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Motivation

1 Algorithm: WhatDoIDo(n,m)

Input : Two positive integers n, m.
Output
:

The number contained in n.

2 while (m > 0) do
3 m = m -1 ;
4 n = n + 1;
5 end
6 return n;
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In First-Order Logic Modulo LIA

2 ∀n,m. (m > 0,R(2,n,m) → R(3,n,m))
2 ∀n,m. (m = 0,R(2,n,m) → R(6,n,m))
3 ∀n,m,m′. (m′ = m − 1,R(3,n,m) → R(4,n,m′))
4 ∀n,m,n′. (n′ = n + 1,R(4,n,m) → R(5,n′,m))
5 ∀n,m. (R(5,n,m) → R(2,n,m))

∀n,m . (R(2,n,m) → R(6,n + m,0))
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2-Counter Machines (Minsky 1967)
The memory of the machine are two integer counters k1, k2,
where the integers are not limited in size, resulting in the name.
The counters may be initialized at the beginning with arbitrary
positive values.
A program consists of a finite number of programming lines, each
coming with a unique and consecutive line number and
containing exactly one instruction. The available instructions are:

inc(ki) increment counter ki and goto the next line,
td(ki ,n) if ki > 0 then decrement ki and goto the next line,

otherwise goto line n and leave counters unchanged,
goton goto line n,
halt halt the computation.
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Example: WhatDoIDo

2 td(k2,6)
4 inc(k1)

5 goto2
6 halt
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8.10.1 Theorem (2-Counter Machine Halting Problem)
The halting problem for 2-counter machines is undecidable
(Minsky 1967).

Proof.
(Idea) By a reduction to the halting problem for Turing
machines.

8.10.2 Proposition (FOL(LIA) Undecidability with a Single
Ternary Predicate)
Unsatisfiability of a FOL(LIA) clause set with a single ternary
predicate is undecidable.
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FOL(LIA) Decidable for Binary or
Monadic Predicates?

No: translate 2-counter machine halting problem to FOL(LIA) with
a single monadic predicate.

Idea: translate state (i ,n,m) where the program is at line i with
respective counter values n, m by the integer 2n · 3m · pi where pi
is the i th prime number following 3
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Example: WhatDoIDo

1 td(k2,4)
2 inc(k1)

3 goto1
4 halt

5y = x ,3y ′ = y , x ′ = 7y ′,S(x)→S(x ′)

5y = x ,3y ′ + 1 = y , x ′ = 13y ′,S(x)→S(x ′)

5y = x ,3y ′ + 2 = y , x ′ = 13y ′,S(x)→S(x ′)

7y = x , x ′ = 2y , x ′′ = 11x ′,S(x)→S(x ′′)

11y = x , x ′ = 5y ,S(x)→S(x ′)

13y = x ,S(x)→
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8.10.3 Proposition (FOL(LIA) Undecidability with a Single
Monadic Predicate)
Unsatisfiability of a FOL(LIA) clause set with a single monadic
predicate is undecidable (Downey 1972).
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Syntax and Semantics

8.2.1 Definition (Hierarchic Theory and Specification)

Let T B = (ΣB, CB) be a many-sorted theory, called the
background theory and ΣB the background signature.
Let ΣF be a many sorted signature with ΩB ∩ ΩF = ∅, SB ⊂ SF ,
called the foreground signature or free signature. Let
ΣH = (SB ∪ SF ,ΩB ∪ ΩF ) be the union signature and N be a set
of clauses over ΣH , and T H = (ΣH ,N) called a hierarchic theory.
A pair H = (T H , T B) is called a hierarchic specification.

A constant c ∈ ΩB is called a domain constant if cA ̸= dA for all
A ∈ CB and for all d ∈ ΩB with d ̸= c.

I abbreviate |=T B ϕ (|=T H ϕ) with |=B ϕ (|=H ϕ), meaning that ϕ is
valid in the respective theory, see Definition 3.17.1.
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Terms, atoms, literals build over ΣB are called pure background
terms, pure background atoms, and pure background literals,
respectively.

All terms, atoms, with a top-symbol from ΩB or ΠB, respectively,
are called background terms, background atoms, respectively. A
background atom or its negation is a background literal.

