
Preliminaries Propositional Logic

Conflict Driven Clause Learning
(CDCL)

The CDCL calculus tests satisfiability of a finite set N of
propositional clauses.

I assume that ⊥ ̸∈ N and that the clauses in N do not contain
duplicate literal occurrences. Furthermore, duplicate literal
occurrences are always silently removed during rule applications
of the calculus. (Exhaustive Condensation.)
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The CDCL calculus explicitely builds a candidate model for a
clause set. If such a sequence of literals L1, . . . ,Ln satisfies the
clause set N, it is done. If not, there is a false clause C ∈ N with
respect to L1, . . . ,Ln.

Now instead of just backtracking through the literals L1, . . . ,Ln,
CDCL generates in addition a new clause, called learned clause
via resolution, that actually guarantees that the subsequence of
L1, . . . ,Ln that caused C to be false will not be generated
anymore.

This causes CDCL to be exponentially more powerful in proof
length than its predecessor DPLL or Tableau.
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CDCL State

A CDCL problem state is a five-tuple (M;N;U; k ;D) where
M a sequence of annotated literals, called a trail,
N and U are sets of clauses,
k ∈ N, and
D is a non-empty clause or ⊤ or ⊥, called the mode of the state.

The set N is initialized by the problem clauses where the set U
contains all newly learned clauses that are consequences of
clauses from N derived by resolution.

November 2, 2022 50/83



Preliminaries Propositional Logic

Modes of CDCL States

(ϵ;N; ∅;0;⊤) is the start state for some clause set N
(M;N;U; k ;⊤) is a final state, if M |= N and all literals from N

are defined in M
(M;N;U; k ;⊥) is a final state, where N has no model
(M;N;U; k ;⊤) is an intermediate model search state if M ̸|= N
(M;N;U; k ;D) is a backtracking state if D ̸∈ {⊤,⊥}
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The Role of Levels

Literals in L ∈ M are either annotated with a number, a level, i.e.,
they have the form Lk meaning that L is the k th guessed decision
literal, or they are annotated with a clause that forced the literal to
become true.
A literal L is of level k with respect to a problem state
(M;N;U; j ;C) if L or comp(L) occurs in M and L itself or the first
decision literal left from L (comp(L)) in M is annotated with k . If
there is no such decision literal then k = 0.
A clause D is of level k with respect to a problem state
(M;N;U; j ;C) if k is the maximal level of a literal in D.
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CDCL Rules

Propagate (M;N;U; k ;⊤) ⇒CDCL (MLC∨L;N;U; k ;⊤)
provided C ∨ L ∈ (N ∪ U), M |= ¬C, and L is undefined in M

Decide (M;N;U; k ;⊤) ⇒CDCL (MLk+1;N;U; k + 1;⊤)
provided L is undefined in M

Conflict (M;N;U; k ;⊤) ⇒CDCL (M;N;U; k ;D)

provided D ∈ (N ∪ U) and M |= ¬D
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Skip (MLC∨L;N;U; k ;D) ⇒CDCL (M;N;U; k ;D)

provided D ̸∈ {⊤,⊥} and comp(L) does not occur in D

Resolve (MLC∨L;N;U; k ;D ∨ comp(L)) ⇒CDCL
(M;N;U; k ;D ∨ C)

provided D is of level k

Backtrack (M1K i+1M2;N;U; k ;D ∨ L) ⇒CDCL
(M1LD∨L;N;U ∪ {D ∨ L}; i ;⊤)
provided L is of level k and D is of level i .

Restart (M;N;U; k ;⊤) ⇒CDCL (ϵ;N;U;0;⊤)
provided M ̸|= N

Forget (M;N;U ⊎ {C}; k ;⊤) ⇒CDCL (M;N;U; k ;⊤)
provided M ̸|= N
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2.9.5 Definition (Reasonable CDCL Strategy)
A CDCL strategy is reasonable if the rules Conflict and
Propagate are always preferred over all other rules.
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2.9.6 Proposition (CDCL Basic Properties)
Consider CDCL run deriving (M;N;U; k ;C) by any strategy but
without Restart and Forget. Then the following properties hold:

