Advanced CNF Algorithm

For the formula

$$P_1 \leftrightarrow (P_2 \leftrightarrow (P_3 \leftrightarrow (\dots (P_{n-1} \leftrightarrow P_n) \dots)))$$

the basic CNF algorithm generates a CNF with 2^{n-1} clauses.

2.5.4 Proposition (Renaming Variables)

Let *P* be a propositional variable not occurring in $\psi[\phi]_{\rho}$.

- If pol(ψ, p) = 1, then ψ[φ]_p is satisfiable if and only if ψ[P]_p ∧ (P → φ) is satisfiable.
- 2. If $pol(\psi, p) = -1$, then $\psi[\phi]_p$ is satisfiable if and only if $\psi[P]_p \land (\phi \to P)$ is satisfiable.
- 3. If $pol(\psi, p) = 0$, then $\psi[\phi]_p$ is satisfiable if and only if $\psi[P]_p \land (P \leftrightarrow \phi)$ is satisfiable.

Renaming

SimpleRenaming $\phi \Rightarrow_{\text{SimpRen}} \phi[P_1]_{p_1}[P_2]_{p_2} \dots [P_n]_{p_n} \land \text{def}(\phi, p_1, P_1) \land \dots \land \text{def}(\phi[P_1]_{p_1}[P_2]_{p_2} \dots [P_{n-1}]_{p_{n-1}}, p_n, P_n)$ provided $\{p_1, \dots, p_n\} \subset \text{pos}(\phi)$ and for all i, i + j either $p_i \parallel p_{i+j}$ or $p_i > p_{i+j}$ and the P_i are different and new to ϕ

Simple choice: choose $\{p_1, \ldots, p_n\}$ to be all non-literal and non-negation positions of ϕ .

Renaming Definition

$$def(\psi, p, P) := \begin{cases} (P \to \psi|_p) & \text{if } \operatorname{pol}(\psi, p) = 1\\ (\psi|_p \to P) & \text{if } \operatorname{pol}(\psi, p) = -1\\ (P \leftrightarrow \psi|_p) & \text{if } \operatorname{pol}(\psi, p) = 0 \end{cases}$$

Obvious Positions

Preliminaries

A smaller set of positions from ϕ , called *obvious positions*, is still preventing the explosion and given by the rules:

(i) p is an obvious position if $\phi|_p$ is an equivalence and there is a position q < p such that $\phi|_q$ is either an equivalence or disjunctive in ϕ or

(ii) pq is an obvious position if $\phi|_{pq}$ is a conjunctive formula in ϕ , $\phi|_{p}$ is a disjunctive formula in ϕ , $q \neq \epsilon$, and for all positions r with p < r < pq the formula $\phi|_r$ is not a conjunctive formula.

A formula $\phi|_{\rho}$ is conjunctive in ϕ if $\phi|_{\rho}$ is a conjunction and $pol(\phi, p) \in \{0, 1\}$ or $\phi|_p$ is a disjunction or implication and $pol(\phi, p) \in \{0, -1\}.$

Analogously, a formula $\phi|_{p}$ is disjunctive in ϕ if $\phi|_{p}$ is a disjunction or implication and $pol(\phi, p) \in \{0, 1\}$ or $\phi|_p$ is a conjunction and $pol(\phi, p) \in \{0, -1\}.$ max planck institut informatik November 2, 2022

Polarity Dependent Equivalence Elimination

 $\begin{array}{ll} \mbox{ElimEquiv1} & \chi[(\phi \leftrightarrow \psi)]_{\rho} \ \Rightarrow_{\mbox{ACNF}} \ \chi[(\phi \rightarrow \psi) \land (\psi \rightarrow \phi)]_{\rho} \\ \mbox{provided pol}(\chi, \rho) \in \{0, 1\} \end{array}$

ElimEquiv2 $\chi[(\phi \leftrightarrow \psi)]_{\rho} \Rightarrow_{\mathsf{ACNF}} \chi[(\phi \land \psi) \lor (\neg \phi \land \neg \psi)]_{\rho}$ provided $\operatorname{pol}(\chi, \rho) = -1$

Extra \top, \bot Elimination Rules

ElimTB7	$\chi[\phi \to \bot]_{\rho} \Rightarrow_{ACNF}$	$\chi[\neg\phi]_{\rho}$
ElimTB8	$\chi[\perp \to \phi]_{\rho} \Rightarrow_{ACNF}$	$\chi[\top]_{p}$
ElimTB9	$\chi[\phi \to \top]_{\rho} \Rightarrow_{ACNF}$	$\chi[\top]_{ m P}$
ElimTB10	$\chi[\top \to \phi]_{\rho} \Rightarrow_{ACNF}$	$\chi[\phi]_{ m ho}$
ElimTB11	$\chi[\phi\leftrightarrow\perp]_{\rho} \Rightarrow_{ACNF}$	$\chi[\neg\phi]_{P}$
ElimTB12	$\chi[\phi\leftrightarrow\top]_{\rho} \Rightarrow_{ACNF}$	$\chi[\phi]_{ m ho}$

where the two rules ElimTB11, ElimTB12 for equivalences are applied with respect to commutativity of \leftrightarrow .