All terms, atoms, with a top-symbol from ΩF or ΠF , respectively,
are called foreground terms, foreground atoms, respectively. A
foreground atom or its negation is a foreground literal.

Given a set (sequence) of H literals, the function bgd returns the
set (sequence) of background literals and the function fgd the
respective set (sequence) of foreground literals.

A substitution σ is called simple if xSσ ∈ TS(Σ
B,X ) for all S ∈ SB.
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A substitution σ is called simple if xSσ ∈ TS(Σ
B,X ) for all S ∈ SB.

8.2.2 Example (Classes of Terms)

Let T B be linear rational arithmetic and ΣF = ({S, LA}, {g,a})
where a : S and g : LA → LA. Then the terms xLA + 3 and g(xLA)
are all of sort LA, but xLA + 3 is a pure background term whereas
g(xLA) is an unpure foreground term. So the substitution
σ = {yLA 7→ xLA + 3} is simple while σ = {yLA 7→ g(xLA)} is not.
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8.2.3 Definition (Hierarchic Algebras)

Given a hierarchic specification H = (T H , T B), T B = (ΣB, CB),
T H = (ΣH ,N), a ΣH -algebra A is called hierarchic if A|ΣB ∈ CB. A
hierarchic algebra A is called a model of a hierarchic
specification H, if A |= N.
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8.2.4 Definition (Abstracted Term, Atom, Literal, Clause)
A term t is called abstracted with respect to a hierarchic
specification H = (T H , T B), if t ∈ TS(Σ

B,X ) or t ∈ TT (Σ
F ,X ) for

some S ∈ SB, T ∈ SB ∪ SF . An equational atom t ≈ s is called
abstracted if t and s are abstracted and both pure or both unpure,
accordingly for literals. A clause is called abstracted of all its
literals are abstracted.

As usual, AH|ΣB is obtained from a AH-algebra by removing all
carrier sets SA for all S ∈ (SF \ SB), all functions from ΩF and all
predicates from ΠF . We write |=H for the entailment relation with
respect to hierarchic algebras and formulas from ΣH and |=B for
the entailment relation with respect to the CB algebras and
formulas from ΣB.
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Abstraction N ⊎ {C ∨ E [t ]p[s]q} ⇒ABSTR
N ∪ {C ∨ xs ̸≈ s ∨ E [xS]q}
provided t , s are non-variable terms, q ̸< p, sort(s) = S, and
either top(t) ∈ ΣF and top(s) ∈ ΣB or top(t) ∈ ΣB and
top(s) ∈ ΣF
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8.2.5 Proposition (Properties of the Abstraction)
Given a finite clause set N out of a hierarchic specification
H = (T H , T B), ⇒ABSTR terminates on N and preserves
satisfiability. For any clause C ∈ (N ⇓ABSTR) and any literal
E ∈ C, E does not both contain a function symbol from ΣB and a
function symbol from ΣF .
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From now on I assume fully abstracted clauses C, i.e., for all
atoms s ≈ t occurring in C, either s, t ∈ T (ΣB,X ) or
s, t ∈ T (ΣF ,X ). This justifies the notation of clauses Λ ∥ C where
all pure background literals are in Λ and belong to FOL(ΣB,X )
and all literals in C belong to FOL(ΣF ,X ).

The literals in Λ form a conjunction and the literals in C a
disjunction and the overall clause the implication Λ → C. For a
clause Λ ∥ C the background theory part Λ is called the constraint
and C the foreground part of the clause.

A constrained closure is denoted as Λ ∥ C · σ where σ is
grounding for Λ and C. A constrained closure Λ ∥ C · σ denotes
the ground constrained clause Λσ ∥ Cσ.
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Running Example (BS(LRA) (1/2))
As a running example, I consider in detail the
Bernays-Schoenfinkel clause fragment over linear arithmetic:
BS(LRA).

