1 ≈ r1 ∧ . . . ∧ lk ≈ rk

Main idea: transform the equations E = {l1 ≈ r1, . . . , lk ≈ rk} into
an equivalent convergent TRS R and check whether si↓R = ti↓R.

If si↓R = ti↓R for some i then E |= si ≈ ti and the overall
conjunction is unsatisfiable.

If si↓R = ti↓R for no i , i.e., si↓R ̸= ti↓R for all i then the overall
conjunction is satisfiable.
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Flattening

E = l1 ≈ r1 ∧ . . . ∧ ln ≈ rn

Flattening: ignore the inequations and transform the equations E
so there are only two kinds of equations.

Term equations: f (ci1 , . . . , cin) ≈ ci0

Constant equations: ci ≈ cj .
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Flattening
E = l1 ≈ r1 ∧ . . . ∧ ln ≈ rn

Flattening E [f (t1, . . . , tn)]p1,...,pk ⇒CCF
E [c/p1, . . . ,pk ] ∧ f (t1, . . . , tn) ≈ c
provided all ti are constants, the pj are all positions in E of
f (t1, . . . , tn), |pj | > 2 for some j ∈ {1, . . . , k} or pj = q.2 and E |q.1
is not a constant for some q and j ∈ {1, . . . , k}, and c is fresh

Note that |pj | > 2 means that f (t1, . . . , tn) appears in E as an
argument of a function symbol.

Note that pk = q.2 and E |q.1 is not a constant means that E |m is
an equation with two complex terms on both sides, e.g.,
g(a) ≈ f (a,a).
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As a result: only two kinds of equations left.

Term equations: f (ci1 , . . . , cin) ≈ ci0

Constant equations: ci ≈ cj .

Note that each fresh constant corresponds to a shared label for a
syntactically equivalent subterm defined by one of the term
equations.
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Congruence Closure

The congruence closure algorithm is presented as a set of
abstract rewrite rules operating on a pair of equations E and a
set of rules R, (E ;R).

(E0;R0) ⇒CC (E1;R1) ⇒CC (E2;R2) ⇒CC . . .

At the beginning, E = E0 is a set of constant equations and
R = R0 is the set of term equations oriented from left-to-right. At
termination, E is empty and R contains the result.

This means we split our flattened set of equations E ′ into E
containing all constant equations of E , R containing all term
equations oriented as rules; the inequations will be ignored for
now.
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Simplify (E ⊎ {c
.
≈ c′};R ⊎ {c → c′′}) ⇒CC

(E ∪ {c′′ .
≈ c′};R ∪ {c → c′′})

Delete (E ⊎ {c ≈ c};R) ⇒CC (E ;R)

Orient (E ⊎ {c
.
≈ c′};R) ⇒CC (E ;R ∪ {c → c′})

if c ≻ c′
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Deduce (E ;R ⊎ {t → c, t → c′}) ⇒CC
(E ∪ {c ≈ c′};R ∪ {t → c})

Collapse (E ;R ⊎ {t [c]p → c′, c → c′′}) ⇒CC
(E ;R ∪ {t [c′′]p → c′, c → c′′})
p ̸= ϵ

For rule Deduce, t is either a term of the form f (c1, . . . , cn) or a
constant ci .
For rule Collapse, t is always of the form f (c1, . . . , cn)
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Usual Strategy: Simplify, Delete and Orient are preferred over
Deduce and Collapse. Then if Collapse becomes applicable, it is
applied exhaustively.

Implementation Recommendations:

Instead of fixing the ordering ≺ in advance, it is preferable to
define it on the fly during the algorithm: if an equation c ≈ c′

between two constants is oriented, a good heuristic is to make
that constant symbol larger that occurs less often in R, hence
producing afterwards fewer Collapse steps.

Represent terms as DAGs (directed acyclic graphs). Then it is
not necessary to introduce fresh constants (explicitly).
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Lemma (CC Termination)
CC always terminates and always in a state of the form (∅;R).

