

mpn stat

Automated Reasoning

Martin Bromberger, Sibylle Möhle, Simon Schwarz, Christoph Weidenbach

Max Planck Institute for Informatics

October 27, 2022

Propositional Logic: Syntax

2.1.1 Definition (Propositional Formula)

The set $\mathsf{PROP}(\Sigma)$ of *propositional formulas* over a signature $\Sigma,$ is inductively defined by:

$PROP(\Sigma)$	Comment
\perp	connective \perp denotes "false"
Т	connective $ op$ denotes "true"
Р	for any propositional variable $P \in \Sigma$
$(\neg \phi)$	connective ¬ denotes "negation"
$(\phi \wedge \psi)$	connective \land denotes "conjunction"
$(\phi \lor \psi)$	connective \lor denotes "disjunction"
$(\phi ightarrow \psi)$	connective \rightarrow denotes "implication"
$(\phi \leftrightarrow \psi)$	connective \leftrightarrow denotes "equivalence"

where $\phi, \psi \in \mathsf{PROP}(\Sigma)$.

mp 🖬

Propositional Logic: Semantics

2.2.1 Definition ((Partial) Valuation)

A Σ -valuation is a map

$$\mathcal{A}:\Sigma\to\{0,1\}.$$

where $\{0, 1\}$ is the set of *truth values*. A *partial* Σ *-valuation* is a map $\mathcal{A}' : \Sigma' \to \{0, 1\}$ where $\Sigma' \subseteq \Sigma$.

2.2.2 Definition (Semantics)

A Σ -valuation \mathcal{A} is inductively extended from propositional variables to propositional formulas $\phi, \psi \in \mathsf{PROP}(\Sigma)$ by

$$\begin{array}{rcl} \mathcal{A}(\bot) & := & 0 \\ \mathcal{A}(\top) & := & 1 \\ \mathcal{A}(\neg \phi) & := & 1 - \mathcal{A}(\phi) \\ \mathcal{A}(\phi \land \psi) & := & \min(\{\mathcal{A}(\phi), \mathcal{A}(\psi)\}) \\ \mathcal{A}(\phi \lor \psi) & := & \max(\{\mathcal{A}(\phi), \mathcal{A}(\psi)\}) \\ \mathcal{A}(\phi \to \psi) & := & \max(\{1 - \mathcal{A}(\phi), \mathcal{A}(\psi)\}) \\ \mathcal{A}(\phi \leftrightarrow \psi) & := & \operatorname{if} \mathcal{A}(\phi) = \mathcal{A}(\psi) \text{ then 1 else 0} \end{array}$$

If $\mathcal{A}(\phi) = 1$ for some Σ -valuation \mathcal{A} of a formula ϕ then ϕ is *satisfiable* and we write $\mathcal{A} \models \phi$. In this case \mathcal{A} is a *model* of ϕ .

If $\mathcal{A}(\phi) = 1$ for all Σ -valuations \mathcal{A} of a formula ϕ then ϕ is *valid* and we write $\models \phi$.

If there is no Σ -valuation \mathcal{A} for a formula ϕ where $\mathcal{A}(\phi) = 1$ we say ϕ is *unsatisfiable*.

A formula ϕ *entails* ψ , written $\phi \models \psi$, if for all Σ -valuations \mathcal{A} whenever $\mathcal{A} \models \phi$ then $\mathcal{A} \models \psi$.

Propositional Logic: Operations

2.1.2 Definition (Atom, Literal, Clause)

A propositional variable *P* is called an *atom*. It is also called a *(positive) literal* and its negation $\neg P$ is called a *(negative) literal*.

The functions comp and atom map a literal to its complement, or atom, respectively: if $comp(\neg P) = P$ and $comp(P) = \neg P$, $atom(\neg P) = P$ and atom(P) = P for all $P \in \Sigma$. Literals are denoted by letters *L*, *K*. Two literals *P* and $\neg P$ are called *complementary*.

A disjunction of literals $L_1 \vee \ldots \vee L_n$ is called a *clause*. A clause is identified with the multiset of its literals.

2.1.3 Definition (Position)

A *position* is a word over \mathbb{N} . The set of positions of a formula ϕ is inductively defined by

$$\begin{array}{ll} \mathsf{pos}(\phi) &:= & \{\epsilon\} \text{ if } \phi \in \{\top, \bot\} \text{ or } \phi \in \Sigma \\ \mathsf{pos}(\neg \phi) &:= & \{\epsilon\} \cup \{\mathbf{1}p \mid p \in \mathsf{pos}(\phi)\} \\ \mathsf{pos}(\phi \circ \psi) &:= & \{\epsilon\} \cup \{\mathbf{1}p \mid p \in \mathsf{pos}(\phi)\} \cup \{\mathbf{2}p \mid p \in \mathsf{pos}(\psi)\} \\ \mathsf{where} \circ \in \{\land, \lor, \rightarrow, \leftrightarrow\}. \end{array}$$

The prefix order \leq on positions is defined by $p \leq q$ if there is some p' such that pp' = q. Note that the prefix order is partial, e.g., the positions 12 and 21 are not comparable, they are "parallel", see below.

