The CDCL calculus tests satisfiability of a finite set N of propositional clauses.

I assume that $\bot \not\in N$ and that the clauses in N do not contain duplicate literal occurrences. Furthermore, duplicate literal occurrences are always silently removed during rule applications of the calculus. (Exhaustive Condensation.)

Now instead of just backtracking through the literals L_1, \ldots, L_n , CDCL generates in addition a new clause, called *learned clause* via resolution, that actually guarantees that the subsequence of L_1, \ldots, L_n that caused C to be false will not be generated anymore.

This causes CDCL to be exponentially more powerful in proof length than its predecessor DPLL or Tableau.

CDCL State

A CDCL problem state is a five-tuple (M; N; U; k; D) where

M a sequence of annotated literals, called a trail,

N and U are sets of clauses,

 $k \in \mathbb{N}$, and

D is a non-empty clause or \top or \bot , called the *mode* of the state.

The set N is initialized by the problem clauses where the set U contains all newly learned clauses that are consequences of clauses from N derived by resolution.

Modes of CDCL States

```
(\epsilon; N; \emptyset; 0; \top) is the start state for some clause set N (M; N; U; k; \top) is a final state, if M \models N and all literals from N are defined in M is a final state, where N has no model (M; N; U; k; \top) is an intermediate model search state if M \not\models N (M; N; U; k; D) is a backtracking state if D \not\in \{\top, \bot\}
```


The Role of Levels

Literals in $L \in M$ are either annotated with a number, a level, i.e., they have the form L^k meaning that L is the k^{th} guessed decision literal, or they are annotated with a clause that forced the literal to become true.

A literal L is of level k with respect to a problem state (M; N; U; j; C) if L or comp(L) occurs in M and L itself or the first decision literal left from L (comp(L)) in M is annotated with k. If there is no such decision literal then k = 0.

A clause D is of *level* k with respect to a problem state (M; N; U; j; C) if k is the maximal level of a literal in D.

Propagate
$$(M; N; U; k; \top) \Rightarrow_{CDCL} (ML^{C \lor L}; N; U; k; \top)$$
 provided $C \lor L \in (N \cup U), M \models \neg C$, and L is undefined in M

Decide $(M; N; U; k; \top) \Rightarrow_{CDCL} (ML^{k+1}; N; U; k+1; \top)$ provided L is undefined in M

Conflict
$$(M; N; U; k; \top) \Rightarrow_{\mathsf{CDCL}} (M; N; U; k; D)$$
 provided $D \in (N \cup U)$ and $M \models \neg D$

Resolve $(ML^{C\lor L}; N; U; k; D\lor comp(L)) \Rightarrow_{CDCL} (M; N; U; k; D\lor C)$ provided D is of level k

Backtrack $(M_1K^{i+1}M_2; N; U; k; D \lor L) \Rightarrow_{CDCL} (M_1L^{D\lor L}; N; U \cup \{D\lor L\}; i; \top)$ provided L is of level k and D is of level i.

Restart $(M; N; U; k; \top) \Rightarrow_{CDCL} (\epsilon; N; U; 0; \top)$ provided $M \not\models N$

Forget $(M; N; U \uplus \{C\}; k; \top) \Rightarrow_{CDCL} (M; N; U; k; \top)$ provided $M \not\models N$

A CDCL strategy is *reasonable* if the rules Conflict and Propagate are always preferred over all other rules.

2.9.6 Proposition (CDCL Basic Properties)

Consider CDCL run deriving (M; N; U; k; C) by any strategy but without Restart and Forget. Then the following properties hold:

- M is consistent.
- 2. All learned clauses are entailed by N.
- 3. If $C \notin \{\top, \bot\}$ then $M \models \neg C$.
- 4. If $C = \top$ and M contains only propagated literals then for each valuation A with $A \models N$ it holds that $A \models M$.
- 5. If $C = \top$, M contains only propagated literals and $M \models \neg D$ for some $D \in (N \cup U)$ then N is unsatisfiable.
- 6. If $C = \bot$ then CDCL terminates and N is unsatisfiable.
- 7. k is the maximal level of a literal in M.
- Each infinite derivation contains an infinite number of Backtrack applications.

