First-Order Logic with Equality

In this Chapter I combine the ideas of Superposition for first-order logic without equality, Section 3.13, and Knuth-Bendix Completion, Section 4.4, to get a calculus for equational clauses.

Recall that predicative literals can be translated into equations

$$
\begin{array}{lcl} P(t_1,\ldots,t_n) & \Rightarrow & f_P(t_1,\ldots,t_n) \approx \mathsf{true} \\ \neg P(t_1,\ldots,t_n) & \Rightarrow & f_P(t_1,\ldots,t_n) \not\approx \mathsf{true} \end{array}
$$

Some Motivation

The running example for this chapter is the theory of arrays \mathcal{T}_{Array} , see also Section 7.3, which consists of the following three axioms:

$$
\forall x_A, y_I, z_V.\operatorname{read}(\operatorname{store}(x,y,z),y) \approx z\\ \forall x_A, y_I, y', z_V. (y \not\approx y' \rightarrow \operatorname{read}(\operatorname{store}(x,y,z), y') \approx \operatorname{read}(x,y'))\\ \forall x_A, x'_A. \exists y_I. (\operatorname{read}(x,y) \not\approx \operatorname{read}(x',y) \lor x \approx x').
$$

The goal is to decide for an additional set of ground clauses *N* over the above signature plus further constants of the three different sorts, whether $\mathcal{T}_{Array} \cup N$ is satisfiable.

The ground Case

The ground inference rules corresponding to Knuth-Bendix critical pair computation generalized to clauses and Superposition Left on first-order logic wihtout equality modulo a reduction ordering \succ that is total on ground terms. Then the construction of Definition 3.12.1 is lifted to equational clauses.

The multiset $\{s, t\}$ is assigned to a positive literal $s \approx t$, the multiset $\{s, s, t, t\}$ is assigned to a negative literal $s \not\approx t$. The *literal ordering* \succ_L compares these multisets using the multiset extension of ≻. The *clause ordering* ≻_{*C*} compares clauses by comparing their multisets of literals using the multiset extension of ≻*L*. Eventually ≻ is used for all three orderings depending on the context.

Superposition Left

 $(N \uplus \{D \vee t \approx t', C \vee s[t] \not\approx s'\}) \Rightarrow$ $(N \cup \{D \lor t \approx t', C \lor s[t] \not\approx s'\} \cup \{D \lor C \lor s[t'] \not\approx s'\})$

where $t\approx t'$ is strictly maximal and $\bm{s}\not\approx\bm{s}'$ are maximal in their r respective clauses, $t \succ t'$, $s \succ s'$

Superposition Right

 $(N \uplus \{D \vee t \approx t', C \vee s[t] \approx s'\}) \Rightarrow$ $(N \cup \{D \vee t \approx t', C \vee s[t] \approx s'\} \cup \{D \vee C \vee s[t'] \approx s'\})$ where $t \approx t'$ and $\boldsymbol{s} \approx \boldsymbol{s}'$ are strictly maximal in their respective $clauses, t \succ t', s \succ s'$

Equality Resolution $(N \cup \{C \vee s \not\approx s\}) \Rightarrow$ $(N \cup \{C \vee s \not\approx s\} \cup \{C\})$

where $s \approx s$ is maximal in the clause

Factoring is more complicated due to more complicated partial models. Classical Herbrand interpretation not sufficient because of equality.

The solution is to define a set *E* of ground equations and take $T(\Sigma, \emptyset)/E = T(\Sigma, \emptyset)/\approx_F$ as the universe. Then two ground terms *s* and *t* are equal in the interpretation if and only if $s \approx_F t$. If *E* is a terminating and confluent rewrite system *R*, then two ground terms *s* and *t* are equal in the interpretation, if and only if *s* ↓*^R t*.

Now the problem with the standard factoring rule is that in the completeness proof for the superposition calculus without equality, the following property holds: if $C = C' \vee A$ with a strictly maximal atom *A* is false in the current interpretation N_c with respect to some clause set, see Definition 3.12.5, then adding *A* to the current interpretation cannot make any literal in C' true.

This does not hold anymore in the presence of equality. Let $b \succ c \succ d$. Assume that the current rewrite system (representing the current interpretation) contains the rule $c \rightarrow d$. Now consider the clause $b \approx c \vee b \approx d$.

Equality Factoring (*N* ⊎ {*C* ∨ *s* ≈ *t* $(N \cup \{C \vee s \approx t' \vee s \approx t\}) \Rightarrow$ $(N \cup \{C \vee s \approx t' \vee s \approx t\} \cup \{C \vee t \not\approx t' \vee s \approx t'\})$ where $s \succ t'$, $s \succ t$ and $s \approx t$ is maximal in the clause

The lifting from the ground case to the first-order case with variables is then identical to the case of superposition without equality: identity is replaced by unifiability, the mgu is applied to the resulting clause, and \succ is replaced by \nprec .

An addition, as in Knuth-Bendix completion, overlaps at or below a variable position are not considered. The consequence is that there are inferences between ground instances *D*σ and *C*σ of clauses *D* and *C* which are not ground instances of inferences between *D* and *C*. Such inferences have to be treated in a special way in the completeness proof and will be shown to be obsolete.

