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Advanced CNF Algorithm

For the formula

P1 4 (P2 4 (P3 <~ ( .. (Pn_1 A d Pn) .. )))

the basic CNF algorithm generates a CNF with 2"~ clauses.
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2.5.4 Proposition (Renaming Variables)
Let P be a propositional variable not occurring in [¢]p.
1. If pol(¢, p) = 1, then ¥[¢], is satisfiable if and only if
Y[Plp A (P — ¢) is satisfiable.
2. If pol(¢, p) = —1, then ¥[¢],, is satisfiable if and only if
Y[Plp A (¢ — P) is satisfiable.
3. If pol(¢, p) = 0, then ¢[¢], is satisfiable if and only if
P[Plp A (P« ¢) is satisfiable.
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Renaming
SimpleRenaming ¢ =>simpren ®[P1lp,[P2lp, - - - [Pnlp, N

def(o,p1, P1) A ... A def(o[Pi]p, [Palp, - - - [Pn-1lps_1+ Pn> Pn)

provided {py, ..., pn} C pos(¢) and for all i, i + j either p; || p;; or
pi > piyj and the P; are different and new to ¢

Simple choice: choose {p, ..., pn} to be all non-literal and
non-negation positions of ¢.
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Renaming Definition

(P — ¢lp) if pol(¢,p) =1
def(,p, P) := ¢ (¥lp = P) if pol(s,p) = —1
(P 4lp) if pol(¢,p) =0
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Obvious Positions

A smaller set of positions from ¢, called obvious positions, is still
preventing the explosion and given by the rules:

(i) p is an obvious position if ¢|, is an equivalence and there is a
position g < p such that ¢|4 is either an equivalence or
disjunctive in ¢ or

(i) pq is an obvious position if ¢|pq is a conjunctive formula in ¢,

¢|p is a disjunctive formula in ¢, g # ¢, and for all positions r with
p < r < pq the formula ¢|, is not a conjunctive formula.

A formula ¢|p is conjunctive in ¢ if ¢|, is a conjunction and
pol(¢, p) € {0, 1} or ¢|p is a disjunction or implication and
pol(¢,p) € {0, —1}.
Analogously, a formula ¢|, is disjunctive in ¢ if ¢|, is a disjunction
or implication and pol(¢, p) € {0,1} or ¢|p is a conjunction and
pol(¢,p) € {0, —1}.
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Polarity Dependent Equivalence
Elimination

ElimEquivli  x[(¢ < ¥)]p =acne X[(¢ = ¥) A (¥ = 9)]p
provided pol(x, p) € {0,1}

ElimEquiv2  x[(¢ < ¥)]p =acnE X[(@ A D)V (md A —)]p
provided pol(x, p) = —1
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Extra T, L Elimination Rules

ElimTB7 xl¢ — Llp
ElimTBS8 x[L — 9lp
ElimTB9 xl¢ = Tlp

ElimTB10 x[T = ¢lp
ElimTB11 x[¢o < Llp
ElimTB12 xlo < Tlp

= ACNF
= ACNF
= ACNF
= ACNF
= ACNF
=" ACNF

X[=dlp
x[Tlp
x[Tlo
x[9lp
x[=¢lp
x[¢]p

where the two rules ElimTB11, ElimTB12 for equivalences are
applied with respect to commutativity of «.
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Advanced CNF Algorithm

1 Algorithm: 3 acnf(¢)

Input : A formula ¢.
Output A formula ¢ in CNF satisfiability preserving to ¢.

\:Nhilerule (ElimTB1(¢),...,ElimTB12(¢)) do ;

SimpleRenaming(¢) on obvious positions;
whilerule (ElimEquiv1(¢),ElimEquiv2(¢)) do ;

\,Nhilerule (Elimimp(¢)) do ;

© 00 N O g s ODN

whilerule (PushNeg1(¢),. . .,PushNeg3(¢)) do ;

whilerule (PushDisj(¢)) do ;
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Propositional Resolution

The propositional resolution calculus operates on a set of clauses
and tests unsatisfiability.

Recall that for clauses | switch between the notation as a
disjunction, e.g., PV Q Vv PV =R, and the multiset notation, e.g.,
{P, Q, P,—R}. This makes no difference as we consider V in the
context of clauses always modulo AC. Note that L, the empty
disjunction, corresponds to ), the empty multiset. Clauses are
typically denoted by letters C, D, possibly with subscript.
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Resolution Inference Rules

Resolution (NU{CiV P,CoV-P}) =res
(NU{CyVP,CoVv-P}U{CyV Cs})

Factoring (NW{CVLVL}) =Res
(Nu{CvLvLIu{CvVL})
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2.6.1 Theorem (Soundness & Completeness)

The resolution calculus is sound and complete:
N is unsatisfiable iff N = N' and L € N’ for some N’
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Resolution Reduction Rules

Subsumption (Nw{Ci,Co}) =res (NU{Ci})
provided C; C Co

Tautology Deletion (Ny{CV PV -=P}) =ges (N)
Condensation (Nw{CiVLVL}) =Rres (NU{C;yVL})
Subsumption Resolution (Nw{CyV L,CsVcomp(L)}) =Res

(NU{C; VL, Co})
where Ci C Co

ini p [ | November 2, 2022 45/83



Preliminaries Propositional Logic
0000000000000 000000000000000000000000000080000000000000000000000000000000000000

2.6.6 Theorem (Resolution Termination)

If reduction rules are preferred over inference rules and no
inference rule is applied twice to the same clause(s), then :>‘F'§ES
is well-founded.
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The Overall Picture

Application
System + Problem
System
Algorithm + Implementation
Algorithm
Calculus + Strategy
Calculus
Logic + States + Rules
Logic
Syntax + Semantics
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Conflict Driven Clause Learning
(CDCL)

The CDCL calculus tests satisfiability of a finite set N of
propositional clauses.

| assume that L ¢ N and that the clauses in N do not contain
duplicate literal occurrences. Furthermore, duplicate literal
occurrences are always silently removed during rule applications
of the calculus. (Exhaustive Condensation.)
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The CDCL calculus explicitely builds a candidate model for a
clause set. If such a sequence of literals Ly, ..., L, satisfies the
clause set N, it is done. If not, there is a false clause C € N with
respectto Ly,...,Lp.

Now instead of just backtracking through the literals L1, ..., Ly,
CDCL generates in addition a new clause, called learned clause
via resolution, that actually guarantees that the subsequence of
Lq,...,L,that caused C to be false will not be generated
anymore.

This causes CDCL to be exponentially more powerful in proof
length than its predecessor DPLL or Tableau.
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CDCL State

A CDCL problem state is a five-tuple (M; N; U; k; D) where

M a sequence of annotated literals, called a trail,

N and U are sets of clauses,

k € N, and

D is a non-empty clause or T or L, called the mode of the state.

The set N is initialized by the problem clauses where the set U
contains all newly learned clauses that are consequences of
clauses from N derived by resolution.
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Modes of CDCL States
(e;N;0;0; T) isthe start state for some clause set N
(M;N; U; k; T) is afinal state, if M = N and all literals from N
are defined in M
(M;N; U; k; L) is afinal state, where N has no model
(M; N; U; k; T) is anintermediate model search state if M [~ N
(M; N; U; k; D) is a backtracking state if D ¢ {T, L}
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