Automated Reasoning

Martin Bromberger, Sibylle Méhle,
Simon Schwarz, Christoph Weidenbach

Max Planck Institute for Informatics

October 27, 2022

Preliminaries Propositional Logic
0000000000000 9000000000000 00

Propositional Logic: Syntax

2.1.1 Definition (Propositional Formula)

The set PROP(X) of propositional formulas over a signature ¥, is
inductively defined by:

PROP(X) Comment

1 connective L denotes “false”
T connective T denotes “true”
P for any propositional variable P € ¥

(—9) connective — denotes “negation”
(p A1) connective A denotes “conjunction”
(¢ V) connective V denotes “disjunction”
(¢ — ¢) connective — denotes “implication”
(¢ <» ¢) connective +» denotes “equivalence”

where ¢, € PROP(X).

October 27, 2022 18/83

Preliminaries Propositional Logic
0000000000000 000000000000 00

Propositional Logic: Semantics

2.2.1 Definition ((Partial) Valuation)

A Y -valuation is a map

AT {0,1}.

where {0, 1} is the set of truth values. A partial x-valuation is a
map A" : ¥ — {0,1} where ¥’ C ¥.

October 27, 2022 19/83

Preliminaries Propositional Logic
0000000000000 00@0000000000000000O0O00O00

2.2.2 Definition (Semantics)

A Y -valuation A is inductively extended from propositional
variables to propositional formulas ¢, € PROP(X) by

A(L) = 0
A(T) = 1
A(=¢) = 1-A(¢)
A(@A) = min({A(¢), A(¥)})
Alp V) = max({A(¢), A(¥)})
A(p =) = max({1 - A(¢), A¥)})
A(p <) = if A(¢p) = A(y) then 1 else 0

October 27, 2022 20/83

Preliminaries Propositional Logic
0000000000000 000800

If A(¢) = 1 for some X-valuation A of a formula ¢ then ¢ is
satisfiable and we write A = ¢. In this case A is a model of ¢.

If A(¢) = 1 for all X-valuations A of a formula ¢ then ¢ is valid
and we write = ¢.

If there is no X-valuation A for a formula ¢ where A(¢) = 1 we
say ¢ is unsatisfiable.

A formula ¢ entails v, written ¢ |= 1, if for all X-valuations A
whenever A = ¢ then A = 1.

October 27, 2022 21/83

Preliminaries Propositional Logic
0000000000000 0000000000000 000

Propositional Logic: Operations

2.1.2 Definition (Atom, Literal, Clause)

A propositional variable P is called an atom. It is also called a
(positive) literal and its negation —P is called a (negative) literal.

The functions comp and atom map a literal to its complement, or
atom, respectively: if comp(—~P) = P and comp(P) = =P,
atom(—P) = P and atom(P) = P for all P € ¥. Literals are
denoted by letters L, K. Two literals P and —P are called
complementary.

A disjunction of literals L1 V...V L, is called a clause. A clause is
identified with the multiset of its literals.

October 27, 2022 22/83

Preliminaries Propositional Logic
0000000000000 00000@00

2.1.3 Definition (Position)
A position is a word over N. The set of positions of a formula ¢ is
inductively defined by

pos(¢) = {e}ifpe{T,LtorpeXx
pos(—¢) = {efU{1p|p € pos(¢)}
pos(porp) = {e}U{lp|pc pos(¢)}U{2p|p c pos(y)}

where o € {A,V, —, <}

October 27, 2022 23/83

Preliminaries Propositional Logic
0000000000000 0000008000

The prefix order < on positions is defined by p < q if there is
some p’ such that po’ = q. Note that the prefix order is partial,
e.g., the positions 12 and 21 are not comparable, they are
“parallel”, see below.

The relation < is the strict part of <, i.e., p < g if p < g but not
q=<p.

The relation || denotes incomparable, also called parallel
positions, i.e., p || q if neither p < g, nor q < p.

A position p is above q if p < q, pis strictly above q if p < g, and
p and q are parallel if p || q.