Superposition Right

 $(N \uplus \{D \vee t \approx t', C \vee s[u] \approx s'\}) \Rightarrow$ $(W \cup \{D \lor t \approx t', C \lor s[u] \approx s'\} \cup \{(D \lor C \lor s[t'] \approx s')\sigma\})$

where σ is the mgu of *t*, *u*, *u* is not a variable $t\sigma \npreceq t'\sigma$, s $\sigma \npreceq s'\sigma$, $(t \approx t')\sigma$ strictly maximal in $(D \vee t \approx t')\sigma$, nothing selected and $({\bm{s}} \approx {\bm{s}}')\sigma$ strictly maximal in $({\bm{C}} \vee {\bm{s}} \approx {\bm{s}}')\sigma$ and nothing selected

Superposition Left

 $(N \uplus \{D \vee t \approx t', C \vee s[u] \not\approx s'\}) \Rightarrow$ $(N \cup \{D \vee t \approx t', C \vee s[u] \not\approx s'\} \cup \{(D \vee C \vee s[t'] \not\approx s')\sigma\})$ where σ is the mgu of *t*, *u*, *u* is not a variable $t\sigma \npreceq t'\sigma$, $s\sigma \npreceq s'\sigma$, $(t \approx t')\sigma$ strictly maximal in $(D \vee t \approx t')\sigma$, nothing selected and $(s \not\approx s')\sigma$ maximal in $(C \vee s \not\approx s')\sigma$ or selected

Equality Resolution (*N* ⊎ {*C* ∨ *s* ̸≈ *s* $(N \uplus \{ C \vee s \not\approx s' \}) \Rightarrow$ $(N \cup \{C \vee s \not\approx s'\} \cup \{C\sigma\})$

where σ is the mgu of $\bm{s}, \bm{s}^\prime, (\bm{s} \not\approx \bm{s}^\prime)\sigma$ maximal in $(\bm{C} \vee \bm{s} \not\approx \bm{s}^\prime)\sigma$ or selected

Equality Factoring $\mathscr{C} \approx t' \vee s \approx t \}) \Rightarrow$ $(N \cup \{C \vee s' \approx t' \vee s \approx t\} \cup \{(C \vee t \not\approx t' \vee s \approx t')\sigma\})$ where σ is the mgu of $\bm{s}, \bm{s}', \bm{s}'\sigma\not\preceq t'\sigma, \bm{s}\sigma\not\preceq t\sigma, (\bm{s}\approx t)\sigma$ maximal $\mathsf{in}~(\overline{C}\vee \overline{s'}\approx t' \vee \overline{s}\approx t) \overline{\sigma}$ and nothing selected

5.2.1 Theorem (Superposition Soundness)

All inference rules of the superposition calculus are *sound*, i.e., for every rule $N \cup \{C_1, \ldots, C_n\} \Rightarrow N \cup \{C_1, \ldots, C_n\} \cup \{D\}$ it holds that $\{C_1, \ldots, C_n\} \models D$.

5.2.2 Definition (Abstract Redundancy)

A clause *C* is *redundant* with respect to a clause set *N* if for all ground instances C_{σ} there are clauses $\{C_1, \ldots, C_n\} \subseteq N$ with ground instances $C_1 \tau_1, \ldots, C_n \tau_n$ such that $C_i \tau_i \prec C_{\sigma}$ for all *i* and $C_1 \tau_1, \ldots, C_n \tau_n \models C \sigma$. Given a set *N* of clauses red(*N*) is the set of clauses redundant with respect to *N*.

The concrete redundancy notions from Section 3.13, namely Subsumption, Tautology Deletion, Condensation, and Subsumption Resolution all apply to the superposition calculus for first-order logic with equality as well. In addition, rewriting is the most important redundancy criterion in case of equality.

Unit Rewriting $(N \oplus \{C \vee L, t \approx s\}) \Rightarrow$ SUPE $(N \cup \{C \vee L[s_{\sigma}]_{p}, t \approx s\})$ provided $L|_p = t\sigma$ and $t\sigma > s\sigma$

5.2.3 Definition (Saturation)

A clause set *N* is *saturated up to redundancy* if for every derivation $N \setminus \text{red}(N) \Rightarrow_{\text{SUPE}} N \cup \{C\}$ it holds $C \in (N \cup \text{red}(N))$.

5.2.4 Definition (Partial Model Construction)

Given a clause set N and an ordering \succ a (partial) model $N_{\mathcal{I}}$ can be constructed inductively over all ground clause instances of *N* as follows:

$$
N_C := \bigcup_{D \prec C}^{D \in \text{grd}(\Sigma, N)} E_D
$$

$$
N_{\mathcal{I}} \;\; := \;\; \bigcup_{C \in \text{grd}(\Sigma, N)} N_C
$$

where N_D , N_T , E_D are also considered as rewrite systems with respect to \succ . If $E_D \neq \emptyset$ then *D* is called *productive*.

$$
E_D := \left\{\begin{array}{c}\{s \approx t\} & \text{if } D = D' \lor s \approx t, \\ (i) & s \approx t \text{ is strictly maximal in } D \\ (ii) & s \succ t \\ (iii) & D \text{ is false in } N_D \\ (iv) & D' \text{ is false in } N_D \cup \{s \rightarrow t\} \\ (v) & s \text{ is irreducible by } N_D \\ (vi) & \text{no negative literal is selected in } D' \\ \emptyset & \text{otherwise}\end{array}\right.
$$

