

Automated Reasoning

Martin Bromberger, Sibylle Möhle, Simon Schwarz, Christoph Weidenbach

Max Planck Institute for Informatics

February 1, 2023

CDCL Extensions 2.15

" Cost optimal models OCDCL e Max SAF

a minimal covering models

· Chronological CDCL

Computing Cost Optimal Models (OCDCL)

$$
W = \{A \cup B, A \cup 10\}
$$
\n
$$
Cost: \{A, 1A, B, 1B\} \rightarrow \mathbb{R}^{+}
$$
\n
$$
Cost(A) = \text{cost}(\mathbf{0}) = \underline{A}
$$
\n
$$
Cost(\mathbf{0}) = \text{cost}(\mathbf{0}) = \underline{A}
$$
\n
$$
M = \{AD, A \cap B\}
$$
\n
$$
C \text{col}(\mathbf{0} \mathbf{0}) = \mathbf{Z}
$$
\n
$$
[Cont(A \cap B) = \mathbf{Z}]
$$

OCDCL States

 $(M; N; U; k; \perp; O)$ final state, where

- $(\epsilon; N; \emptyset; 0; \top; \epsilon)$ start state for some clause set N
	- *N* has no model if $O = \epsilon$
	- \blacksquare *O* is a cost optimal model if $O \neq \epsilon$

- (*M*; *N*; *U*; *k*; ⊤; *O*) intermediate model search state $(M; N; U; k; D; O)$ backtracking state if $D \notin \{\top, \bot\}$
- *O* denotes the cost optimal model of N
- *M*, *N*, *U*, *k*, *D* are defined analogously to CDCL
- but OCDCL always terminates with $D = \bot$

OCDCL Rules

Propagate (*M*; *N*; *U*; *k*; ⊤; *O*) ⇒OCDCL (*MLC*∨*^L* ; *N*; *U*; *k*; ⊤; *O*) provided $C \vee L \in (N \cup U)$, $M \models \neg C$, *L* is undefined in M

Decide $(M; N; U; k; \top; O) \Rightarrow_{\text{OCDCL}}$ (*MLk*+¹ ; *N*; *U*; *k* + 1; ⊤; *O*) provided *L* is undefined in *M*, contained in *N*

ConflSat $(M; N; U; k; \top; O) \Rightarrow_{\text{OCDCL}} (M; N; U; k; D; O)$ provided $D \in (N \cup U)$ and $M \models \neg D$

ConflOpt $(M; N; U; k; \top; O) \Rightarrow_{\Omega \subset D \subset L} (M; N; U; k; \neg M; O)$ provided $O \neq \epsilon$ and cost(*M*) > cost(*O*)

OCDCL Rules (ctd.)

 $\mathsf{Skip} \hspace{1cm} (ML^{C \vee L};N;U; k;D;O) \Rightarrow_{\text{OCDCL}} (M;N;U; k;D;O)$ provided $D \notin \{\top, \bot\}$ and comp(L) does not occur in D

Resolve $(ML^{C\vee L}; N; U; k; D ∨ \text{comp}(L); O) \Rightarrow_{OCDCL}$ (*M*; *N*; *U*; *k*; *D* ∨ *C*; *O*) provided *D* is of level *k*

Backtrack $(M_1 K^{i+1} M_2; N; U; k; D \vee L; O) \Rightarrow_{OCDCL}$ (*M*1*L D*∨*L* ; *N*; *U* ∪ {*D* ∨ *L*}; *i*; ⊤; *O*) provided *L* is of level *k* and *D* is of level *i*

Improve $(M; N; U; k; T; O) \Rightarrow OCDC1$ $(M; N; U; k; T; M)$ provided $M \models N$, M is total, i.e., contains all atoms in N, and $Q = \epsilon$ or cost(*M*) < cost(*O*)

2.15.1 Definition (Reasonable OCDCL Strategy)

An OCDCL strategy is *reasonable* if ConflSat is preferred over ConflOpt is preferred over Improve is preferred over Propagate which is preferred over the remaining rules.

