
Preliminaries Propositional Logic

Conflict Driven Clause Learning
(CDCL)

The CDCL calculus tests satisfiability of a finite set N of
propositional clauses.

I assume that ⊥ ̸∈ N and that the clauses in N do not contain
duplicate literal occurrences. Furthermore, duplicate literal
occurrences are always silently removed during rule applications
of the calculus. (Exhaustive Condensation.)

November 2, 2022 48/83

Preliminaries Propositional Logic

The CDCL calculus explicitely builds a candidate model for a
clause set. If such a sequence of literals L1, . . . ,Ln satisfies the
clause set N, it is done. If not, there is a false clause C ∈ N with
respect to L1, . . . ,Ln.

Now instead of just backtracking through the literals L1, . . . ,Ln,
CDCL generates in addition a new clause, called learned clause
via resolution, that actually guarantees that the subsequence of
L1, . . . ,Ln that caused C to be false will not be generated
anymore.

This causes CDCL to be exponentially more powerful in proof
length than its predecessor DPLL or Tableau.

November 2, 2022 49/83

Preliminaries Propositional Logic

CDCL State

A CDCL problem state is a five-tuple (M;N;U; k ;D) where
M a sequence of annotated literals, called a trail,
N and U are sets of clauses,
k ∈ N, and
D is a non-empty clause or ⊤ or ⊥, called the mode of the state.

The set N is initialized by the problem clauses where the set U
contains all newly learned clauses that are consequences of
clauses from N derived by resolution.

November 2, 2022 50/83

Preliminaries Propositional Logic

Modes of CDCL States

(ϵ;N; ∅;0;⊤) is the start state for some clause set N
(M;N;U; k ;⊤) is a final state, if M |= N and all literals from N

are defined in M
(M;N;U; k ;⊥) is a final state, where N has no model
(M;N;U; k ;⊤) is an intermediate model search state if M ̸|= N
(M;N;U; k ;D) is a backtracking state if D ̸∈ {⊤,⊥}

November 2, 2022 51/83

Preliminaries Propositional Logic

The Role of Levels

Literals in L ∈ M are either annotated with a number, a level, i.e.,
they have the form Lk meaning that L is the k th guessed decision
literal, or they are annotated with a clause that forced the literal to
become true.
A literal L is of level k with respect to a problem state
(M;N;U; j ;C) if L or comp(L) occurs in M and L itself or the first
decision literal left from L (comp(L)) in M is annotated with k . If
there is no such decision literal then k = 0.
A clause D is of level k with respect to a problem state
(M;N;U; j ;C) if k is the maximal level of a literal in D.

November 2, 2022 52/83

Preliminaries Propositional Logic

CDCL Rules

Propagate (M;N;U; k ;⊤) ⇒CDCL (MLC∨L;N;U; k ;⊤)
provided C ∨ L ∈ (N ∪ U), M |= ¬C, and L is undefined in M

Decide (M;N;U; k ;⊤) ⇒CDCL (MLk+1;N;U; k + 1;⊤)
provided L is undefined in M

Conflict (M;N;U; k ;⊤) ⇒CDCL (M;N;U; k ;D)

provided D ∈ (N ∪ U) and M |= ¬D

November 2, 2022 53/83

Preliminaries Propositional Logic

Skip (MLC∨L;N;U; k ;D) ⇒CDCL (M;N;U; k ;D)

provided D ̸∈ {⊤,⊥} and comp(L) does not occur in D

Resolve (MLC∨L;N;U; k ;D ∨ comp(L)) ⇒CDCL
(M;N;U; k ;D ∨ C)

provided D is of level k

Backtrack (M1K i+1M2;N;U; k ;D ∨ L) ⇒CDCL
(M1LD∨L;N;U ∪ {D ∨ L}; i ;⊤)
provided L is of level k and D is of level i .