Consider a CDCL derivation by a reasonable strategy. Then CDCL never learns a clause contained in $N \cup U$.

In a reasonable CDCL derivation, CDCL can only terminate in two different types of final states: $(M; N; U; k; \top)$ where $M \models N$ and $(M; N; U; k; \bot)$ where N is unsatisfiable.

2.9.11 Proposition (CDCL Soundness)

The rules of the CDCL algorithm are sound: (i) if CDCL terminates from $(\epsilon; N; \emptyset; 0; \top)$ in the state $(M; N; U; k; \top)$, then N is satisfiable, (ii) if CDCL terminates from $(\epsilon; N; \emptyset; 0; \top)$ in the state $(M; N; U; k; \bot)$, then N is unsatisfiable.

2.9.12 Proposition (CDCL Strong Completeness)

The CDCL rule set is complete: for any valuation M with $M \models N$ there is a reasonable sequence of rule applications generating $(M'; N; U; k; \top)$ as a final state, where M and M' only differ in the order of literals.

2.9.13 Proposition (CDCL Termination)

Assume the algorithm CDCL with all rules except Restart and Forget is applied using a reasonable strategy. Then it terminates in a state (M; N; U; k; D) with $D \in \{\top, \bot\}$.

Application		
${\sf System} + {\sf Problem}$		
System		
Algorithm + Implementation		
Algorithm		
Calculus + Strategy		
Calculus		
Logic + States + Rules		
Logic		
Syntax + Semantics		


```
1 Algorithm: 5 CDCL(S)
  Input: An initial state (\epsilon; N; \emptyset; 0; \top).
  Output A final state S = (M; N; U; k; \top) or
            S = (M; N; U; k; \perp)
  while (any rule applicable) do
      ifrule (Conflict(S)) then
3
          while (Skip(S) \parallel Resolve(S)) do
4
              update VSIDS on resolved literals;
5
          update VSIDS on learned clause, Backtrack(S);
6
          if (forget heuristic) then
              Forget(S), Restart(S);
8
          else
              if (restart heuristic) then
10
                  Restart(S):
11
      else
```

if all (Propagate(S)) then

Implementation: Data Structures

```
Propagate (M; N; U; k; \top) \Rightarrow_{\text{CDCL}} (ML^{C \lor L}; N; U; k; \top) provided C \lor L \in (N \cup U), M \models \neg C, and L is undefined in M

Conflict (M; N; U; k; \top) \Rightarrow_{\text{CDCL}} (M; N; U; k; D) provided D \in (N \cup U) and M \models \neg D
```


- data structures: clauses, trail, and the rules
- heuristics: decision literal, forget, restart
- quality: restarts
- special cases

- data structures: clauses, trail, and the rules
- heuristics: decision literal, forget, restart
- space efficiency: forget
- quality: restarts
- special cases

- data structures: clauses, trail, and the rules
- heuristics: decision literal, forget, restart
- space efficiency: forget
- quality: restarts
- special cases

- data structures: clauses, trail, and the rules
- heuristics: decision literal, forget, restart
- space efficiency: forget
- quality: restarts
- special cases

- data structures: clauses, trail, and the rules
- heuristics: decision literal, forget, restart
- space efficiency: forget
- quality: restarts
- special cases

Data Structures

Idea: Select two literals from each clause for indexing.

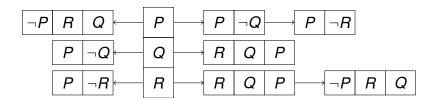
Data Structures

Idea: Select two literals from each clause for indexing.