With the right tricks, the algorithm has worst-case run time
complexity O(m log m), where m is the number of edges in the
graph representation of the initial constant and term equations.
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Lemma (CC Soundness)
Let E ′ be a set of flattened equations, where E0 are all constant
equations of E ′ and R0 contains all term equations oriented as
rules. Let (E0;R0) ⇒CC . . . ⇒CC (En;Rn). Then E ′ |= si ≈ ti if
si ≈ ti ∈ En or si → ti ∈ Rn.

Idea: The conclusions are entailed by the premises, so every
model of the premises is a model of the conclusions.

Lemma (CC Completeness)
Let E ′ be a set of flattened equations, where E0 are all constant
equations of E ′ and R0 contains all term equations oriented as
rules. Let (∅;R) be the end state of a terminating CC run with
start state (E0;R0). Let s and t be two terms. Then s↓R = t↓R if
E ′ |= s ≈ t .
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Combining Theories

Here I discuss a basic variant of the Nelson-Oppen (NO)
combination procedure for two theories T1 and T2 over two
respective signatures Σ1 and Σ2 that do not share any function,
constant, or predicate symbols, but may share sorts. The idea of
the procedure is to reduce satisfiability of a quantifier-free
formula over Σ1 ∪ Σ2 to satisfiability of two separate formulas
over Σ1 and Σ2, respectively.
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Stably Infinite
There are several properties needed for the Nelson-Oppen
procedure to work. One of them is that the theory models always
include models with an infinite domain. Consider the two theories

T1 = {∀x , y(x ≈ a ∨ x ≈ b)}

and
T2 = {∀x .∃y , z.(x ̸≈ y ∧ x ̸≈ z ∧ y ̸≈ z}

that do not share any signature symbols. Models of T1 have at
most two elements, models of T2 at least three. So the
conjunction (T1 ∪ T2) is already unsatisfiable. In order to ensure
that different models for the respective theory can be combined,
the Nelson-Oppen procedure requires the existence of models
with infinite cardinality.
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Stably Infinite

7.1.2 Definition (Stably-Infinite Theory)
A theory T is stably-infinite if for every quantifier-free formula ϕ, if
T |= ϕ, then then there exists also a model A of infinite
cardinality, such that A |=T ϕ
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Convex Theory

7.1.1 Definition (Convex Theory)
A theory T is convex if for a conjunction ϕ of literals with
ϕ |=T x1 ≈ y1 ∨ . . . ∨ xn ≈ yn then ϕ |=T xk ≈ yk for some k .

Holds for EUF and LRA, but not LIA!

Example:

1 < xLIA ∧ xLIA < 4 |=LIA xLIA = 2 ∨ xLIA = 3

but none of the two single disjuncts is a consequence.
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Nelson-Oppen Combination

7.1.3 Definition (Nelson-Oppen Basic Restrictions)
Let T1 and T2 be two theories. Then the Nelson-Oppen Basic
Restrictions are:
(i) There are decision procedures for T1 and T2.
(ii) Each decision procedure returns a complete set of variable

identities as consequence of a formula.
(iii) Σ1 ∩ Σ2 = ∅ except for common sorts.
(iv) Both theories are convex.
(v) T1 and T2 are stably-infinite.
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Actually, restriction 7.1.3-2 is not needed, because a given finite
quantifier-free formula ϕ over Σ1 ∪ Σ2 contains only finitely many
different variables. Now instead of putting the burden to identify
variables on the decision procedure, all potential variable
identifications can be guessed and tested afterwards. The
disadvantage of this approach is, of course, that there are
exponentially many identifications with respect to a fixed number
of variables. Therefore, assuming 7.1.3-2 results in a more
efficient procedure and is also supported by many procedures
from Section 6.