Restart (M;N;U; k ;⊤) ⇒CDCL (ϵ;N;U;0;⊤)
provided M ̸|= N

Forget (M;N;U ⊎ {C}; k ;⊤) ⇒CDCL (M;N;U; k ;⊤)
provided M ̸|= N

November 2, 2022 54/83

Preliminaries Propositional Logic

2.9.5 Definition (Reasonable CDCL Strategy)
A CDCL strategy is reasonable if the rules Conflict and
Propagate are always preferred over all other rules.

November 2, 2022 55/83

Preliminaries Propositional Logic

2.9.6 Proposition (CDCL Basic Properties)
Consider CDCL run deriving (M;N;U; k ;C) by any strategy but
without Restart and Forget. Then the following properties hold:

1. M is consistent.
2. All learned clauses are entailed by N.
3. If C ̸∈ {⊤,⊥} then M |= ¬C.
4. If C = ⊤ and M contains only propagated literals then for each

valuation A with A |= N it holds that A |= M.
5. If C = ⊤, M contains only propagated literals and M |= ¬D for

some D ∈ (N ∪ U) then N is unsatisfiable.
6. If C = ⊥ then CDCL terminates and N is unsatisfiable.
7. k is the maximal level of a literal in M.
8. Each infinite derivation contains an infinite number of Backtrack

applications.
November 2, 2022 56/83

Preliminaries Propositional Logic

2.9.7 Lemma (CDCL Redundancy)
Consider a CDCL derivation by a reasonable strategy. Then
CDCL never learns a clause contained in N ∪ U.

November 2, 2022 57/83

Preliminaries Propositional Logic

2.9.10 Lemma (CDCL Soundness)
In a reasonable CDCL derivation, CDCL can only terminate in
two different types of final states: (M;N;U; k ;⊤) where M |= N
and (M;N;U; k ;⊥) where N is unsatisfiable.

November 2, 2022 58/83

Preliminaries Propositional Logic

2.9.11 Proposition (CDCL Soundness)
The rules of the CDCL algorithm are sound: (i) if CDCL
terminates from (ϵ;N; ∅;0;⊤) in the state (M;N;U; k ;⊤), then N
is satisfiable, (ii) if CDCL terminates from (ϵ;N; ∅;0;⊤) in the
state (M;N;U; k ;⊥), then N is unsatisfiable.

November 2, 2022 59/83

Preliminaries Propositional Logic

2.9.12 Proposition (CDCL Strong Completeness)
The CDCL rule set is complete: for any valuation M with M |= N
there is a reasonable sequence of rule applications generating
(M ′;N;U; k ;⊤) as a final state, where M and M ′ only differ in the
order of literals.

November 2, 2022 60/83

Preliminaries Propositional Logic

2.9.13 Proposition (CDCL Termination)
Assume the algorithm CDCL with all rules except Restart and
Forget is applied using a reasonable strategy. Then it terminates
in a state (M;N;U; k ;D) with D ∈ {⊤,⊥}.

November 2, 2022 61/83

Preliminaries Propositional Logic

The Overall Picture

Application
System + Problem

System
Algorithm + Implementation

Algorithm
Calculus + Strategy

Calculus
Logic + States + Rules

Logic
Syntax + Semantics

November 2, 2022 62/83

Preliminaries Propositional Logic

1 Algorithm: 5 CDCL(S)
Input : An initial state (ϵ;N; ∅;0;⊤).
Output
:

A final state S = (M;N;U; k ;⊤) or

S = (M;N;U; k ;⊥)
2 while (any rule applicable) do

3 ifrule (Conflict(S)) then
4 while (Skip(S) ∥ Resolve(S)) do
5 update VSIDS on resolved literals;
6 update VSIDS on learned clause, Backtrack(S);
7 if (forget heuristic) then
8 Forget(S), Restart(S);
9 else

10 if (restart heuristic) then
11 Restart(S);
12 else
13 ifrule (!Propagate(S)) then
14 Decide(S) literal with max. VSIDS score;
15 return(S);