2.10.1 Invariant (2-Watched Literal Indexing)

If one of the watched literals is false and the other watched literal is not true, then all other literals of the clause are false.

$$N = \{P \lor \neg R, P \lor \neg Q, R \lor Q \lor P, \neg P \lor R \lor Q\}$$



- each propositional variable has a positive score, initially 0
- decide the variable with maximal score, remember sign (phase saving)
- increment the score of variables involved in resolution by b
- increment the score of variables in learned clauses by b
- initially *b* > 0
- at Backtrack set b := c * b where 2 >> c > 1, i.e., $b_n = c^n * b$
- take care of overflows, i.e., rescale from time to time
- sometimes pick a variable randomly

- each propositional variable has a positive score, initially 0
- decide the variable with maximal score, remember sign (phase saving)
- increment the score of variables involved in resolution by b
- increment the score of variables in learned clauses by b
- initially *b* > 0
- at Backtrack set b := c * b where 2 >> c > 1, i.e., $b_n = c^n * b$
- take care of overflows, i.e., rescale from time to time
- sometimes pick a variable randomly

- each propositional variable has a positive score, initially 0
- decide the variable with maximal score, remember sign (phase saving)
- increment the score of variables involved in resolution by b
- increment the score of variables in learned clauses by b
- initially b > 0
- at Backtrack set b := c * b where 2 >> c > 1, i.e., $b_n = c^n * b$
- take care of overflows, i.e., rescale from time to time
- sometimes pick a variable randomly

- each propositional variable has a positive score, initially 0
- decide the variable with maximal score, remember sign (phase saving)
- increment the score of variables involved in resolution by b
- increment the score of variables in learned clauses by b
- initially *b* > 0
- at Backtrack set b := c * b where 2 >> c > 1, i.e., $b_n = c^n * b$
- take care of overflows, i.e., rescale from time to time
- sometimes pick a variable randomly

- each propositional variable has a positive score, initially 0
- decide the variable with maximal score, remember sign (phase saving)
- increment the score of variables involved in resolution by b
- increment the score of variables in learned clauses by b
- initially b > 0
- at Backtrack set b := c * b where 2 >> c > 1, i.e., $b_n = c^n * b$
- take care of overflows, i.e., rescale from time to time
- sometimes pick a variable randomly

- each propositional variable has a positive score, initially 0
- decide the variable with maximal score, remember sign (phase saving)
- increment the score of variables involved in resolution by b
- increment the score of variables in learned clauses by b
- initially b > 0
- at Backtrack set b := c * b where 2 >> c > 1, i.e., $b_n = c^n * b$
- take care of overflows, i.e., rescale from time to time
- sometimes pick a variable randomly

- each propositional variable has a positive score, initially 0
- decide the variable with maximal score, remember sign (phase saving)
- increment the score of variables involved in resolution by b
- increment the score of variables in learned clauses by b
- initially *b* > 0
- at Backtrack set b := c * b where 2 >> c > 1, i.e., $b_n = c^n * b$
- take care of overflows, i.e., rescale from time to time
- sometimes pick a variable randomly

- each propositional variable has a positive score, initially 0
- decide the variable with maximal score, remember sign (phase saving)
- increment the score of variables involved in resolution by b
- increment the score of variables in learned clauses by b
- initially b > 0
- at Backtrack set b := c * b where 2 >> c > 1, i.e., $b_n = c^n * b$
- take care of overflows, i.e., rescale from time to time
- sometimes pick a variable randomly

Forget

- fix a limit d on the number of learned clauses
- if more than |U| > d start forgetting
- remove redundant clauses
- sort the learned clauses according to a score
- typical elements of the score are clause length, the VSIDS score, dependency on decisions
- remove the k% clauses with minimal score from U
- d := d + e for some e, e >> 1
- do a Restart