October 27, 2022 24/83

Preliminaries Propositional Logic
0000000000000 0000000800

The size of a formula ¢ is given by the cardinality of pos(¢):
|| := | pos(e)|-

The subformula of ¢ at position p € pos(¢) is inductively defined
by ¢l := ¢, =¢l1p := dlp, and (1 o ¢2)|jp := dilp where i € {1,2},
o€ {/\, V, —, <—>}

Finally, the replacement of a subformula at position p € pos(¢) by
a formula ¢ is inductively defined by ¢[v]. := v,

(—D)[W]1p == —0[]p, and (¢1 0 p2)[Y]1p = (¢1[¥]p © ¢2),
(01 0 $2)[¥]2p := (¢1 0 P2[Y]p), Where o € {A,V, =, <>}

October 27, 2022 25/83

Preliminaries Propositional Logic
0000000000000 0000000 0e000000000000000000000000000000O000000000000000000000000000

2.1.5 Definition (Polarity)

The polarity of the subformula ¢|, of ¢ at position p € pos(¢) is
inductively defined by

pol(¢,e) = 1
pOl(_‘(ﬁ, 1,0) = = p0|(¢7 p)
pol(¢1 0 ¢2,ip) = pol(¢;,p) if o€ {A,V} ie{1,2}
p0|(¢1 — ¢2a 1p) = = p0|(¢1ap)
p0|(¢1 — ¢252p) = p0|(¢27p)
pol(¢p1 <> ¢o,ip) = 0 if ie{1,2}

October 27, 2022 26/83

Preliminaries Propositional Logic
0000000000000 000000000800

Valuations can be nicely represented by sets or sequences of
literals that do not contain complementary literals nor duplicates.

If Ais a (partial) valuation of domain X then it can be represented
by the set
{P|PeXxand A(P)=1}U{=P| P e X and A(P) = 0}.

Another, equivalent representation are Herbrand interpretations
that are sets of positive literals, where all atoms not contained in
an Herbrand interpretation are false. If A is a total valuation of
domain X then it corresponds to the Herbrand interpretation
{P|Pexand A(P)=1}.

October 27, 2022 27/83

Preliminaries Propositional Logic
0000000000000 00000000008000

2.2.4 Theorem (Deduction Theorem)
oYt o -9

October 27, 2022 28/83

Preliminaries Propositional Logic
0000000000000 00000000000®00

2.2.6 Lemma (Formula Replacement)

Let ¢ be a propositional formula containing a subformula v at
position p, i.e., ¢|p = 1. Furthermore, assume = v <> x.
Then = ¢ < ¢[x]p.

October 27, 2022 29/83

Preliminaries Propositional Logic
0000000000000 000000000000 e000

Normal Forms

Definition (CNF, DNF)

A formula is in conjunctive normal form (CNF) or clause normal
form if it is a conjunction of disjunctions of literals, or in other
words, a conjunction of clauses.

A formula is in disjunctive normal form (DNF), if it is a disjunction
of conjunctions of literals.

October 27, 2022 30/83

Preliminaries Propositional Logic
0000000000000 0000000000000 800

Checking the validity of CNF formulas or the unsatisfiability of
DNF formulas is easy:

(i) a formula in CNF is valid, if and only if each of its disjunctions
contains a pair of complementary literals P and —P,

(i) conversely, a formula in DNF is unsatisfiable, if and only if

each of its conjunctions contains a pair of complementary literals
P and -P

October 27, 2022 31/83

Preliminaries Propositional Logic
0000000000000 000000000000008000

Basic CNF Transformation

ElimEquiv xl(¢ < ¥V)lp =Benr X[(@ = ¥) A (Y — 9)lp
Elimimp x[(@ = ¥)lp =8ene X[(—0 VY)]p
PushNeg1 x[(¢VY)]lp =BenE X[(—¢ A —1)]p
PushNeg2 x[~(¢ A9¥)]lp =Bene X[(—9V —¥)]p
PushNeg3 x[¢lp =BcNF X[2]p

PushDisj x[(¢1 A d2) Vlp =Bene X[(01 V) A(d2VY)lp
ElimTB1 x[(@AT)lp =8ene X[¢lp

ElimTB2 xl(e A L)lp =8enk x[Lp

ElimTB3 xl(@V T)lp =8ene X[Tlp

ElimTB4 xl(@V LD)lp =Benk x[4lp

ElimTB5 x[-Llp =8ene X[Tlp

ElimTB6 x[=Tlp =Bene X[L]p

October 27, 2022 32/83

Preliminaries Propositional Logic
0000000000000 000000000000000800

© 00 N O g s ODN

- -t
- O

s
)

Basic CNF Algorithm

Algorithm: 2 benf(¢)

Input : A propositional formula ¢.
Output A propositional formula v equivalent to ¢ in CNF.

\:Nhilerule (ElimEquiv(¢)) do ;

\;Nhilerule (Elimimp(¢)) do ;

\;Nhilerule (ElimTB1(¢),...,ElimTB6(¢)) do ;
\;Nhilerule (PushNeg1(¢),. . .,PushNeg3(¢)) do ;
\;Nhilerule (PushDisj(¢)) do ;

’

return ¢;

October27,-2022 33/83

Preliminaries Propositional Logic
0000000000000 00000000000000008000

Advanced CNF Algorithm

For the formula

P1 4 (P2 4 (P3 <~ (.. (Pn_1 A d Pn) ..)))

the basic CNF algorithm generates a CNF with 2"~ clauses.