The relation < is the strict part of \leq , i.e., p < q if $p \leq q$ but not $q \leq p$.

The relation \parallel denotes incomparable, also called parallel positions, i.e., $p \parallel q$ if neither $p \leq q$, nor $q \leq p$.

A position *p* is above *q* if $p \le q$, *p* is strictly above *q* if p < q, and *p* and *q* are parallel if $p \parallel q$.

Preliminaries

The *size* of a formula ϕ is given by the cardinality of $pos(\phi)$: $|\phi| := |pos(\phi)|$.

The *subformula* of ϕ at position $p \in \text{pos}(\phi)$ is inductively defined by $\phi|_{\epsilon} := \phi, \neg \phi|_{1p} := \phi|_p$, and $(\phi_1 \circ \phi_2)|_{ip} := \phi_i|_p$ where $i \in \{1, 2\}$, $\circ \in \{\land, \lor, \rightarrow, \leftrightarrow\}$.

Finally, the *replacement* of a subformula at position $p \in pos(\phi)$ by a formula ψ is inductively defined by $\phi[\psi]_{\epsilon} := \psi$, $(\neg \phi)[\psi]_{1p} := \neg \phi[\psi]_p$, and $(\phi_1 \circ \phi_2)[\psi]_{1p} := (\phi_1[\psi]_p \circ \phi_2)$, $(\phi_1 \circ \phi_2)[\psi]_{2p} := (\phi_1 \circ \phi_2[\psi]_p)$, where $\circ \in \{\land, \lor, \rightarrow, \leftrightarrow\}$.

2.1.5 Definition (Polarity)

The *polarity* of the subformula $\phi|_p$ of ϕ at position $p \in pos(\phi)$ is inductively defined by

$$\begin{array}{rcl} {\rm pol}(\phi,\epsilon) &:= & 1 \\ {\rm pol}(\neg\phi,1p) &:= & - \,{\rm pol}(\phi,p) \\ {\rm pol}(\phi_1\circ\phi_2,ip) &:= & {\rm pol}(\phi_i,p) & {\rm if} \ \circ\in\{\wedge,\vee\}, \ i\in\{1,2\} \\ {\rm pol}(\phi_1\to\phi_2,1p) &:= & - \,{\rm pol}(\phi_1,p) \\ {\rm pol}(\phi_1\to\phi_2,2p) &:= & {\rm pol}(\phi_2,p) \\ {\rm pol}(\phi_1\leftrightarrow\phi_2,ip) &:= & 0 & {\rm if} \ i\in\{1,2\} \end{array}$$

Valuations can be nicely represented by sets or sequences of literals that do not contain complementary literals nor duplicates.

If ${\mathcal A}$ is a (partial) valuation of domain Σ then it can be represented by the set

$$\{P \mid P \in \Sigma \text{ and } \mathcal{A}(P) = 1\} \cup \{\neg P \mid P \in \Sigma \text{ and } \mathcal{A}(P) = 0\}.$$

Another, equivalent representation are *Herbrand* interpretations that are sets of positive literals, where all atoms not contained in an Herbrand interpretation are false. If \mathcal{A} is a total valuation of domain Σ then it corresponds to the Herbrand interpretation $\{P \mid P \in \Sigma \text{ and } \mathcal{A}(P) = 1\}.$

2.2.4 Theorem (Deduction Theorem)

$\phi \models \psi \text{ iff } \models \phi \rightarrow \psi$

2.2.6 Lemma (Formula Replacement)

Let ϕ be a propositional formula containing a subformula ψ at position p, i.e., $\phi|_p = \psi$. Furthermore, assume $\models \psi \leftrightarrow \chi$. Then $\models \phi \leftrightarrow \phi[\chi]_p$.

Normal Forms

Definition (CNF, DNF)

A formula is in *conjunctive normal form (CNF)* or *clause normal form* if it is a conjunction of disjunctions of literals, or in other words, a conjunction of clauses.

A formula is in *disjunctive normal form (DNF)*, if it is a disjunction of conjunctions of literals.