November 2, 2022 63/83

Preliminaries Propositional Logic

Implementation: Data Structures

Propagate (M;N;U; k ;⊤) ⇒CDCL (MLC∨L;N;U; k ;⊤)
provided C ∨ L ∈ (N ∪ U), M |= ¬C, and L is undefined in M

Conflict (M;N;U; k ;⊤) ⇒CDCL (M;N;U; k ;D)

provided D ∈ (N ∪ U) and M |= ¬D

November 2, 2022 64/83

Preliminaries Propositional Logic

Implementation

data structures: clauses, trail, and the rules
heuristics: decision literal, forget, restart
space efficiency: forget
quality: restarts
special cases

November 2, 2022 65/83

Preliminaries Propositional Logic

Implementation

data structures: clauses, trail, and the rules
heuristics: decision literal, forget, restart
space efficiency: forget
quality: restarts
special cases

November 2, 2022 65/83

Preliminaries Propositional Logic

Implementation

data structures: clauses, trail, and the rules
heuristics: decision literal, forget, restart
space efficiency: forget
quality: restarts
special cases

November 2, 2022 65/83

Preliminaries Propositional Logic

Implementation

data structures: clauses, trail, and the rules
heuristics: decision literal, forget, restart
space efficiency: forget
quality: restarts
special cases

November 2, 2022 65/83

Preliminaries Propositional Logic

Implementation

data structures: clauses, trail, and the rules
heuristics: decision literal, forget, restart
space efficiency: forget
quality: restarts
special cases

November 2, 2022 65/83

Preliminaries Propositional Logic

Data Structures

Idea: Select two literals from each clause for indexing.

2.10.1 Invariant (2-Watched Literal Indexing)
If one of the watched literals is false and the other watched literal
is not true, then all other literals of the clause are false.

November 2, 2022 66/83

Preliminaries Propositional Logic

Data Structures

Idea: Select two literals from each clause for indexing.

2.10.1 Invariant (2-Watched Literal Indexing)
If one of the watched literals is false and the other watched literal
is not true, then all other literals of the clause are false.

November 2, 2022 66/83

Preliminaries Propositional Logic

N = {P ∨ ¬R, P ∨ ¬Q, R ∨Q ∨ P, ¬P ∨ R ∨Q}

P

Q

R

P ¬Q P ¬R¬P R Q

P ¬Q R Q P

P ¬R R Q P ¬P R Q

November 2, 2022 67/83

Preliminaries Propositional Logic

VSIDS: Variable State Independent
Decaying Sum

each propositional variable has a positive score, initially 0
decide the variable with maximal score, remember sign (phase
saving)
increment the score of variables involved in resolution by b
increment the score of variables in learned clauses by b
initially b > 0
at Backtrack set b := c ∗ b where 2 >> c > 1, i.e., bn = cn ∗ b
take care of overflows, i.e., rescale from time to time
sometimes pick a variable randomly

November 2, 2022 68/83

Preliminaries Propositional Logic

VSIDS: Variable State Independent
Decaying Sum

each propositional variable has a positive score, initially 0
decide the variable with maximal score, remember sign (phase
saving)
increment the score of variables involved in resolution by b
increment the score of variables in learned clauses by b
initially b > 0
at Backtrack set b := c ∗ b where 2 >> c > 1, i.e., bn = cn ∗ b
take care of overflows, i.e., rescale from time to time
sometimes pick a variable randomly

November 2, 2022 68/83

Preliminaries Propositional Logic

VSIDS: Variable State Independent
Decaying Sum

each propositional variable has a positive score, initially 0
decide the variable with maximal score, remember sign (phase
saving)
increment the score of variables involved in resolution by b
increment the score of variables in learned clauses by b
initially b > 0
at Backtrack set b := c ∗ b where 2 >> c > 1, i.e., bn = cn ∗ b
take care of overflows, i.e., rescale from time to time
sometimes pick a variable randomly