2.15.3 Proposition (OCDCL Basic Properties)

Consider an OCDCL state (*M*; *N*; *U*; *k*; *D* ′ ; *O*) derived by a reasonable strategy from start state (ϵ , N, \emptyset , O, \top , ϵ). Then the following properties hold:

- 1. *M* is consistent.
- 2. If $O \neq \epsilon$ then *O* is consistent and $O \models N$.
- 3. If $D' \not\in \{\top, \bot\}$ then $M \models \neg D'.$
- 4. If $D' \notin \{\top, \bot\}$ then (i) D' is entailed by $N \cup U$, or (ii) for any $\mathsf{model} \; \mathsf{M}' \models \{\neg \mathsf{D}'\} \cup \mathsf{N} \cup \mathsf{U} \mathsf{:} \; \mathsf{cost}(\mathsf{M}') \geq \mathsf{cost}(\mathsf{O}).$
- 5. If $D' = \top$ and M contains only propagated literals then for each valuation A with $A \models (N \cup U)$ it holds $A \models M$.

2.15.3 Proposition (OCDCL Basic Properties (ctd.))

- 6. For all models M with $M \models N$: if $O = \epsilon$ or $\text{cost}(M) < \text{cost}(O)$ then $M \models (N \cup U)$.
- 7. If *D* ′ = ⊥ then OCDCL terminates and there is no model *M*′ $\mathsf{with}\;\mathsf{M}'\models\mathsf{N}\;\mathsf{and}\;\mathsf{cost}(\mathsf{M}')<\mathsf{cost}(\mathsf{O}).$
- 8. Each infinite derivation

$$
(\epsilon; N; \emptyset; O; \top; \epsilon) \Rightarrow_{OCDCL} (M_1; N; U_1; k_1; D_1; O_1) \Rightarrow_{OCDCL} \ldots
$$

contains an infinite number of Backtrack applications.

9. OCDCL never learns the same clause twice.

2.15.4 Lemma (OCDCL Normal Forms)

The OCDCL calculus with a reasonable strategy has only 2 normal forms:

- (*M*; *N*; *U*; 0; ⊥; *O*) where $O \neq \epsilon$, $O \models N$ and cost(*O*) is optimal
- $(M; N; U; 0; \perp; \epsilon)$ where *N* is unsatisfiable

2.15.5 Lemma (OCDCL Termination)

OCDCL with a reasonable strategy terminates in a state (*M*; *N*; *U*; 0; ⊥; *O*).

2.15.6 Theorem (OCDCL Correctness)

OCDCL with a reasonable strategy starting from a state $(\epsilon; N; \emptyset; 0; \top; \epsilon)$ terminates in a state $(M; N; U; 0; \bot; O)$. If $O = \epsilon$ then *N* is unsatisfiable. If $O \neq \epsilon$ then $O \models N$ and for any other model *M'* with $M' \models N$ it holds $cost(M') \geq cost(O)$.

Improving OCDCL

Prune $(M; N; U; k; \top; O) \Rightarrow_{\text{OCDCL}} (M; N; U; k; \neg M; O)$ provided for all total trail extensions *MM*′ of *M* it holds cost(*MM*′) ≥ cost(*O*)

ConflOpt $(M; N; U; k; T; O) \Rightarrow_{OCDCI} (M; N; U; k; \neg M; O)$ provided $O \neq \epsilon$ and $cost(M) \geq cost(O)$

Improving OCDCL

Prune $(M; N; U; k; \top; O) \Rightarrow_{\text{OCDCL}} (M; N; U; k; \neg M; O)$ provided for all total trail extensions *MM*′ of *M* it holds cost(*MM*′) ≥ cost(*O*)

ConflOpt $(M; N; U; k; \top; O) \Rightarrow_{\text{OCDCL}} (M; N; U; k; \neg M; O)$ provided $O \neq \epsilon$ and cost(*M*) \geq cost(*O*)