- fix a limit d on the number of learned clauses
- if more than |U| > d start forgetting
- remove redundant clauses
- sort the learned clauses according to a score
- typical elements of the score are clause length, the VSIDS score, dependency on decisions
- remove the k% clauses with minimal score from U
- d := d + e for some e, e >> 1
- do a Restart

Forget

- fix a limit d on the number of learned clauses
- if more than |U| > d start forgetting
- remove redundant clauses
- sort the learned clauses according to a score
- typical elements of the score are clause length, the VSIDS score, dependency on decisions
- remove the k% clauses with minimal score from U
- d := d + e for some e, e >> 1
- do a Restart

Forget

- fix a limit d on the number of learned clauses
- if more than |U| > d start forgetting
- remove redundant clauses
- sort the learned clauses according to a score
- typical elements of the score are clause length, the VSIDS score, dependency on decisions
- remove the k% clauses with minimal score from U
- d := d + e for some e, e >> 1
- do a Restart

- fix a limit d on the number of learned clauses
- if more than |U| > d start forgetting
- remove redundant clauses
- sort the learned clauses according to a score
- typical elements of the score are clause length, the VSIDS score, dependency on decisions
- remove the k% clauses with minimal score from U
- d := d + e for some e, e >> 1
- do a Restart

- fix a limit d on the number of learned clauses
- if more than |U| > d start forgetting
- remove redundant clauses
- sort the learned clauses according to a score
- typical elements of the score are clause length, the VSIDS score, dependency on decisions
- remove the k% clauses with minimal score from U
- d := d + e for some e, e >> 1
- do a Restart

- fix a limit d on the number of learned clauses
- if more than |U| > d start forgetting
- remove redundant clauses
- sort the learned clauses according to a score
- typical elements of the score are clause length, the VSIDS score, dependency on decisions
- remove the k% clauses with minimal score from U
- d := d + e for some e, e >> 1
- do a Restart

- fix a limit d on the number of learned clauses
- if more than |U| > d start forgetting
- remove redundant clauses
- sort the learned clauses according to a score
- typical elements of the score are clause length, the VSIDS score, dependency on decisions
- remove the k% clauses with minimal score from U
- d := d + e for some e, e >> 1
- do a Restart

Restart

- after forgetting do a restart
- if a unit is learned do a restart
- restart often at the beginning of a run
- classics: Luby sequence 1, 1, 2, 1, 1, 2, 4, ... $(u_1, v_1) := (1, 1), (u_{n+1}, v_{n+1}) := ((u_n \& u_n) = v_n?(u_n + 1, 1) : (u_n, 2 * v_n))$

Restart

- after forgetting do a restart
- if a unit is learned do a restart
- restart often at the beginning of a run
- classics: Luby sequence 1, 1, 2, 1, 1, 2, 4, ... $(u_1, v_1) := (1, 1), (u_{n+1}, v_{n+1}) := ((u_n \& u_n) = v_n?(u_n + 1, 1) : (u_n, 2 * v_n))$

Restart

- after forgetting do a restart
- if a unit is learned do a restart
- restart often at the beginning of a run
- classics: Luby sequence 1, 1, 2, 1, 1, 2, 4, . . .

- after forgetting do a restart
- if a unit is learned do a restart
- restart often at the beginning of a run
- classics: Luby sequence 1, 1, 2, 1, 1, 2, 4, ... $(u_1, v_1) := (1, 1), (u_{n+1}, v_{n+1}) := ((u_n \& u_n) = v_n?(u_n + 1, 1) : (u_n, 2 * v_n))$

Memory Matters: SPASS-SATT

Forget-Start	800	108800
Restarts	412	369
Conflicts	153640	133403
Decisions	184034	159005
Propagations	17770298	15544812
Time	11	23
Memory	16	41

Propositional Logic Calculi

- 1. Tableau: classics, natural from the semantics
- 2. Resolution: classics, first-order, prepares for CDCL
- 3. CDCL: current prime calculus for propositional logic
- 4. Superposition: first-order, prepares for first-order

