Preliminaries Propositional Logic
0000000000000 00000000000000008000

Advanced CNF Algorithm

For the formula

P1 4 (P2 4 (P3 <~ (.. (Pn_1 A d Pn) ..)))

the basic CNF algorithm generates a CNF with 2"~ clauses.

ini p [| November 2, 2022 34/83

Preliminaries Propositional Logic
0000000000000 0000000000000 0000®O0O000

2.5.4 Proposition (Renaming Variables)
Let P be a propositional variable not occurring in [¢]p.
1. If pol(¢, p) = 1, then ¥[¢], is satisfiable if and only if
Y[Plp A (P — ¢) is satisfiable.
2. If pol(¢, p) = —1, then ¥[¢],, is satisfiable if and only if
Y[Plp A (¢ — P) is satisfiable.
3. If pol(¢, p) = 0, then ¢[¢], is satisfiable if and only if
P[Plp A (P« ¢) is satisfiable.

ina p [| November 2, 2022 35/83

Preliminaries Propositional Logic

0000000000000 0000000000000 00000e000000000000000O0000O000000000000000O0000000000000
Renaming
SimpleRenaming ¢ =>simpren ®[P1lp,[P2lp, - - - [Pnlp, N

def(o,p1, P1) A ... A def(o[Pi]p, [Palp, - - - [Pn-1lps_1+ Pn> Pn)

provided {py, ..., pn} C pos(¢) and for all i, i + j either p; || p;; or
pi > piyj and the P; are different and new to ¢

Simple choice: choose {p, ..., pn} to be all non-literal and
non-negation positions of ¢.

November 2, 2022 36/83

TV
i mat

Preliminaries Propositional Logic
0000000000000 0000000000000000000e00

Renaming Definition

(P — ¢lp) if pol(¢,p) =1
def(,p, P) := ¢ (¥lp = P) if pol(s,p) = —1
(P 4lp) if pol(¢,p) =0

ina p | SR November 2, 2022 37/83

Preliminaries Propositional Logic
0000000000000 000000000000000000008000

Obvious Positions

A smaller set of positions from ¢, called obvious positions, is still
preventing the explosion and given by the rules:

(i) p is an obvious position if ¢|, is an equivalence and there is a
position g < p such that ¢|4 is either an equivalence or
disjunctive in ¢ or

(i) pq is an obvious position if ¢|pq is a conjunctive formula in ¢,

¢|p is a disjunctive formula in ¢, g # ¢, and for all positions r with
p < r < pq the formula ¢|, is not a conjunctive formula.

A formula ¢|p is conjunctive in ¢ if ¢|, is a conjunction and
pol(¢, p) € {0, 1} or ¢|p is a disjunction or implication and
pol(¢,p) € {0, —1}.
Analogously, a formula ¢|, is disjunctive in ¢ if ¢|, is a disjunction
or implication and pol(¢, p) € {0,1} or ¢|p is a conjunction and
pol(¢,p) € {0, —1}.
in p | | e November 2, 2022 38/83

Preliminaries Propositional Logic
0000000000000 000000000000000000000800

Polarity Dependent Equivalence
Elimination

ElimEquivli x[(¢ < ¥)]p =acne X[(¢ = ¥) A (¥ = 9)]p
provided pol(x, p) € {0,1}

ElimEquiv2 x[(¢ < ¥)]p =acnE X[(@ A D)V (md A —)]p
provided pol(x, p) = —1

i p | | et November 2, 2022 39/83

Preliminaries Propositional Logic

0000000000000 000000000000 0000000000e000

Extra T, L Elimination Rules

ElimTB7 xl¢ — Llp
ElimTBS8 x[L — 9lp
ElimTB9 xl¢ = Tlp

ElimTB10 x[T = ¢lp
ElimTB11 x[¢o < Llp
ElimTB12 xlo < Tlp

= ACNF
= ACNF
= ACNF
= ACNF
= ACNF
=" ACNF

X[=dlp
x[Tlp
x[Tlo
x[9lp
x[=¢lp
x[¢]p

where the two rules ElimTB11, ElimTB12 for equivalences are
applied with respect to commutativity of «.

' l I I I max planck institut
informatik

November 2, 2022 40/83

Preliminaries Propositional Logic
0000000000000 00000000000000000000000e00

Advanced CNF Algorithm

1 Algorithm: 3 acnf(¢)

Input : A formula ¢.
Output A formula ¢ in CNF satisfiability preserving to ¢.

\:Nhilerule (ElimTB1(¢),...,ElimTB12(¢)) do ;

SimpleRenaming(¢) on obvious positions;
whilerule (ElimEquiv1(¢),ElimEquiv2(¢)) do ;

\,Nhilerule (Elimimp(¢)) do ;

© 00 N O g s ODN

whilerule (PushNeg1(¢),. . .,PushNeg3(¢)) do ;

whilerule (PushDisj(¢)) do ;
;&Em BNl instita November 2, 2022 41/83

- -t
- O

s
)

Preliminaries Propositional Logic
0000000000000 000000000000000000000000e000

Propositional Resolution

The propositional resolution calculus operates on a set of clauses
and tests unsatisfiability.

