
Preliminaries Propositional Logic

Advanced CNF Algorithm

For the formula

P1 ↔ (P2 ↔ (P3 ↔ (. . . (Pn−1 ↔ Pn) . . .)))

the basic CNF algorithm generates a CNF with 2n−1 clauses.

November 2, 2022 34/83

Preliminaries Propositional Logic

2.5.4 Proposition (Renaming Variables)
Let P be a propositional variable not occurring in ψ[ϕ]p.

1. If pol(ψ,p) = 1, then ψ[ϕ]p is satisfiable if and only if
ψ[P]p ∧ (P → ϕ) is satisfiable.

2. If pol(ψ,p) = −1, then ψ[ϕ]p is satisfiable if and only if
ψ[P]p ∧ (ϕ→ P) is satisfiable.

3. If pol(ψ,p) = 0, then ψ[ϕ]p is satisfiable if and only if
ψ[P]p ∧ (P ↔ ϕ) is satisfiable.

November 2, 2022 35/83

Preliminaries Propositional Logic

Renaming

SimpleRenaming ϕ ⇒SimpRen ϕ[P1]p1 [P2]p2 . . . [Pn]pn ∧
def(ϕ,p1,P1) ∧ . . . ∧ def(ϕ[P1]p1 [P2]p2 . . . [Pn−1]pn−1 ,pn,Pn)

provided {p1, . . . ,pn} ⊂ pos(ϕ) and for all i , i + j either pi ∥ pi+j or
pi > pi+j and the Pi are different and new to ϕ

Simple choice: choose {p1, . . . ,pn} to be all non-literal and
non-negation positions of ϕ.

November 2, 2022 36/83

Preliminaries Propositional Logic

Renaming Definition

def(ψ,p,P) :=

(P → ψ|p) if pol(ψ,p) = 1
(ψ|p → P) if pol(ψ,p) = −1
(P ↔ ψ|p) if pol(ψ,p) = 0

November 2, 2022 37/83

Preliminaries Propositional Logic

Obvious Positions
A smaller set of positions from ϕ, called obvious positions, is still
preventing the explosion and given by the rules:

(i) p is an obvious position if ϕ|p is an equivalence and there is a
position q < p such that ϕ|q is either an equivalence or
disjunctive in ϕ or

(ii) pq is an obvious position if ϕ|pq is a conjunctive formula in ϕ,
ϕ|p is a disjunctive formula in ϕ, q ̸= ϵ, and for all positions r with
p < r < pq the formula ϕ|r is not a conjunctive formula.

A formula ϕ|p is conjunctive in ϕ if ϕ|p is a conjunction and
pol(ϕ,p) ∈ {0,1} or ϕ|p is a disjunction or implication and
pol(ϕ,p) ∈ {0,−1}.
Analogously, a formula ϕ|p is disjunctive in ϕ if ϕ|p is a disjunction
or implication and pol(ϕ,p) ∈ {0,1} or ϕ|p is a conjunction and
pol(ϕ,p) ∈ {0,−1}.

November 2, 2022 38/83

Preliminaries Propositional Logic

Polarity Dependent Equivalence
Elimination

ElimEquiv1 χ[(ϕ↔ ψ)]p ⇒ACNF χ[(ϕ→ ψ) ∧ (ψ → ϕ)]p

provided pol(χ,p) ∈ {0,1}

ElimEquiv2 χ[(ϕ↔ ψ)]p ⇒ACNF χ[(ϕ ∧ ψ) ∨ (¬ϕ ∧ ¬ψ)]p
provided pol(χ,p) = −1

November 2, 2022 39/83

Preliminaries Propositional Logic

Extra ⊤,⊥ Elimination Rules

ElimTB7 χ[ϕ→ ⊥]p ⇒ACNF χ[¬ϕ]p
ElimTB8 χ[⊥ → ϕ]p ⇒ACNF χ[⊤]p
ElimTB9 χ[ϕ→ ⊤]p ⇒ACNF χ[⊤]p
ElimTB10 χ[⊤ → ϕ]p ⇒ACNF χ[ϕ]p
ElimTB11 χ[ϕ↔ ⊥]p ⇒ACNF χ[¬ϕ]p
ElimTB12 χ[ϕ↔ ⊤]p ⇒ACNF χ[ϕ]p

where the two rules ElimTB11, ElimTB12 for equivalences are
applied with respect to commutativity of↔.

November 2, 2022 40/83

Preliminaries Propositional Logic

Advanced CNF Algorithm

1 Algorithm: 3 acnf(ϕ)

Input : A formula ϕ.
Output
:

A formula ψ in CNF satisfiability preserving to ϕ.