Advanced CNF Algorithm

1 Algorithm: 3 $\operatorname{acnf}(\phi)$

```
Input : A formula \phi.
```

Output A formula ψ in CNF satisfiability preserving to ϕ .

```
2 whilerule (ElimTB1(\phi),...,ElimTB12(\phi)) do ;
```

```
3;
```

4 **SimpleRenaming**(ϕ) on obvious positions;

```
5 whilerule (ElimEquiv1(\phi),ElimEquiv2(\phi)) do ;
```

6;

7 whilerule (ElimImp(ϕ)) do ;

8;

9 whilerule (PushNeg1(ϕ),...,PushNeg3(ϕ)) do ;

10 ;

11 whilerule (PushDisj (ϕ)) do ;

max planck institut informatik

Propositional Resolution

The propositional resolution calculus operates on a set of clauses and tests unsatisfiability.

Recall that for clauses I switch between the notation as a disjunction, e.g., $P \lor Q \lor P \lor \neg R$, and the multiset notation, e.g., $\{P, Q, P, \neg R\}$. This makes no difference as we consider \lor in the context of clauses always modulo AC. Note that \bot , the empty disjunction, corresponds to \emptyset , the empty multiset. Clauses are typically denoted by letters *C*, *D*, possibly with subscript.

Resolution Inference Rules

 $\begin{array}{l} \textbf{Resolution} \quad (N \uplus \{C_1 \lor P, C_2 \lor \neg P\}) \Rightarrow_{\mathsf{RES}} \\ (N \cup \{C_1 \lor P, C_2 \lor \neg P\} \cup \{C_1 \lor C_2\}) \end{array}$

Factoring $(N \uplus \{C \lor L \lor L\}) \Rightarrow_{\mathsf{RES}} (N \cup \{C \lor L \lor L\} \cup \{C \lor L\})$

2.6.1 Theorem (Soundness & Completeness)

The resolution calculus is sound and complete: N is unsatisfiable iff $N \Rightarrow_{\mathsf{RES}}^* N'$ and $\bot \in N'$ for some N'

Resolution Reduction Rules

Subsumption $(N \uplus \{C_1, C_2\}) \Rightarrow_{\mathsf{BFS}} (N \cup \{C_1\})$ provided $C_1 \subset C_2$ Tautology Deletion $(N \uplus \{ C \lor P \lor \neg P \}) \Rightarrow_{\mathsf{BES}} (N)$ $(N \uplus \{C_1 \lor L \lor L\}) \Rightarrow_{\mathsf{BFS}} (N \cup \{C_1 \lor L\})$ Condensation **Subsumption Resolution** $(N \uplus \{C_1 \lor L, C_2 \lor \text{comp}(L)\}) \Rightarrow_{\text{RES}}$ $(N \cup \{C_1 \lor L, C_2\})$ where $C_1 \subset C_2$

2.6.6 Theorem (Resolution Termination)

If reduction rules are preferred over inference rules and no inference rule is applied twice to the same clause(s), then $\Rightarrow^+_{\sf RES}$ is well-founded.

The Overall Picture

Application

System + Problem

System

Algorithm + Implementation

Algorithm

Calculus + Strategy

Calculus

Logic + States + Rules

Logic

Syntax + Semantics

Conflict Driven Clause Learning (CDCL)

The CDCL calculus tests satisfiability of a finite set N of propositional clauses.

I assume that $\perp \notin N$ and that the clauses in N do not contain duplicate literal occurrences. Furthermore, duplicate literal occurrences are always silently removed during rule applications of the calculus. (Exhaustive Condensation.)

Preliminaries

The CDCL calculus explicitely builds a candidate model for a clause set. If such a sequence of literals L_1, \ldots, L_n satisfies the clause set N, it is done. If not, there is a false clause $C \in N$ with respect to L_1, \ldots, L_n .

Now instead of just backtracking through the literals L_1, \ldots, L_n , CDCL generates in addition a new clause, called *learned clause* via resolution, that actually guarantees that the subsequence of L_1, \ldots, L_n that caused *C* to be false will not be generated anymore.

This causes CDCL to be exponentially more powerful in proof length than its predecessor DPLL or Tableau.

CDCL State

Preliminaries

- A CDCL problem state is a five-tuple (M; N; U; k; D) where
- *M* a sequence of annotated literals, called a *trail*,
- N and U are sets of clauses,
- $k \in \mathbb{N}$, and
- *D* is a non-empty clause or \top or \bot , called the *mode* of the state.

The set N is initialized by the problem clauses where the set U contains all newly learned clauses that are consequences of clauses from N derived by resolution.

Modes of CDCL States

$(\epsilon; N; \emptyset; 0; \top)$ $(M; N; U; k; \top)$	is the start state for some clause set N is a final state, if $M \models N$ and all literals from N are defined in M
$(M; N; U; k; \perp)$	is a final state, where <i>N</i> has no model
$(M; N; U; k; \top)$	is an intermediate model search state if $M \not\models N$
(M; N; U; k; D)	is a backtracking state if $D \notin \{\top, \bot\}$