The Max-SAT Problem

Given
$$
N = N_H \oplus N_S
$$
 where N_H are hard clauses
and N_S are soft clauses

 $\mathsf{Find} \; \mathcal{A} \models \mathsf{N}_{\mathsf{H}} \quad \text{with minimal cost} \sum_{\mathcal{A} \models \neg \mathcal{C}}^{\mathcal{C} \in \mathsf{N}_{\mathcal{S}}} \omega(\mathcal{C})$ where $\omega\colon \mathsf{N}_\mathcal{S} \mapsto \mathbb{R}^+$

$$
\mu_{H} = \{A \vee B\} \quad \mu_{S} = \{A \vee C, B \vee C\}
$$

\n $\omega(14 \vee C) = 1$ $\omega(48C) = 0$
\n $\omega(0 \vee C) = 2$ $\omega(4707C) = 3$

Reducing Max-SAT to OCDCL

- 1. Introduce a fresh variable S_i for each $C_i \in N_S = \{C_1, \ldots, C_n\}$
- 2. Define $N_S' = \{S_i \vee C_i \mid C_i \in N_S\}$
- 3. Compute cost optimal model for $N' = N_H \oplus N'_S$ with cost function $\text{cost}(L) = \left\{ \begin{array}{ll} \omega(C_i) & \text{if } L = S_i, \ \Omega_i & \text{otherwise} \end{array} \right.$ 0 otherwise

 $c^{0/5}$ $N_f = \{A_0 N_5\}$ $N_f = \{7_{A_0 C_1}, 0 \in S_5\}$ $C\infty1(\zeta_2)_{\simeq}$ 7 $W_s = \sum S_i v^2 A_v C_i$ C_i C_2 $\begin{bmatrix} 1 & 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 \end{bmatrix}$ $\begin{bmatrix} 2 & 0 \end{bmatrix}$ \max planck institut informatik

2.15.7 Theorem (Max-SAT Solution)

A is a Max-SAT solution for $N = N_H \oplus N_S$ with minimal value $c = \sum_{\mathcal{A}}^{C \in \mathcal{N}_S} \omega(C)$ iff $(\epsilon; \mathcal{N}'; \emptyset; \mathsf{0}; \top; \epsilon) \Rightarrow_{\textsf{OCDCL}}^* (\mathcal{M}; \mathcal{N}'; \mathcal{U}; k; \bot; O)$ with a reasonable strategy where $\mathsf{N}' = \mathsf{N}_{\mathsf{H}} \uplus \mathsf{N}'_\mathsf{S},$ and $\mathsf{cost}(O) = c.$

ł

Optimization

- 1. Introduce a fresh variable S_i for each $C_i \in N_S = \{C_1, \ldots, C_n\}$
- 2. Define $N'_{\mathcal{S}} = \{S_i \vee C_i \mid C_i \in N_{\mathcal{S}}\} \cup \{\neg C_i \vee \neg S_i \mid C_i \in N_{\mathcal{S}}\}$
- 3. Compute cost optimal model for $N' = N_H \oplus N'_S$ with cost function $\text{cost}(L) = \left\{ \begin{array}{ll} \omega(C_i) & \text{if } L = S_i, \\ 0 & \text{otherwise} \end{array} \right.$ 0 otherwise

Minimal Covering Models

Given M set of all models of the set of clauses *N*

Find $\mathcal{M}' \subseteq \mathcal{M}$ such that

- $|\mathcal{M}'|$ is minimal
- for each propositional variable *P* in *N* there is a model $M \in \mathcal{M}'$ with $M(P) = 1$

$$
N = \{A \cup N, A \cup C, A \cup C\}
$$

 $M = \{ABC, A \cap BC, A \cap AC, A \cap C\}$
 $M' = \{A \cap C\}$
 $M'' = \{A \cap C, A \cap C\}$