2 whilerule (ElimTB1(ϕ),. . .,ElimTB12(ϕ)) do ;
3 ;
4 SimpleRenaming(ϕ) on obvious positions;
5 whilerule (ElimEquiv1(ϕ),ElimEquiv2(ϕ)) do ;
6 ;
7 whilerule (ElimImp(ϕ)) do ;
8 ;
9 whilerule (PushNeg1(ϕ),. . .,PushNeg3(ϕ)) do ;

10 ;
11 whilerule (PushDisj(ϕ)) do ;
12 ;
13 return ϕ; November 2, 2022 41/83

Preliminaries Propositional Logic

Propositional Resolution

The propositional resolution calculus operates on a set of clauses
and tests unsatisfiability.

Recall that for clauses I switch between the notation as a
disjunction, e.g., P ∨Q ∨ P ∨ ¬R, and the multiset notation, e.g.,
{P,Q,P,¬R}. This makes no difference as we consider ∨ in the
context of clauses always modulo AC. Note that ⊥, the empty
disjunction, corresponds to ∅, the empty multiset. Clauses are
typically denoted by letters C, D, possibly with subscript.

November 2, 2022 42/83

Preliminaries Propositional Logic

Resolution Inference Rules

Resolution (N ⊎ {C1 ∨ P,C2 ∨ ¬P}) ⇒RES
(N ∪ {C1 ∨ P,C2 ∨ ¬P} ∪ {C1 ∨ C2})

Factoring (N ⊎ {C ∨ L ∨ L}) ⇒RES
(N ∪ {C ∨ L ∨ L} ∪ {C ∨ L})

November 2, 2022 43/83

Preliminaries Propositional Logic

2.6.1 Theorem (Soundness & Completeness)
The resolution calculus is sound and complete:

N is unsatisfiable iff N ⇒∗
RES N ′ and ⊥ ∈ N ′ for some N ′

November 2, 2022 44/83

Preliminaries Propositional Logic

Resolution Reduction Rules

Subsumption (N ⊎ {C1,C2}) ⇒RES (N ∪ {C1})
provided C1 ⊂ C2

Tautology Deletion (N ⊎ {C ∨ P ∨ ¬P}) ⇒RES (N)

Condensation (N ⊎{C1∨L∨L}) ⇒RES (N ∪{C1∨L})

Subsumption Resolution (N ⊎ {C1 ∨ L,C2 ∨ comp(L)}) ⇒RES
(N ∪ {C1 ∨ L,C2})
where C1 ⊆ C2

November 2, 2022 45/83

Preliminaries Propositional Logic

2.6.6 Theorem (Resolution Termination)
If reduction rules are preferred over inference rules and no
inference rule is applied twice to the same clause(s), then⇒+

RES
is well-founded.

November 2, 2022 46/83

Preliminaries Propositional Logic

The Overall Picture

Application
System + Problem

System
Algorithm + Implementation

Algorithm
Calculus + Strategy

Calculus
Logic + States + Rules

Logic
Syntax + Semantics

November 2, 2022 47/83

Preliminaries Propositional Logic

Conflict Driven Clause Learning
(CDCL)

The CDCL calculus tests satisfiability of a finite set N of
propositional clauses.

I assume that ⊥ ̸∈ N and that the clauses in N do not contain
duplicate literal occurrences. Furthermore, duplicate literal
occurrences are always silently removed during rule applications
of the calculus. (Exhaustive Condensation.)

November 2, 2022 48/83

Preliminaries Propositional Logic

The CDCL calculus explicitely builds a candidate model for a
clause set. If such a sequence of literals L1, . . . ,Ln satisfies the
clause set N, it is done. If not, there is a false clause C ∈ N with
respect to L1, . . . ,Ln.

Now instead of just backtracking through the literals L1, . . . ,Ln,
CDCL generates in addition a new clause, called learned clause
via resolution, that actually guarantees that the subsequence of
L1, . . . ,Ln that caused C to be false will not be generated
anymore.

This causes CDCL to be exponentially more powerful in proof
length than its predecessor DPLL or Tableau.

November 2, 2022 49/83

Preliminaries Propositional Logic

CDCL State

A CDCL problem state is a five-tuple (M;N;U; k ;D) where
M a sequence of annotated literals, called a trail,
N and U are sets of clauses,
k ∈ N, and
D is a non-empty clause or ⊤ or ⊥, called the mode of the state.

The set N is initialized by the problem clauses where the set U
contains all newly learned clauses that are consequences of
clauses from N derived by resolution.

November 2, 2022 50/83

Preliminaries Propositional Logic

Modes of CDCL States

(ϵ;N; ∅;0;⊤) is the start state for some clause set N
(M;N;U; k ;⊤) is a final state, if M |= N and all literals from N

are defined in M
(M;N;U; k ;⊥) is a final state, where N has no model
(M;N;U; k ;⊤) is an intermediate model search state if M ̸|= N
(M;N;U; k ;D) is a backtracking state if D ̸∈ {⊤,⊥}

November 2, 2022 51/83