Checking the validity of CNF formulas or the unsatisfiability of DNF formulas is easy:

(i) a formula in CNF is valid, if and only if each of its disjunctions contains a pair of complementary literals P and $\neg P$,

(ii) conversely, a formula in DNF is unsatisfiable, if and only if each of its conjunctions contains a pair of complementary literals P and $\neg P$

Basic CNF Transformation

ElimEquiv ElimImp PushNeg1 PushNeg2 PushNeg3 PushDisi ElimTB1 FlimTB2 ElimTB3 FlimTB4 ElimTB5 ElimTB6

 $\chi | (\phi \leftrightarrow \psi) |_{\rho} \Rightarrow_{\mathsf{BCNF}} \chi [(\phi \rightarrow \psi) \land (\psi \rightarrow \phi)]_{\rho}$ $\chi[(\phi \to \psi)]_{\rho} \Rightarrow_{\mathsf{BCNF}} \chi[(\neg \phi \lor \psi)]_{\rho}$ $\chi[\neg(\phi \lor \psi)]_{\rho} \Rightarrow_{\mathsf{BCNF}} \chi[(\neg \phi \land \neg \psi)]_{\rho}$ $\chi[\neg(\phi \land \psi)]_{\rho} \Rightarrow_{\mathsf{BCNF}} \chi[(\neg \phi \lor \neg \psi)]_{\rho}$ $\chi[\neg\neg\phi]_{\rho} \Rightarrow_{\mathsf{BCNF}} \chi[\phi]_{\rho}$ $\chi[(\phi_1 \land \phi_2) \lor \psi]_{\mathcal{P}} \Rightarrow_{\mathsf{BCNF}} \chi[(\phi_1 \lor \psi) \land (\phi_2 \lor \psi)]_{\mathcal{P}}$ $\chi[(\phi \land \top)]_{\rho} \Rightarrow_{\mathsf{BCNF}} \chi[\phi]_{\rho}$ $\chi[(\phi \land \bot)]_{\rho} \Rightarrow_{\mathsf{BCNF}} \chi[\bot]_{\rho}$ $\chi[(\phi \lor \top)]_{\rho} \Rightarrow_{\mathsf{BCNF}} \chi[\top]_{\rho}$ $\chi[(\phi \lor \bot)]_{\rho} \Rightarrow_{\mathsf{BCNF}} \chi[\phi]_{\rho}$ $\chi[\neg \bot]_{\rho} \Rightarrow_{\mathsf{BCNF}} \chi[\top]_{\rho}$ $\chi[\neg\top]_{p} \Rightarrow_{\mathsf{BCNF}} \chi[\bot]_{p}$

Basic CNF Algorithm

```
1 Algorithm: 2 bcnf(\phi)
```

```
Input : A propositional formula \phi.
   Output A propositional formula \psi equivalent to \phi in CNF.
  whilerule (ElimEquiv(\phi)) do ;
2
3
   whilerule (ElimImp(\phi)) do ;
4
5
   5
  whilerule (ElimTB1(\phi),...,ElimTB6(\phi)) do ;
6
7
   whilerule (PushNeg1(\phi),...,PushNeg3(\phi)) do ;
8
9
   ÷
  whilerule (PushDisj(\phi)) do ;
10
11
```

```
\int \frac{\mathsf{return } \phi;}{\Phi}
```

Advanced CNF Algorithm

For the formula

$$P_1 \leftrightarrow (P_2 \leftrightarrow (P_3 \leftrightarrow (\dots (P_{n-1} \leftrightarrow P_n) \dots)))$$

the basic CNF algorithm generates a CNF with 2^{n-1} clauses.

2.5.4 Proposition (Renaming Variables)

Let *P* be a propositional variable not occurring in $\psi[\phi]_{\rho}$.

- If pol(ψ, p) = 1, then ψ[φ]_p is satisfiable if and only if ψ[P]_p ∧ (P → φ) is satisfiable.
- 2. If $pol(\psi, p) = -1$, then $\psi[\phi]_p$ is satisfiable if and only if $\psi[P]_p \land (\phi \to P)$ is satisfiable.
- 3. If $pol(\psi, p) = 0$, then $\psi[\phi]_p$ is satisfiable if and only if $\psi[P]_p \land (P \leftrightarrow \phi)$ is satisfiable.