Reduction to OCDCL

Given *N* with variables P_1, \ldots, P_n and clauses C_1, \ldots, C_m

- 1. Define $N_j := \{C\{P_j \mapsto P_j^j\}$ *i* | 1 ≤ *i* ≤ *n*} ∨ ¬*Q^j* | *C* ∈ *N*}
- 2. Define $N_+ := \{P_i^1 \vee \ldots \vee P_i^n \mid 1 \leq i \leq n\}$
- 3. Define $N_Q:=\{\neg P_i^j\}$ P_i^j ∨ Q_j | 1 ≤ *i*, *j* ≤ *n*}
- 4. Find a minimal cost model of $(\cup_{j=1}^n N_j) \cup N_+ \cup N_Q$ with cost function $\text{cost}(M) = \sum_{j=1}^n M(Q_j)$

Requires

- *O*(*n* 2) additional variables
- *O*(*n* · max(*m*, *n*)) additional clauses

Note: *n* = upper bound of number of models (Algorithm 10)

Reduction to OCDCL

Given *N* with variables P_1, \ldots, P_n and clauses C_1, \ldots, C_m

- 1. Define $N_j := \{C\{P_j \mapsto P_j^j\}$ *i* | 1 ≤ *i* ≤ *n*} ∨ ¬*Q^j* | *C* ∈ *N*}
- 2. Define $N_+ := \{P_i^1 \vee \ldots \vee P_i^n \mid 1 \leq i \leq n\}$
- 3. Define $N_Q:=\{\neg P_i^j\}$ P_i^j ∨ Q_j | 1 ≤ *i*, *j* ≤ *n*}
- 4. Find a minimal cost model of $(\cup_{j=1}^n N_j) \cup N_+ \cup N_Q$ with cost function $\text{cost}(M) = \sum_{j=1}^n M(Q_j)$

Requires

- $O(n^2)$ additional variables
- *O*(*n* · max(*m*, *n*)) additional clauses

Note: *n* = upper bound of number of models (Algorithm 10)

Reduction to OCDCL

Given *N* with variables P_1, \ldots, P_n and clauses C_1, \ldots, C_m

- 1. Define $N_j := \{C\{P_j \mapsto P_j^j\}$ *i* | 1 ≤ *i* ≤ *n*} ∨ ¬*Q^j* | *C* ∈ *N*}
- 2. Define $N_+ := \{P_i^1 \vee \ldots \vee P_i^n \mid 1 \leq i \leq n\}$
- 3. Define $N_Q:=\{\neg P_i^j\}$ P_i^j ∨ Q_j | 1 ≤ *i*, *j* ≤ *n*}
- 4. Find a minimal cost model of $(\cup_{j=1}^n N_j) \cup N_+ \cup N_Q$ with cost function $\text{cost}(M) = \sum_{j=1}^n M(Q_j)$

Requires

- $O(n^2)$ additional variables
- $O(n \cdot \max(m, n))$ additional clauses

Note: *n* = upper bound of number of models (Algorithm 10)

Chronological CDCL

Motivation: Reduce repeating assignments after backtracking

Main Idea: Backtrack chronologically after conflict analysis

A. Nadel and V. Ryvchin, "Chronological Backtracking", SAT'18. S. Möhle and A. Biere, "Backing Backtracking", SAT'19.

CDCL Invariants

- 1. The assignment trail contains neither complementary pairs of literals nor duplicates.
- 2. The assignment trail preceding the current decision level does not falsify the formula.
- 3. On every decision level preceding the current decision level all unit clauses are propagated until completion.
- 4. The literals are ordered on the assignment trail in ascending order with respect to their decision level.
- 5. At decision levels greater than zero the conflicting clause contains at least two literals with the current decision level.

CDCL Invariants

- 1. The assignment trail contains neither complementary pairs of literals nor duplicates.
- 2. The assignment trail preceding the current decision level does not falsify the formula.
- 3. On every decision level preceding the current decision level all unit clauses are propagated until completion.
- 4. The literals are ordered on the assignment trail in ascending order with respect to their decision level.
- 5. At decision levels greater than zero the conflicting clause contains at least two literals with the current decision level.

