Advanced CNF Algorithm

For the formula

$$
P_1 \leftrightarrow (P_2 \leftrightarrow (P_3 \leftrightarrow (\dots (P_{n-1} \leftrightarrow P_n) \dots)))
$$

the basic CNF algorithm generates a CNF with 2*n*−¹ clauses.

2.5.4 Proposition (Renaming Variables)

Let *P* be a propositional variable not occurring in $\psi[\phi]_p$.

- 1. If pol $(\psi, \rho) = 1$, then $\psi[\phi]_{\rho}$ is satisfiable if and only if $\psi[P]_p \wedge (P \to \phi)$ is satisfiable.
- 2. If pol $(\psi, p) = -1$, then $\psi[\phi]_p$ is satisfiable if and only if $\psi[P]_p \wedge (\phi \rightarrow P)$ is satisfiable.
- 3. If pol $(\psi, \rho) = 0$, then $\psi[\phi]_p$ is satisfiable if and only if $\psi[P]_p \wedge (P \leftrightarrow \phi)$ is satisfiable.

Renaming

 $\phi \Rightarrow_{\mathsf{SimpRen}} \phi[P_1]_{\rho_1}[P_2]_{\rho_2} \ldots [P_n]_{\rho_n} \wedge$ def(ϕ, *p*1, *P*1) ∧ . . . ∧ def(ϕ[*P*1]*p*¹ [*P*2]*p*² . . . [*Pn*−1]*pn*−¹ , *pn*, *Pn*) provided $\{p_1, \ldots, p_n\} \subset \text{pos}(\phi)$ and for all *i*, *i* + *j* either $p_i \parallel p_{i+i}$ or $p_i > p_{i+i}$ and the P_i are different and new to ϕ

Simple choice: choose $\{p_1, \ldots, p_n\}$ to be all non-literal and non-negation positions of ϕ .

Renaming Definition

$$
\text{def}(\psi, p, P) := \left\{ \begin{array}{ll} (P \to \psi|_p) & \text{if } \text{pol}(\psi, p) = 1 \\ (\psi|_p \to P) & \text{if } \text{pol}(\psi, p) = -1 \\ (P \leftrightarrow \psi|_p) & \text{if } \text{pol}(\psi, p) = 0 \end{array} \right.
$$

Obvious Positions

A smaller set of positions from ϕ, called *obvious positions*, is still preventing the explosion and given by the rules:

(i) ρ is an obvious position if $\phi|_{\rho}$ is an equivalence and there is a position $q < p$ such that $\phi|_q$ is either an equivalence or disjunctive in ϕ or

(ii) *pq* is an obvious position if $\phi|_{pq}$ is a conjunctive formula in ϕ , $\phi|_p$ is a disjunctive formula in ϕ , $q \neq \epsilon$, and for all positions *r* with $\bm{\mathsf{p}} < \bm{\mathsf{r}} < \bm{\mathsf{p}}$ q the formula $\phi|_{\bm{\mathsf{r}}}$ is not a conjunctive formula.

A formula $\phi|_p$ is conjunctive in ϕ if $\phi|_p$ is a conjunction and $\text{pol}(\phi, p) \in \{0, 1\}$ or $\phi|_p$ is a disjunction or implication and $pol(\phi, p) \in \{0, -1\}.$

Analogously, a formula $\phi|_p$ is disjunctive in ϕ if $\phi|_p$ is a disjunction or implication and $\text{pol}(\phi, p) \in \{0, 1\}$ or $\phi|_p$ is a conjunction and $pol(\phi, p) \in \{0, -1\}.$ \blacksquare \blacksquare max planck institut
informatik November 2, 2022 38/83

Polarity Dependent Equivalence Elimination

ElimEquiv1 $\chi[(\phi \leftrightarrow \psi)]_p \Rightarrow_{ACNF} \chi[(\phi \rightarrow \psi) \wedge (\psi \rightarrow \phi)]_p$ provided pol $(y, p) \in \{0, 1\}$

ElimEquiv2 $\chi[(\phi \leftrightarrow \psi)]_p \Rightarrow_{ACNF} \chi[(\phi \land \psi) \lor (\neg \phi \land \neg \psi)]_p$ provided pol $(y, p) = -1$

Extra ⊤, ⊥ Elimination Rules

where the two rules ElimTB11, ElimTB12 for equivalences are applied with respect to commutativity of \leftrightarrow .