Renaming

SimpleRenaming $\phi \Rightarrow_{\text{SimpRen}} \phi[P_1]_{p_1}[P_2]_{p_2} \dots [P_n]_{p_n} \land \text{def}(\phi, p_1, P_1) \land \dots \land \text{def}(\phi[P_1]_{p_1}[P_2]_{p_2} \dots [P_{n-1}]_{p_{n-1}}, p_n, P_n)$ provided $\{p_1, \dots, p_n\} \subset \text{pos}(\phi)$ and for all i, i + j either $p_i \parallel p_{i+j}$ or $p_i > p_{i+j}$ and the P_i are different and new to ϕ

Simple choice: choose $\{p_1, \ldots, p_n\}$ to be all non-literal and non-negation positions of ϕ .

Renaming Definition

$$def(\psi, p, P) := \begin{cases} (P \to \psi|_p) & \text{if } \operatorname{pol}(\psi, p) = 1\\ (\psi|_p \to P) & \text{if } \operatorname{pol}(\psi, p) = -1\\ (P \leftrightarrow \psi|_p) & \text{if } \operatorname{pol}(\psi, p) = 0 \end{cases}$$

Preliminaries

mp .

Obvious Positions

A smaller set of positions from ϕ , called *obvious positions*, is still preventing the explosion and given by the rules:

(i) *p* is an obvious position if $\phi|_p$ is an equivalence and there is a position q < p such that $\phi|_q$ is either an equivalence or disjunctive in ϕ or

(ii) pq is an obvious position if $\phi|_{pq}$ is a conjunctive formula in ϕ , $\phi|_p$ is a disjunctive formula in ϕ , $q \neq \epsilon$, and for all positions r with p < r < pq the formula $\phi|_r$ is not a conjunctive formula.

A formula $\phi|_{p}$ is conjunctive in ϕ if $\phi|_{p}$ is a conjunction and $pol(\phi, p) \in \{0, 1\}$ or $\phi|_{p}$ is a disjunction or implication and $pol(\phi, p) \in \{0, -1\}$.

Analogously, a formula $\phi|_{p}$ is disjunctive in ϕ if $\phi|_{p}$ is a disjunction or implication and $pol(\phi, p) \in \{0, 1\}$ or $\phi|_{p}$ is a conjunction and $pol(\phi, p) \in \{0, -1\}$.

Polarity Dependent Equivalence Elimination

 $\begin{array}{ll} \mbox{ElimEquiv1} & \chi[(\phi \leftrightarrow \psi)]_{\rho} \ \Rightarrow_{\mbox{ACNF}} \ \chi[(\phi \rightarrow \psi) \land (\psi \rightarrow \phi)]_{\rho} \\ \mbox{provided pol}(\chi, \rho) \in \{0, 1\} \end{array}$

ElimEquiv2 $\chi[(\phi \leftrightarrow \psi)]_{\rho} \Rightarrow_{\mathsf{ACNF}} \chi[(\phi \land \psi) \lor (\neg \phi \land \neg \psi)]_{\rho}$ provided $\operatorname{pol}(\chi, \rho) = -1$

Extra \top, \bot Elimination Rules

ElimTB7	$\chi[\phi \to \bot]_{\rho} \Rightarrow_{ACNF}$	$\chi[\neg\phi]_{\rho}$
ElimTB8	$\chi[\perp \to \phi]_{\rho} \Rightarrow_{ACNF}$	$\chi[\top]_{\rho}$
ElimTB9	$\chi[\phi \to \top]_{\rho} \Rightarrow_{ACNF}$	$\chi[\top]_{\rho}$
ElimTB10	$\chi[\top \to \phi]_{\rho} \Rightarrow_{ACNF}$	$\chi[\phi]_{ m ho}$
ElimTB11	$\chi[\phi\leftrightarrow\perp]_{\rho} \Rightarrow_{ACNF}$	$\chi[\neg\phi]_{\rho}$
ElimTB12	$\chi[\phi\leftrightarrow\top]_{\rho} \Rightarrow_{ACNF}$	$\chi[\phi]_{P}$

where the two rules ElimTB11, ElimTB12 for equivalences are applied with respect to commutativity of \leftrightarrow .

Advanced CNF Algorithm

1 Algorithm: 3 $\operatorname{acnf}(\phi)$

```
Input : A formula \phi.
```

Output A formula ψ in CNF satisfiability preserving to ϕ .

```
2 whilerule (ElimTB1(\phi),...,ElimTB12(\phi)) do ;
```

```
3;
```

4 **SimpleRenaming**(ϕ) on obvious positions;

```
5 whilerule (ElimEquiv1(\phi),ElimEquiv2(\phi)) do ;
```

6;

7 whilerule (ElimImp(ϕ)) do ;

8;

9 whilerule (PushNeg1(ϕ),...,PushNeg3(ϕ)) do ;

10 ;

11 whilerule (PushDisj(ϕ)) do ;

```
return \phi;
```