The background theory is linear rational arithmetic over the
many-sorted signature ΣLRA = (SLRA,ΩLRA,ΠLRA) with
SLRA = {LRA}, ΩLRA = {0,1,+,−} ∪Q,
ΠLRA = {≤, <, ̸=,=, >,≥}) where LRA is the linear arithmetic
sort, the function symbols consist of 0,1,+,− plus the rational
numbers and predicate symbols ≤, <,=, ̸=, >,≥. The linear
arithmetic theory T LRA = (ΣLRA, {ALRA}) consists of the linear
arithmetic signature together with the standard model ALRA of
linear arithmetic.
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Running Example (BS(LRA) (2/2))

This theory is then extended by the free (foreground) first-order
signature ΣBS = ({LRA},ΩBS,ΠBS) where ΩBS is a set of
constants of sort LRA different from ΩLRA constants, and ΠBS is a
set of first-order predicates over the sort LRA.

We are interested in hierarchic algebras ABS(LRA) over the
signature ΣBS(LRA) = ({LRA},ΩBS ∪ ΩLRA,ΠBS ∪ ΠLRA) that are
ΣBS(LRA) algebras such that ABS(LRA)|ΣLRA = ALRA.

no foreground function symbols
no constants in input clauses
as usual all variables implicitly universally quantified
all clauses are fully abstracted
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In addition, we assume a well-founded, total, strict ordering ≺ on
ground literals, called an H-order, such that background literals
are smaller than foreground literals. This ordering is then lifted to
constrained clauses and sets thereof by its respective multiset
extension. We overload ≺ for literals, constrained clauses, and
sets of constrained clause if the meaning is clear from the
context. We define ⪯ as the reflexive closure of ≺ and
N⪯Λ∥C := {D | D ∈ N and D ⪯ Λ ∥ C}. For example, an instance
of an LPO with according precedence can serve as ≺.
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8.14.4 Definition (Clause Redundancy)
A ground constrained clause Λ ∥ C is redundant with respect to a
set N of ground constrained clauses and an order ≺ if
N⪯Λ∥C |=H Λ ∥ C. A clause Λ ∥ C is redundant with respect to a
clause set N, an H-order ≺, and a set of constants B if for all
Λ′ ∥ C′ ∈ grd((SF ,B,ΠB ∪ ΠF ),Λ ∥ C) the clause Λ′ ∥ C′ is
redundant with respect to ∪D∈N grd((SF ,B,ΠB ∪ ΠF ),D).
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SCL(T)

8.14.5 Assumption (Considered Input Clause Sets)
For the rest of this section I consider only pure, abstracted clause
sets N. I assume that the background theory T B is
term-generated, compact, contains an equality =, and that all
constants of the background signature are domain constants. I
further assume that the set ΩF contains infinitely many constants
for each background sort.
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In order for the SCL(T) calculus to be effective, decidability in T B

is needed as well. For the calculus we implicitly use the following
equivalence: A ΣB sentence

∃x1, . . . , xnϕ

where ϕ is quantifier free is true, i.e., |=B ∃x1, . . . , xnϕ iff the
ground formula

ϕ{x1 7→ a1, . . . , xn 7→ an}

where the ai are ΩF constants of the respective background
sorts is H satisfiable. Together with decidability in T B this
guarantees decidability of the satisfiability of ground constraints
from constrained clauses.
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If not stated otherwise, satisfiability means satisfiability with
respect to H. The function adiff(B) for some finite sequence of
background sort constants denotes a constraint that implies
different interpretations for the constants in B. In case the
background theory enables a strict ordering < as LRA does, then
the ordering can be used for this purpose. For example,
adiff([a,b, c]) is then the constraint a < b < c. In case the
background theory does not enable a strict ordering, then
inequations can express disjointness of the constants. For
example, adiff([a,b, c]) is then constraint a ̸= b ∧ a ̸= c ∧ b ̸= c.
An ordering constraint has the advantage over an inequality
constraint that it also breaks symmetries. Assuming all constants
to be different will eventually enable a satisfiability test for
foreground literals based on purely syntactic complementarity.
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The inference rules of SCL(T) are represented by an abstract
rewrite system. They operate on a problem state, a six-tuple
Γ = (M;N;U;B; k ;D) where M is a sequence of annotated
ground literals, the trail; N and U are the sets of initial and
learned constrained clauses; B is a finite sequence of constants
of background sorts for instantiation; k counts the number of
decisions in M; and D is a constrained closure that is either ⊤,
Λ ∥ ⊥ · σ, or Λ ∥ C · σ. Foreground literals in M are either
annotated with a number, a level; i.e., they have the form Lk

