$$E_D := \begin{cases} \{s \approx t\} & \text{if } D = D' \lor s \approx t, \\ (i) \ s \approx t \text{ is strictly maximal in } D \\ (ii) \ s \succ t \\ (iii) \ D \text{ is false in } N_D \\ (iv) \ D' \text{ is false in } N_D \cup \{s \to t\} \\ (v) \ s \text{ is irreducible by } N_D \\ (vi) \text{ no negative literal is selected in } D' \\ \emptyset & \text{otherwise} \end{cases}$$

5.2.5 Lemma (Maximal Terms in Productive Clauses)

If $E_C = \{s \rightarrow t\}$ and $E_D = \{l \rightarrow r\}$, then $s \succ l$ if and only if $C \succ D$.

5.2.6 Corollary (Partial Models are Convergent Rewrite Systems)

The rewrite systems N_C and N_T are convergent.

5.2.7 Lemma (Ordering Consequences in Productive Clauses)

If $D \leq C$ and $E_C = \{s \rightarrow t\}$, then $s \succ r$ for every term *r* occurring in a negative literal in *D* and $s \succeq l$ for every term *l* occurring in a positive literal in *D*.

5.2.8 Corollary (Model Monotonicity True Clauses)

If *D* is true in N_D , then *D* is true in N_I and N_C for all $C \succ D$.

5.2.9 Corollary (Model Monotonicity False Clauses)

If $D = D' \lor s \approx t$ is productive, then D' is false and D is true in $N_{\mathcal{I}}$ and N_C for all $C \succ D$.

5.2.10 Lemma (Lifting Single Clause Inferences)

Let *C* be a clause and let σ be a substitution such that $C\sigma$ is ground. Then every equality resolution or equality factoring inference from $C\sigma$ is a ground instance of an inference from *C*.

5.2.11 Lemma (Lifting Two Clause Inferences)

Let $D = D' \lor u \approx v$ and $C = C' \lor [\neg] s \approx t$ be two clauses (without common variables) and let σ be a substitution such that $D\sigma$ and $C\sigma$ are ground. If there is a superposition inference between $D\sigma$ and $C\sigma$ where $u\sigma$ and some subterm of $s\sigma$ are overlapped and $u\sigma$ does not occur in $s\sigma$ at or below a variable position of *s* then the inference is a ground instance of a superposition inference from *D* and *C*.

5.2.12 Theorem (Model Construction)

Let *N* be a set of clauses that is saturated up to redundancy and does not contain the empty clause. Then for every ground clause $C\sigma \in \operatorname{grd}(\Sigma, N)$ it holds that:

- 1. $E_{C\sigma} = \emptyset$ if and only if $C\sigma$ is true in $N_{C\sigma}$.
- If Cσ is redundant with respect to grd(Σ, N) then it is true in N_{Cσ}.
- 3. $C\sigma$ is true in $N_{\mathcal{I}}$ and in N_D for every $D \in \operatorname{grd}(\Sigma, N)$ with $D \succ C\sigma$.

5.2.13 Lemma (Lifting Models)

Let *N* be a set of clauses with variables and let A be a term-generated Σ -algebra. Then A is a model of $grd(\Sigma, N)$ if and only if it is a model of *N*.

5.2.14 Theorem (Refutational Completeness: Static View)

Let N be a set of clauses that is saturated up to redundancy. Then N has a model if and only if N does not contain the empty clause.

5.2.15 Definition (Superposition Run)

A *run* of the superposition calculus is a derivation $N_0 \Rightarrow_{SR} N_1 \Rightarrow_{SR} N_2 \Rightarrow_{SR} \dots$, so that 1. $N_i \models N_{i+1}$, and 2. all clauses in $N_i \setminus N_{i+1}$ are redundant with respect to N_{i+1} .

For a run, $N_{\infty} = \bigcup_{i \ge 0} N_i$ and $N_* = \bigcup_{i \ge 0} \bigcap_{j \ge i} N_j$. The set N_* of all *persistent* clauses is called the *limit* of the run.

5.2.16 Lemma (Redundancy is Monotone)

If $N \subseteq N'$, then $red(N) \subseteq red(N')$.

5.2.17 Lemma (Redundant Clauses Do not Contribute)

If $N' \subseteq \operatorname{red}(N)$, then $\operatorname{red}(N) \subseteq \operatorname{red}(N \setminus N')$.

5.2.18 Lemma (Redundancy is Monotone in Runs)

Let $N_0 \Rightarrow N_1 \Rightarrow_{SR} N_2 \Rightarrow_{SR} \dots$ be a run. Then $red(N_i) \subseteq red(N_{\infty})$ and $red(N_i) \subseteq red(N_*)$ for every *i*.

5.2.19 Corollary (Redundancy is Monotone Modulo Persistent Clauses)

 $N_i \subseteq N_* \cup \operatorname{red}(N_*)$ for every *i*.

5.2.20 Definition (Fair Run)

A run is called *fair*, if $(N_* \setminus \text{red}(N_*)) \Rightarrow_{\text{SUPE}} (N_* \setminus \text{red}(N_*)) \cup \{C\}$ then $C \in (N_i \cup \text{red}(N_i))$ for some *i*.

5.2.21 Lemma (Saturation of Fair Runs)

If a run is fair, then its limit is saturated up to redundancy.

5.2.22 Theorem (Refutational Completeness: Dynamic View)

Let $N_0 \Rightarrow_{SR} N_1 \Rightarrow_{SR} N_2 \Rightarrow_{SR} \dots$ be a fair run, let N_* be its limit. Then N_0 has a model if and only if $\perp \notin N_*$.