1. M is consistent.
2. All learned clauses are entailed by N.
3. If C ̸∈ {⊤,⊥} then M |= ¬C.
4. If C = ⊤ and M contains only propagated literals then for each

valuation A with A |= N it holds that A |= M.
5. If C = ⊤, M contains only propagated literals and M |= ¬D for

some D ∈ (N ∪ U) then N is unsatisfiable.
6. If C = ⊥ then CDCL terminates and N is unsatisfiable.
7. k is the maximal level of a literal in M.
8. Each infinite derivation contains an infinite number of Backtrack

applications.
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2.9.7 Lemma (CDCL Redundancy)
Consider a CDCL derivation by a reasonable strategy. Then
CDCL never learns a clause contained in N ∪ U.
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2.9.10 Lemma (CDCL Soundness)
In a reasonable CDCL derivation, CDCL can only terminate in
two different types of final states: (M;N;U; k ;⊤) where M |= N
and (M;N;U; k ;⊥) where N is unsatisfiable.
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2.9.11 Proposition (CDCL Soundness)
The rules of the CDCL algorithm are sound: (i) if CDCL
terminates from (ϵ;N; ∅;0;⊤) in the state (M;N;U; k ;⊤), then N
is satisfiable, (ii) if CDCL terminates from (ϵ;N; ∅;0;⊤) in the
state (M;N;U; k ;⊥), then N is unsatisfiable.
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2.9.12 Proposition (CDCL Strong Completeness)
The CDCL rule set is complete: for any valuation M with M |= N
there is a reasonable sequence of rule applications generating
(M ′;N;U; k ;⊤) as a final state, where M and M ′ only differ in the
order of literals.
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2.9.13 Proposition (CDCL Termination)
Assume the algorithm CDCL with all rules except Restart and
Forget is applied using a reasonable strategy. Then it terminates
in a state (M;N;U; k ;D) with D ∈ {⊤,⊥}.
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The Overall Picture

Application
System + Problem

System
Algorithm + Implementation

Algorithm
Calculus + Strategy

Calculus
Logic + States + Rules

Logic
Syntax + Semantics
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1 Algorithm: 5 CDCL(S)
Input : An initial state (ϵ;N; ∅;0;⊤).
Output
:

A final state S = (M;N;U; k ;⊤) or

S = (M;N;U; k ;⊥)
2 while (any rule applicable) do

3 ifrule (Conflict(S)) then
4 while (Skip(S) ∥ Resolve(S)) do
5 update VSIDS on resolved literals;
6 update VSIDS on learned clause, Backtrack(S);
7 if (forget heuristic) then
8 Forget(S), Restart(S);
9 else

10 if (restart heuristic) then
11 Restart(S);
12 else
13 ifrule (!Propagate(S)) then
14 Decide(S) literal with max. VSIDS score;
15 return(S);
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Implementation: Data Structures

Propagate (M;N;U; k ;⊤) ⇒CDCL (MLC∨L;N;U; k ;⊤)
provided C ∨ L ∈ (N ∪ U), M |= ¬C, and L is undefined in M

Conflict (M;N;U; k ;⊤) ⇒CDCL (M;N;U; k ;D)

provided D ∈ (N ∪ U) and M |= ¬D
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Implementation

data structures: clauses, trail, and the rules
heuristics: decision literal, forget, restart
space efficiency: forget
quality: restarts
special cases
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Data Structures

Idea: Select two literals from each clause for indexing.

2.10.1 Invariant (2-Watched Literal Indexing)
If one of the watched literals is false and the other watched literal
is not true, then all other literals of the clause are false.
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N = {P ∨ ¬R, P ∨ ¬Q, R ∨Q ∨ P, ¬P ∨ R ∨Q}

P

Q

R

P ¬Q P ¬R¬P R Q

P ¬Q R Q P

P ¬R R Q P ¬P R Q
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VSIDS: Variable State Independent
Decaying Sum

each propositional variable has a positive score, initially 0
decide the variable with maximal score, remember sign (phase
saving)
increment the score of variables involved in resolution by b
increment the score of variables in learned clauses by b
initially b > 0
at Backtrack set b := c ∗ b where 2 >> c > 1, i.e., bn = cn ∗ b
take care of overflows, i.e., rescale from time to time
sometimes pick a variable randomly
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Forget

fix a limit d on the number of learned clauses
if more than |U| > d start forgetting
remove redundant clauses
sort the learned clauses according to a score
typical elements of the score are clause length, the VSIDS
score, dependency on decisions
remove the k% clauses with minimal score from U
d := d + e for some e, e >> 1
do a Restart
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Restart

after forgetting do a restart
if a unit is learned do a restart
restart often at the beginning of a run
classics: Luby sequence 1, 1, 2, 1, 1, 2, 4, . . .
(u1, v1) := (1,1),
(un+1, vn+1) := ((un &− un) = vn?(un + 1,1) : (un,2 ∗ vn))
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Memory Matters: SPASS-SATT

Forget-Start 800 108800
Restarts 412 369
Conflicts 153640 133403

Decisions 184034 159005
Propagations 17770298 15544812

Time 11 23
Memory 16 41
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Propositional Logic Calculi

1. Tableau: classics, natural from the semantics
2. Resolution: classics, first-order, prepares for CDCL
3. CDCL: current prime calculus for propositional logic
4. Superposition: first-order, prepares for first-order
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