November 2, 2022 68/83

Preliminaries Propositional Logic

VSIDS: Variable State Independent
Decaying Sum

each propositional variable has a positive score, initially 0
decide the variable with maximal score, remember sign (phase
saving)
increment the score of variables involved in resolution by b
increment the score of variables in learned clauses by b
initially b > 0
at Backtrack set b := c ∗ b where 2 >> c > 1, i.e., bn = cn ∗ b
take care of overflows, i.e., rescale from time to time
sometimes pick a variable randomly

November 2, 2022 68/83

Preliminaries Propositional Logic

VSIDS: Variable State Independent
Decaying Sum

each propositional variable has a positive score, initially 0
decide the variable with maximal score, remember sign (phase
saving)
increment the score of variables involved in resolution by b
increment the score of variables in learned clauses by b
initially b > 0
at Backtrack set b := c ∗ b where 2 >> c > 1, i.e., bn = cn ∗ b
take care of overflows, i.e., rescale from time to time
sometimes pick a variable randomly

November 2, 2022 68/83

Preliminaries Propositional Logic

VSIDS: Variable State Independent
Decaying Sum

each propositional variable has a positive score, initially 0
decide the variable with maximal score, remember sign (phase
saving)
increment the score of variables involved in resolution by b
increment the score of variables in learned clauses by b
initially b > 0
at Backtrack set b := c ∗ b where 2 >> c > 1, i.e., bn = cn ∗ b
take care of overflows, i.e., rescale from time to time
sometimes pick a variable randomly

November 2, 2022 68/83

Preliminaries Propositional Logic

VSIDS: Variable State Independent
Decaying Sum

each propositional variable has a positive score, initially 0
decide the variable with maximal score, remember sign (phase
saving)
increment the score of variables involved in resolution by b
increment the score of variables in learned clauses by b
initially b > 0
at Backtrack set b := c ∗ b where 2 >> c > 1, i.e., bn = cn ∗ b
take care of overflows, i.e., rescale from time to time
sometimes pick a variable randomly

November 2, 2022 68/83

Preliminaries Propositional Logic

VSIDS: Variable State Independent
Decaying Sum

each propositional variable has a positive score, initially 0
decide the variable with maximal score, remember sign (phase
saving)
increment the score of variables involved in resolution by b
increment the score of variables in learned clauses by b
initially b > 0
at Backtrack set b := c ∗ b where 2 >> c > 1, i.e., bn = cn ∗ b
take care of overflows, i.e., rescale from time to time
sometimes pick a variable randomly

November 2, 2022 68/83

Preliminaries Propositional Logic

Forget

fix a limit d on the number of learned clauses
if more than |U| > d start forgetting
remove redundant clauses
sort the learned clauses according to a score
typical elements of the score are clause length, the VSIDS
score, dependency on decisions
remove the k% clauses with minimal score from U
d := d + e for some e, e >> 1
do a Restart

November 2, 2022 69/83

Preliminaries Propositional Logic

Forget

fix a limit d on the number of learned clauses
if more than |U| > d start forgetting
remove redundant clauses
sort the learned clauses according to a score
typical elements of the score are clause length, the VSIDS
score, dependency on decisions
remove the k% clauses with minimal score from U
d := d + e for some e, e >> 1
do a Restart

November 2, 2022 69/83

Preliminaries Propositional Logic

Forget

fix a limit d on the number of learned clauses
if more than |U| > d start forgetting
remove redundant clauses
sort the learned clauses according to a score
typical elements of the score are clause length, the VSIDS
score, dependency on decisions
remove the k% clauses with minimal score from U
d := d + e for some e, e >> 1
do a Restart