Restriction 7.1.3-5 can be further relaxed to assume that the
domains of all shared sorts of all models are either infinite or
have the same number of elements.
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Purification

Purify N ⊎ {L[t [s]i ]p} ⇒NO N ⊎ {L[t [z]i ]p, z ≈ s}
if t = f (t1, . . . , tn), s = h(s1, . . . , sm), the function symbols f and h
are from different signatures, 1 ≤ i ≤ n, (i.e., ti = s) and z is a
fresh variable of appropriate sort

January 5, 2023 273/277



Decidable Logics Propositional Logic Modulo Theories Decidable Logics Combining Theories

Nelson-Oppen Calculus

Now a Nelson-Oppen problem state is a five tuple
(N1,E1,N2,E2, s) with s ∈ {⊤,⊥, fail}, the sets E1 and E2 contain
variable equations, and N1, N2 literals over the respective
signatures, where

(N1; ∅;N2; ∅;⊥) is the start state for some purified set of
atoms N = N1 ∪N2 where the Ni are built
from the respective signatures only

(N1;E1;N2;E2; fail) is a final state, where N1 ∪N2 ∪E1 ∪E2 is
unsatisfiable

(N1;E1;N2;E2;⊥) is an intermediate state, where N1 ∪ E2
and N2 ∪ E1 have to be checked for satis-
fiability

(N1; ∅;N2; ∅;⊤) is a final state, where N1∪N2 is satisfiable
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Solve (N1;E1;N2;E2;⊥) ⇒NO (N ′
1;E

′
1;N

′
2;E

′
2;⊥)

if N ′
1 = N1 ∪ E1 ∪ E2 and N ′

2 = N2 ∪ E1 ∪ E2 are both
Ti -satisfiable, respectively, E ′

1 are all new variable equations
derivable from N ′

1, E ′
2 are all new variable equations derivable

from N ′
2 and E ′

1 ∪ E ′
2 ̸= ∅

Success (N1;E1;N2;E2;⊥) ⇒NO (N ′
1; ∅;N ′

2; ∅;⊤)

if N ′
1 = N1 ∪ E1 ∪ E2 and N ′

2 = N2 ∪ E1 ∪ E2 are both
Ti -satisfiable, respectively, E ′

1 are all new variable equations
derivable from N ′

1, E ′
2 are all new variable equations derivable

from N ′
2 and E ′

1 ∪ E ′
2 = ∅

Fail (N1;E1;N2;E2;⊥) ⇒NO (N1;E1;N2;E2; fail)
if N ′

1 = N1 ∪ E1 ∪ E2 or N ′
2 = N2 ∪ E1 ∪ E2 is Ti -unsatisfiable,

respectively
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7.1.6 Definition (Arrangement)
Given a (finite) set of parameters X , an arrangement A over X is
a (finite) set of equalities and inequalities over X such that for all
x1, x2 ∈ X either x1 ≈ x2 ∈ A or x1 ̸≈ x2 ∈ A.

7.1.7 Proposition (Nelson-Oppen modulo Arrangement)
Let T1 and T2 be two theories satisfying the restrictions of
Definition 7.1.3 except for restriction 2. Let ϕ be a conjunction of
literals over Σ1 ∪ Σ2. Let N1 and N2 be the purified literal sets out
of ϕ. Then ϕ is satisfiable iff there is an arrangement A over
vars(ϕ) such that N1 ∪ A is T1-satisfiable and N2 ∪ A is
T2-satisfiable.
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7.1.8 Theorem (Nelson-Oppen is Sound, Complete and
Terminating)
Let T1, T2 be two theories satisfying the Nelson-Oppen basic
restrictions. Let ϕ be a conjunction of literals over Σ1 ∪ Σ2 and
N1, N2 be the result of purifying ϕ.
(i) All sequences (N1; ∅;N2; ∅;⊥) ⇒∗

NO . . . are finite.
Let (N1; ∅;N2; ∅;⊥) ⇒∗

NO (N1;E1;N2;E2; s) be a derivation with
finite state (N1;E1;N2;E2; s),
(ii) If s = fail then ϕ is unsatisfiable in T1 ∪ T2.
(iii) If s = ⊤ then ϕ is satisfiable in T1 ∪ T2.
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