meaning that L is the k -th guessed decision literal, or they are
annotated with a constrained closure that propagated the literal
to become true, i.e., they have the form (Lσ)(Λ∥C∨L)·σ. An
annotated literal is called a decision literal if it is of the form Lk

and a propagation literal or a propagated literal if it of in the form
L · σ(Λ∥C∨L)·σ.
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A ground foreground literal L is of level i with respect to a
problem state (M;N;U;B; k ;D) if L or comp(L) occurs in M and
the first decision literal left from L (comp(L)) in M, including L, is
annotated with i . If there is no such decision literal then its level is
zero. A ground constrained clause Λ ∥ C is of level i with respect
to a problem state (M;N;U;B; k ;D) if i is the maximal level of a
foreground literal in C; the level of an empty clause Λ ∥ ⊥ · σ is 0.
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A ground literal L is undefined in M if neither L nor comp(L) occur
in M. The initial state for a first-order, pure, abstracted H clause
set N is (ϵ;N; ∅;B;0;⊤), where B is a finite sequence of
foreground constants of background sorts. These constants
cannot occur in N, because N is pure. The final state
(ϵ;N;U;B;0; Λ ∥ ⊥) denotes unsatisfiability of N. Given a trail M
and its foreground literals fgd(M) = {L1, . . . ,Ln} an H ordering ≺
induced by M is any H ordering where Li ≺ Lj if Li occurs left
from Lj in M, or, Li is defined in M and Lj is not.
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Propagate (M;N;U;B; k ;⊤) ⇒SCL(T)

(M,Lσ(Λ∥C0∨L)δ·σ,Λ′σ;N;U;B; k ;⊤)

provided Λ ∥ C ∈ (N ∪ U), σ is grounding for Λ ∥ C,
adiff(B) ∧ bgd(M) ∧ Λσ is satisfiable, C = C0 ∨ C1 ∨ L,
C1σ = Lσ ∨ . . . ∨ Lσ, C0σ does not contain Lσ, δ is the mgu of the
literals in C1 and L, Λ′σ are the background literals from Λσ that
are not yet on the trail, fgd(M) |= ¬(C0σ), codom(σ) ⊆ B, and Lσ
is undefined in M

The rule Propagate applies exhaustive factoring to the
propagated literal with respect to the grounding substitution σ
and annotates the factored clause to the propagation. By writing
M,Lσ(Λ∥C0∨L)δ·σ,Λ′σ we denote that all background literals from
Λ′σ are added to the trail.
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Decide (M;N;U;B; k ;⊤) ⇒SCL(T)
(M,Lσk+1,Λσ;N;U;B; k + 1;⊤)

provided Lσ is undefined in M,
|Lσ| ∈ atoms(grd((S,B,Π),N ∪ U)),
|Kσ| ∈ atoms(grd((S,B,Π),N ∪ U)) for all Kσ ∈ Λσ, σ is
grounding for Λ, all background literals in Λσ are undefined in M,
adiff(B) ∧ bgd(M) ∧ Λσ is satisfiable, and codom(σ) ⊆ B

Making sure that no duplicates of background literals occur on
the trail by rules Propagate and Decide together with a fixed finite
sequence B of constants and the restriction of Propagate and
Decide to undefined literals guarantees that the number of
potential trails of a run is finite. Requiring the constants from B to
be different by the adiff(B) constraint enables a purely syntactic
consistency check for foreground literals.
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Conflict (M;N;U;B; k ;⊤) ⇒SCL(T)
(M;N;U;B; k ; Λ ∥ D · σ)
provided Λ ∥ D ∈ (N ∪ U), σ is grounding for Λ ∥ D,
adiff(B) ∧ bgd(M) ∧ Λσ is satisfiable, fgd(M) |= ¬(Dσ), and
codom(σ) ⊆ B

Resolve (M,LρΛ∥C∨L·ρ;N;U;B; k ; (Λ′ ∥ D ∨ L′) · σ) ⇒SCL(T)

(M,LρΛ∥C∨L·ρ;N;U;B; k ; (Λ ∧ Λ′ ∥ D ∨ C)η · σρ)
provided Lρ = comp(L′σ), and η = mgu(L, comp(L′))