November 2, 2022 69/83

Preliminaries Propositional Logic

Forget

fix a limit d on the number of learned clauses
if more than |U| > d start forgetting
remove redundant clauses
sort the learned clauses according to a score
typical elements of the score are clause length, the VSIDS
score, dependency on decisions
remove the k% clauses with minimal score from U
d := d + e for some e, e >> 1
do a Restart

November 2, 2022 69/83

Preliminaries Propositional Logic

Forget

fix a limit d on the number of learned clauses
if more than |U| > d start forgetting
remove redundant clauses
sort the learned clauses according to a score
typical elements of the score are clause length, the VSIDS
score, dependency on decisions
remove the k% clauses with minimal score from U
d := d + e for some e, e >> 1
do a Restart

November 2, 2022 69/83

Preliminaries Propositional Logic

Forget

fix a limit d on the number of learned clauses
if more than |U| > d start forgetting
remove redundant clauses
sort the learned clauses according to a score
typical elements of the score are clause length, the VSIDS
score, dependency on decisions
remove the k% clauses with minimal score from U
d := d + e for some e, e >> 1
do a Restart

November 2, 2022 69/83

Preliminaries Propositional Logic

Forget

fix a limit d on the number of learned clauses
if more than |U| > d start forgetting
remove redundant clauses
sort the learned clauses according to a score
typical elements of the score are clause length, the VSIDS
score, dependency on decisions
remove the k% clauses with minimal score from U
d := d + e for some e, e >> 1
do a Restart

November 2, 2022 69/83

Preliminaries Propositional Logic

Forget

fix a limit d on the number of learned clauses
if more than |U| > d start forgetting
remove redundant clauses
sort the learned clauses according to a score
typical elements of the score are clause length, the VSIDS
score, dependency on decisions
remove the k% clauses with minimal score from U
d := d + e for some e, e >> 1
do a Restart

November 2, 2022 69/83

Preliminaries Propositional Logic

Restart

after forgetting do a restart
if a unit is learned do a restart
restart often at the beginning of a run
classics: Luby sequence 1, 1, 2, 1, 1, 2, 4, . . .
(u1, v1) := (1,1),
(un+1, vn+1) := ((un &− un) = vn?(un + 1,1) : (un,2 ∗ vn))

November 2, 2022 70/83

Preliminaries Propositional Logic

Restart

after forgetting do a restart
if a unit is learned do a restart
restart often at the beginning of a run
classics: Luby sequence 1, 1, 2, 1, 1, 2, 4, . . .
(u1, v1) := (1,1),
(un+1, vn+1) := ((un &− un) = vn?(un + 1,1) : (un,2 ∗ vn))

November 2, 2022 70/83

Preliminaries Propositional Logic

Restart

after forgetting do a restart
if a unit is learned do a restart
restart often at the beginning of a run
classics: Luby sequence 1, 1, 2, 1, 1, 2, 4, . . .
(u1, v1) := (1,1),
(un+1, vn+1) := ((un &− un) = vn?(un + 1,1) : (un,2 ∗ vn))

November 2, 2022 70/83

Preliminaries Propositional Logic

Restart

after forgetting do a restart
if a unit is learned do a restart
restart often at the beginning of a run
classics: Luby sequence 1, 1, 2, 1, 1, 2, 4, . . .
(u1, v1) := (1,1),
(un+1, vn+1) := ((un &− un) = vn?(un + 1,1) : (un,2 ∗ vn))

November 2, 2022 70/83

Preliminaries Propositional Logic

Memory Matters: SPASS-SATT

Forget-Start 800 108800
Restarts 412 369
Conflicts 153640 133403

Decisions 184034 159005
Propagations 17770298 15544812

Time 11 23
Memory 16 41

November 2, 2022 71/83

Preliminaries Propositional Logic

Propositional Logic Calculi

1. Tableau: classics, natural from the semantics
2. Resolution: classics, first-order, prepares for CDCL
3. CDCL: current prime calculus for propositional logic
4. Superposition: first-order, prepares for first-order

November 2, 2022 72/83