→ violated by Chronological CDCL $\ddot{\frown}$

✗

Out-of-Order Propagation

Out-of-Order Propagation

One Single Literal at Conflict Level

One Single Literal at Conflict Level

CDCLChrono States

■ δ : fvars(N) $\mapsto \mathbb{N} \cup \{\infty\}$ denotes the decision level function

 \bullet δ_{∞} denotes the decision level function where all literals are unassigned, i.e., assigned decision level ∞

CDCLChrono Rules

Propagate $(M; N; U; \delta; \top) \Rightarrow$ CDCLChrono $(ML^{C\vee L}; N; U; \delta[L \mapsto k]; \top)$

provided $C \vee L \in (N \cup U)$, $M \models \neg C$, *L* is undefined in M, and C is of level *k*

Decide $(M; N; U; \delta; \top) \Rightarrow$ CDCLChrono $(ML^{k+1}; N; U; \delta[L \mapsto k+1]; \top)$

provided *L* is undefined in *M* and *M* is of level *k*

Conflict $(M; N; U; \delta; \top) \Rightarrow$ CDCLChrono $(M; N; U; \delta; D)$ provided $D \in (N \cup U)$ and $M \models \neg D$

 Skip ($\mathsf{ML}^{C \vee L}$; $\mathsf{N};\,\mathsf{U};\,\delta;\mathsf{D}) \Rightarrow_{\mathsf{CDCLChrono}}$ $(M; N; U; \delta[L \mapsto \infty]: D)$ provided $D \notin \{\top, \bot\}$ and comp(L) does not occur in D

 $\mathsf{Resolve} \qquad (ML^{C \vee L};\,N;\, U;\delta; D \vee \mathsf{comp}(L)) \ \Rightarrow_{\mathsf{CDCLChrono}}$ $(M; N; U; \delta[L \mapsto \infty]; D \vee C)$

provided *D* and *L* are of the same level

Backtrack $(M_1 K^k M_2; N; U; \delta; D \vee L) \Rightarrow$ CDCLChrono $(M_1M_3L^{D\vee L}; N; U\cup \{D\vee L\}; \delta[M_4\mapsto \infty][L\mapsto i]; \top)$ provided *L* is of level *k*, *D* is of level *i*, *M*³ consists of all literals in M_2 of level K , and M_4 consists of all literals in M_2 of level K .

Restart $(M; N; U; \delta; \top) \Rightarrow$ CDCLChrono $(\epsilon; N; U; \delta_{\infty}; \top)$ provided $M \not\models N$

Forget $(M; N; U \oplus \{C\}; \delta; \top) \Rightarrow$ CDCLChrono $(M; N; U; \delta; \top)$ provided $M \not\models N$

Propagate (F, I, δ)

1 while some $C \in F$ is unit $\{\ell\}$ under I do

$$
2 \qquad I := I\ell
$$

$$
3 \qquad \delta(\ell) := \delta(C \setminus \{\ell\})
$$

for all clauses $D \in F$ containing $\neg \ell$ do $\overline{4}$

5 if
$$
I(D) = \bot
$$
 then return D

return \perp 6

Analyze (F, I, C, c)

- 1 if C contains exactly one literal at decision level c then
- $\ell :=$ literal in C at decision level c $\mathcal{D}_{\mathcal{L}}$

$$
3 \qquad j := \delta(C \setminus \{\ell\})
$$

4 else

$$
5 \qquad D := \text{Learn}(I, C)
$$

$$
6 \qquad F:=F\wedge D
$$

7
$$
\ell :=
$$
 literal in *D* at decision level *c*

$$
8 \qquad j := \delta(D \setminus \{\ell\})
$$

- 9 pick $b \in [j, c-1]$
- for all literals $k \in I$ with decision level $> b$ do 10
- assign k decision level ∞ 11
- remove k from I 12
- 13 $I := I\ell$
- 14 assign ℓ decision level j