Note that Resolve does not remove the literal Lρ from the trail.
This is needed if the clause Dσ contains further literals
complementary of Lρ that have not been factorized.
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Factorize (M;N;U;B; k ; (Λ ∥ D ∨ L ∨ L′) · σ) ⇒SCL(T)
(M;N;U;B; k ; (Λ ∥ D ∨ L)η · σ)
provided Lσ = L′σ, and η = mgu(L,L′)

Note that Factorize is not limited with respect to the trail. It may
apply to any two literals that become identical by application of
the grounding substitution σ.
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Skip (M,L;N;U;B; k ; Λ′ ∥ D · σ) ⇒SCL(T)
(M;N;U;B; l ; Λ′ ∥ D · σ)
provided L is a foreground literal and comp(L) does not occur in
Dσ, or L is a background literal; if L is a foreground decision
literal then l = k − 1, otherwise l = k

Note that Skip can also skip decision literals. This is needed
because we won’t eventually require exhaustive propagation.
While exhaustive propagation in CDCL is limited to the number of
propositional variables, in the context of our logic, for example
BS(LRA), it is exponential in the arity of foreground predicate
symbols and can lead to an unfair exploration of the space of
possible inferences, harming completeness, see Example 8.14.9.
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Backtrack (M,K i+1,M ′;N;U;B; k ; (Λ ∥ D ∨ L) · σ) ⇒SCL(T)

(M,Lσ(Λ∥D∨L)·σ,Λ′σ;N;U ∪ {Λ ∥ D ∨ L};B; i ;⊤)

provided Lσ is of level k , and Dσ is of level i , Λ′σ are the
background literals from Λσ that are not yet on the trail

The definition of Backtrack requires that if Lσ is the only literal of
level k in (D ∨ L)σ then additional occurrences of Lσ in D have to
be factorized first before Backtrack can be applied.
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Grow (M;N;U;B; k ;⊤) ⇒SCL(T) (ϵ;N;U;B ∪ B′;0;⊤)

provided B′ is a non-empty sequence of foreground constants of
background sorts distinct from the constants in B

In case the adiff constraint is implemented by a strict ordering
predicate on the basis of the sequence B, it can be useful to
inject the new constants B′ into B ∪ B′ such that the ordering of
the constants from B is not changed. This can help caching
background theory results for testing trail satisfiability.
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8.14.9 Example (Exhaustive Propagation)
Consider a BS(LRA) clause set
N = {x = 0 ∥ Nat(x), y = x + 1 ∥ ¬Nat(x) ∨ Nat(y)} ∪ N ′ where
N ′ is unsatisfiable and nothing can be propagated from N ′. Let us
further assume that N ′ is satisfiable with respect to any
instantiation of variables with natural numbers. If propagation is
not restricted, then the first two clauses will consume all
constants in B. For example, if B = [a,b, c] then the trail
[Nat(a),a = 0,Nat(b),b = a + 1,Nat(c), c = b + 1] will be
derived. Now all constants are fixed to natural numbers. So there
cannot be a refutation of N ′ anymore. An application of Grow will
not solve the issue, because again the first two rules will fix all
constants to natural numbers via exhaustive propagation.
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8.14.10 Definition (Well-formed States)
A state (M;N;U;B; k ;D) is well-formed if the following conditions
hold:

1. all constants appearing in (M;N;U;B; k ;D) are from B or
occur in N.

2. M ∧ adiff(B) is satisfiable

3. N |=H U,
4. Propagating clauses remain propagating and conflict clauses

remain false:
1..1 if D = Λ ∥ C · σ then Cσ is false in fgd(M) and

bgd(M) ∧ adiff(B) ∧ Λσ is satisfiable,
2..2 if M = M1,Lσ(Λ∥C∨L)·σ,M2 then Cσ is false in fgd(M1), Lσ is

undefined in M1, and bgd(M1) ∧ adiff(B) ∧ Λσ is satisfiable.

5. All clauses in N ∪ U are pure. In particular, they don’t contain
any constants from B.
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8.14.11 Lemma (Rules preserve Well-Formed States)
The rules of SCL(T) preserve well-formed states.