Recall that for clauses | switch between the notation as a
disjunction, e.g., PV Q Vv PV =R, and the multiset notation, e.g.,
{P, Q, P,—R}. This makes no difference as we consider V in the
context of clauses always modulo AC. Note that L, the empty
disjunction, corresponds to), the empty multiset. Clauses are
typically denoted by letters C, D, possibly with subscript.

November 2, 2022 42/83

Preliminaries Propositional Logic
0000000000000 0000000000000000000000000e00

Resolution Inference Rules

Resolution (NU{CiV P,CoV-P}) =res
(NU{CyVP,CoVv-P}U{CyV Cs})

Factoring (NW{CVLVL}) =Res
(Nu{CvLvLIu{CvVL})

ini p [| November 2, 2022 43/83

Preliminaries Propositional Logic
0000000000000 000000000000000000000000008000000000000000000000000000000000000000

2.6.1 Theorem (Soundness & Completeness)

The resolution calculus is sound and complete:
N is unsatisfiable iff N = N' and L € N’ for some N’

inn p | SR November 2, 2022 44/83

Preliminaries Propositional Logic
0000000000000 000000000000000000000000000800000000000000000000000000000000000000

Resolution Reduction Rules

Subsumption (Nw{Ci,Co}) =res (NU{Ci})
provided C; C Co

Tautology Deletion (Ny{CV PV -=P}) =ges (N)
Condensation (Nw{CiVLVL}) =Rres (NU{C;yVL})
Subsumption Resolution (Nw{CyV L,CsVcomp(L)}) =Res

(NU{C; VL, Co})
where Ci C Co

ini p [| November 2, 2022 45/83

Preliminaries Propositional Logic
0000000000000 000000000000000000000000000080000000000000000000000000000000000000

2.6.6 Theorem (Resolution Termination)

If reduction rules are preferred over inference rules and no
inference rule is applied twice to the same clause(s), then :>‘F'§ES
is well-founded.

November 2, 2022 46/83

'llpllmu

Preliminaries Propositional Logic
0000000000000 00000000000000000000000000000e000000000000000000000000000000000000

The Overall Picture

Application
System + Problem
System
Algorithm + Implementation
Algorithm
Calculus + Strategy
Calculus
Logic + States + Rules
Logic
Syntax + Semantics

ini p [| November 2, 2022 47/83

Preliminaries Propositional Logic
0000000000000 000000000000000000000000000000e00000000000000000000000000000000000

Conflict Driven Clause Learning
(CDCL)

The CDCL calculus tests satisfiability of a finite set N of
propositional clauses.

| assume that L ¢ N and that the clauses in N do not contain
duplicate literal occurrences. Furthermore, duplicate literal
occurrences are always silently removed during rule applications
of the calculus. (Exhaustive Condensation.)

max pl<:::(l;k institut November 2, 2022 48/83

lllpll

Preliminaries Propositional Logic
0000000000000 000000000000000000000000000000080000000000000000000000000000000000

The CDCL calculus explicitely builds a candidate model for a
clause set. If such a sequence of literals Ly, ..., L, satisfies the
clause set N, it is done. If not, there is a false clause C € N with
respectto Ly,...,Lp.

Now instead of just backtracking through the literals L1, ..., Ly,
CDCL generates in addition a new clause, called learned clause
via resolution, that actually guarantees that the subsequence of
Lq,...,L,that caused C to be false will not be generated
anymore.

This causes CDCL to be exponentially more powerful in proof
length than its predecessor DPLL or Tableau.

ini p [| November 2, 2022 49/83

Preliminaries Propositional Logic
0000000000000 000000000000000000000000000000008000000000000000000000000000000000

CDCL State

A CDCL problem state is a five-tuple (M; N; U; k; D) where

M a sequence of annotated literals, called a trail,

N and U are sets of clauses,

k € N, and

D is a non-empty clause or T or L, called the mode of the state.

The set N is initialized by the problem clauses where the set U
contains all newly learned clauses that are consequences of
clauses from N derived by resolution.

max pl<:::(l;k institut November 2, 2022 50/83

lllpll

Preliminaries Propositional Logic
0000000000000 000000000000000000000000000000000800000000000000000000000000000000

Modes of CDCL States
(e;N;0;0; T) isthe start state for some clause set N
(M;N; U; k; T) is afinal state, if M = N and all literals from N
are defined in M
(M;N; U; k; L) is afinal state, where N has no model
(M; N; U; k; T) is anintermediate model search state if M [~ N
(M; N; U; k; D) is a backtracking state if D ¢ {T, L}

i p | | e November 2, 2022 51/83