Advanced CNF Algorithm

1 Algorithm: 3 acnf(ϕ)

```
Input : A formula ϕ.
```
Output A formula ψ in CNF satisfiability preserving to ϕ .

```
:
2 whilerule (ElimTB1(ϕ),. . .,ElimTB12(ϕ)) do ;
```

```
3 ;
```
4 SimpleRenaming(ϕ) on obvious positions;

```
5 whilerule (ElimEquiv1(ϕ),ElimEquiv2(ϕ)) do ;
```
6 ;

7 whilerule *(***ElimImp**(ϕ)*)* **do** ;

8 ;

```
9 whilerule (PushNeg1(ϕ),. . .,PushNeg3(ϕ)) do ;
```
10 ;

12 ;

13 return ϕ;

11 whilerule *(***PushDisj**(ϕ)*)* **do** ;

max planck institut
informatik

Propositional Resolution

The propositional resolution calculus operates on a set of clauses and tests unsatisfiability.

Recall that for clauses I switch between the notation as a disjunction, e.g., $P \vee Q \vee P \vee \neg R$, and the multiset notation, e.g., {*P*, *Q*, *P*, ¬*R*}. This makes no difference as we consider ∨ in the context of clauses always modulo AC. Note that ⊥, the empty disjunction, corresponds to ∅, the empty multiset. Clauses are typically denoted by letters *C*, *D*, possibly with subscript.

Resolution Inference Rules

Resolution $(N \cup \{C_1 \vee P, C_2 \vee \neg P\}) \Rightarrow_{R \in S}$ $(N \cup \{C_1 \vee P, C_2 \vee \neg P\} \cup \{C_1 \vee C_2\})$

Factoring $(N \cup \{C \vee L \vee L\}) \Rightarrow_{BFS}$ (*N* ∪ {*C* ∨ *L* ∨ *L*} ∪ {*C* ∨ *L*})

2.6.1 Theorem (Soundness & Completeness)

The resolution calculus is sound and complete: *N* is unsatisfiable iff $N \Rightarrow_{RES}^* N'$ and $\bot \in N'$ for some N'

Resolution Reduction Rules

Subsumption $(N \oplus \{C_1, C_2\}) \Rightarrow_{BFS} (N \cup \{C_1\})$ provided $C_1 \subset C_2$ **Tautology Deletion** $(N \oplus \{C \lor P \lor \neg P\}) \Rightarrow_{BFS} (N)$ **Condensation** $(N \oplus \{C_1 \vee L \vee L\}) \Rightarrow_{BFS} (N \cup \{C_1 \vee L\})$ **Subsumption Resolution** $(N \oplus \{C_1 \vee L, C_2 \vee \text{comp}(L)\}) \Rightarrow_{RFS}$ $(N ∪ {C_1 ∨ L, C_2})$ where $C_1 \subset C_2$

2.6.6 Theorem (Resolution Termination)

If reduction rules are preferred over inference rules and no inference rule is applied twice to the same clause(s), then $\Rightarrow_{\sf RES}^+$ is well-founded.

The Overall Picture

Application

 $System + Problem$

System

 $Algorithm + Implementation$

Algorithm

 $Calculus + Strategy$

Calculus

 $Logic + States + Rules$

Logic

 $Syn tax + Semantics$

Conflict Driven Clause Learning (CDCL)

The CDCL calculus tests satisfiability of a finite set *N* of propositional clauses.

I assume that ⊥ ̸∈ *N* and that the clauses in *N* do not contain duplicate literal occurrences. Furthermore, duplicate literal occurrences are always silently removed during rule applications of the calculus. (Exhaustive Condensation.)

The CDCL calculus explicitely builds a candidate model for a clause set. If such a sequence of literals *L*1, . . . , *Lⁿ* satisfies the clause set N, it is done. If not, there is a false clause $C \in N$ with respect to L_1, \ldots, L_n .

Now instead of just backtracking through the literals *L*1, . . . , *Ln*, CDCL generates in addition a new clause, called *learned clause* via resolution, that actually guarantees that the subsequence of *L*1, . . . , *Lⁿ* that caused *C* to be false will not be generated anymore.

This causes CDCL to be exponentially more powerful in proof length than its predecessor DPLL or Tableau.

CDCL State

- A CDCL problem state is a five-tuple (*M*; *N*; *U*; *k*; *D*) where
- *M* a sequence of annotated literals, called a *trail*,
- *N* and *U* are sets of clauses,
- $k \in \mathbb{N}$, and
- *D* is a non-empty clause or ⊤ or ⊥, called the *mode* of the state.

The set *N* is initialized by the problem clauses where the set *U* contains all newly learned clauses that are consequences of clauses from *N* derived by resolution.

Modes of CDCL States