October 27, 2022 34/83

Preliminaries Propositional Logic
0000000000000 0000000000000 0000®O0O000

2.5.4 Proposition (Renaming Variables)
Let P be a propositional variable not occurring in [¢]p.

1. If pol(+), p) = 1, then ¢[¢], is satisfiable if and only if
Y[P]p A (P — ¢) is satisfiable.

2. If pol(y), p) = —1, then +[¢],, is satisfiable if and only if
Y[Plp A (¢ — P) is satisfiable.

3. If pol(¢, p) = 0, then ¢[¢], is satisfiable if and only if
Y[Plp A (P <+ ¢) is satisfiable.

October 27, 2022 35/83

Preliminaries Propositional Logic
0000000000000 000000000000000000e000

Renaming

SimpleRenaming ¢ =>simpren ®[P1lp,[P2lp, - - - [Pnlp, N
def(¢,p1, P1) A... A def(o[P1lp, [P2lp, - - - [Pn—1lp,_1>Pn> Pn)

provided {py, ..., pn} C pos(¢) and for all i, i + j either p; || p;; or
pi > piyj and the P; are different and new to ¢

Simple choice: choose {p, ..., pn} to be all non-literal and
non-negation positions of ¢.

October 27, 2022 36/83

Preliminaries Propositional Logic
0000000000000 0000000000000000000e00

Renaming Definition

(P — ¢lp) if pol(¢,p) =1
def(,p, P) := ¢ (¥lp = P) if pol(s,p) = —1
(P 4lp) if pol(¢,p) =0

October 27, 2022 37/83

Preliminaries Propositional Logic
0000000000000 000000000000000000008000

Obvious Positions

A smaller set of positions from ¢, called obvious positions, is still
preventing the explosion and given by the rules:

(i) p is an obvious position if ¢|, is an equivalence and there is a
position g < p such that ¢|4 is either an equivalence or
disjunctive in ¢ or

(i) pq is an obvious position if ¢|pq is a conjunctive formula in ¢,
¢|p is a disjunctive formula in ¢, g # ¢, and for all positions r with
p < r < pq the formula ¢|, is not a conjunctive formula.

A formula ¢|p is conjunctive in ¢ if ¢|, is a conjunction and

pol(¢, p) € {0, 1} or ¢|p is a disjunction or implication and
pol(¢,p) € {0, —1}.

Analogously, a formula ¢|, is disjunctive in ¢ if ¢|, is a disjunction
or implication and pol(¢, p) € {0,1} or ¢|p is a conjunction and
pol(¢,p) € {0, —1}.

October 27, 2022 38/83

Preliminaries Propositional Logic
0000000000000 000000000000000000000800

Polarity Dependent Equivalence
Elimination

ElimEquivli x[(¢ < ¥)]p =acne X[(¢ = ¥) A (¥ = 9)]p
provided pol(x, p) € {0,1}

ElimEquiv2 x[(¢ < ¥)]p =acnE X[(@ A D)V (md A —)]p
provided pol(x, p) = —1

October 27, 2022 39/83

Preliminaries
0000000000000

Propositional Logic
00000000000000000000008000

Extra T, L Elimination Rules

where the two rules ElimTB11, ElimTB12 for equivalences are

ElimTB7
ElimTB8
ElimTB9
ElimTB10
ElimTB11
ElimTB12

xlg — Llp
xX[L — dlp
xl¢ = Tlp
X[T — dlp
xle < Llp
xlg < Tlp

= ACNF
= ACNF
= ACNF
= ACNF
= ACNF
= ACNF

applied with respect to commutativity of «.

X[=dlp
x[Tlp
x[Tlo
x[9lp
x[=¢lp
x[¢]p

October 27, 2022

40/83

Preliminaries Propositional Logic

0000000000000

© 00 N O g s ODN

- -t
- O

s
)

Advanced CNF Algorithm

0000000000000 000O0000O000e00

Algorithm: 3 acnf(¢)

Input : A formula ¢.
Output A formula ¢ in CNF satisfiability preserving to ¢.

\:Nhilerule (ElimTB1(¢),...,ElimTB12(¢)) do ;

SimpleRenaming(¢) on obvious positions;
whilerule (ElimEquiv1(¢),ElimEquiv2(¢)) do ;

\,Nhilerule (Elimimp(¢)) do ;

whilerule (PushNeg1(¢),. . .,PushNeg3(¢)) do ;

)

whilerule (PushDisj(¢)) do ;

I‘Q,tum (b, October 27, 2022

41/83

	Preliminaries
	

	Propositional Logic
	