8.14.12 Definition (Stuck State)
A state (M;N;U;B; k ;D) is called stuck if D ̸= Λ ∥ ⊥ · σ and none
of the rules Propagate, Decide, Conflict, Resolve, Factorize, Skip,
or Backtrack is applicable.

8.14.13 Proposition (Form of Stuck States)
If a run (without rule Grow) ends in a stuck state (M;N;U;B; k ;D)
where Conflict was applied eagerly, then D = ⊤ and all ground
foreground literals that can be build from the foreground literals in
N by instantiation with constants from B are defined in M.
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Lemma (Stuck States Produce Ground Models)
If a state (M;N;U;B; k ;⊤) is stuck then
M ∧ adiff(B) |= grd((S,B,Π),N ∪ U).
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8.14.15 Example (SCL(T) Model Extraction)
In some cases it is possible to extract an overall model from the
ground trail of a stuck state of an SCL(T) derivation. Consider
B = [a,b, c] and a satisfiable BS(LRA) constrained clause set
N = {x ≥ 1 ∥ P(x), x < 0 ∥ P(x),0 ≤ x ∧ x < 1 ∥ ¬P(x),
2x ≥ 1 ∥ P(x) ∨ Q(x)}. Starting from state (ϵ;N; ∅;B;0;⊤) and
applying Propagate fairly a regular run can derive the following trail
M = P(a)x≥1∥P(x)·{x 7→a},a ≥ 1,P(b)x<0∥P(x)·{x 7→b},b < 0,

¬P(c)0≤x∧x<1∥¬P(x)·{x 7→c},0 ≤ c, c < 1,Q(c)2x≥1∥P∨Q(x)·{x 7→c},2c ≥ 1
The state (M;N; ∅;B;0;⊤) is stuck and M |=H grd((S,B,Π),N).
Moreover from M we can generate an interpretation ABS(LRA) of
N by generalizing the foreground constants used for instantiation
and interpreting the predicates P and Q as formulas over ΣB,
PA = {q ∈ Q | q < 0 ∨ q ≥ 1} and
QA = {q ∈ Q | 2q ≥ 1 ∧ q < 1}.
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8.14.16 Lemma (Soundness)
If a derivation reaches the state (M;N;U;B; k ; Λ ∥ ⊥ · σ), then N
is unsatisfiable.

8.14.17 Definition (Reasonable Run)
A sequence of SCL(T) rule applications is called a reasonable
run if the rule Decide is only applied if there exists no application
of the rule Propagate that would generate a conflict.

8.14.18 Definition (Regular Run)
A sequence of SCL(T) rule applications is called a regular run if it
is a reasonable run the rule Conflict has precedence over all
other rules, and Resolve resolves away at least the rightmost
foreground literal from the trail.
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8.14.23 Lemma (Non-Redundant Clause Learning)
Let N be a set of constrained clauses. Then clauses learned in
an SCL(T) regular run from starting state (ϵ;N; ∅;B;0;⊤) are not
redundant.

8.14.24 Lemma (Termination of SCL(T))
Let N be a set of constrained clauses and B be a finite set of
background constants. Then any regular run with start state
(ϵ;N; ∅;B;0;⊤) that uses Grow only finitely often terminates.

January 25, 2023 131/134



First-Order Logic Modulo Theories First-Order Logic Modulo Theories

8.14.25 Theorem (Hierarchic Herbrand Theorem)
Let N be a finite set of clauses. N is unsatisfiable iff there exists a
finite set N ′ = {Λ1 ∥ C1, . . . ,Λn ∥ Cn} of variable renamed copies
of clauses from N and a finite set B of fresh constants and a
substitution σ, grounding for N ′ where codom(σ) = B such that∧

i Λiσ is T B satisfiable and
∧

i Ciσ is first-order unsatisfiable over
ΣF .

8.14.26 Theorem (Refutational Completeness of SCL(T))
Let N be an unsatisfiable clause set. Then any regular SCL(T)
run will derive the empty clause provided (i) Rule Grow and
Decide are operated in a fair way, such that all possible trail
prefixes of all considered sets B during the run are eventually
explored, and (ii) Restart is only applied to stuck states.
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