Midterm: **8. December 14:00 – 16:00** (during the lecture slot)

Propositional Logic Calculi

- 1. Tableau: classics, natural from the semantics
- 2. Resolution: classics, first-order, prepares for CDCL <
- 3. CDCL: current prime calculus for propositional logic \leftarrow
- → 4. Superposition: first-order, prepares for first-order

Resolution – quo vadis?

$$N = \{ P \lor Q, P \lor \neg Q, \neg P \lor Q, \neg P \lor \neg Q \}$$

CDCL – quo vadis?

$$N = \{P \lor Q, P \lor \neg Q, \neg P \lor Q, \neg P \lor \neg Q\}$$

$$(E; N; \emptyset; 0; T)$$

$$\Rightarrow_{\text{Proposede}} (P^1; N; \emptyset; 1; T)$$

$$\Rightarrow_{\text{Proposede}} (P^1 Q^{\text{PVQ}}; N; \emptyset; 1; T) \land P \lor \neg Q)$$

$$\Rightarrow_{\text{Conflid}} (P^1 Q^{\text{PVQ}}; N; \emptyset; 1; \neg P \lor \neg P)$$

$$\Rightarrow_{\text{Resolve}} (P^1; N; \emptyset; 1; \neg P \lor \neg P)$$

Entering First-Order...

$$N = \{P(0), \neg P(x) \lor P(S(x))\}$$

$$\neg P(0) \lor P(S(0))$$

Resolution:

$$\Rightarrow_{\text{Propagate}} \left(P(0)^{P(0)}; N; \emptyset; 0; T \right)$$

$$\Rightarrow_{\text{Propagate}} \left(P(0)^{P(0)} P(S(0))^{-1} P(S(0))^{-1} P(S(0)) \right)$$

Propositional Superposition

Propositional Superposition refines the propositional resolution calculus by

- (i) ordering and selection restrictions on inferences,
- (ii) an abstract redundancy notion,
- (iii) the notion of a partial model, based on the ordering for inference guidance
- (iv) a saturation concept.

Important: No implicit Condensation of literals!

2.7.1 Definition (Clause Ordering)

Let \prec be a total strict ordering on Σ .

Then \prec can be lifted to a total ordering on literals by $\prec \subseteq \prec_L$ and $P \prec_L \neg P$ and $\neg P \prec_L Q$, $\neg P \prec_L \neg Q$ for all $P \prec Q$.

The ordering \prec_L can be lifted to a total ordering on clauses \prec_C by considering the multiset extension of \prec_L for clauses.

2.7.2 Proposition (Properties of the Clause Ordering)

- (i) The orderings on literals and clauses are total and well-founded.
- (ii) Let C and D be clauses with

$$P = atom(max(C))$$
 \leftarrow $Q = atom(max(D))$ \leftarrow

where max(C) denotes the maximal literal in C.

- 1. If $Q \prec_L P$ then $D \prec_C C$.
- 2. If P = Q, P occurs negatively in C but only positively in D, then $D \prec_C C$.

Eventually, I overload \prec with \prec_L and \prec_C .

For a clause set N, I define $N^{\prec C} = \{D \in N \mid D \prec C\}$.

- \blacksquare \prec is an ordering on Σ
- \prec_L is an extension for literals: $\prec \subseteq \prec_L$ and $P \prec_L \neg P$ and $\neg P \prec_L Q$, $\neg P \prec_L \neg Q$ for all $P \prec Q$.
- \prec_C is the *multiset extension* of \prec_L for clauses.

$$N^{\prec C} = \{D \in N \mid D \prec C\}$$

Definition (Abstract Redundancy)

A clause C is redundant with respect to a clause set N if $N^{\prec C} \models C$.

- Tantologies are always redundant.
- N = { C, , C, }

- N = E C, C1, C2, C2, ... 3 = { C1, C2, ... }

2.7.5 Definition (Selection Function)

The selection function sel maps clauses to one of its negative literals or \bot .

If $sel(C) = \neg P$ then $\neg P$ is called *selected* in C.

If $sel(C) = \bot$ then no literal in C is *selected*.

2.7.6 Definition (Partial Model Construction)

Given a clause set N and an ordering \prec we can construct a (partial) Herbrand model $N_{\mathcal{I}}$ for N inductively as follows:

$$\begin{array}{ll} |N_C| := \bigcup_{D \prec C, D \in \mathcal{N}} \delta_D \\ \delta_D := \begin{cases} \{P\} & \text{if } D = D' \lor P, P \text{ strictly maximal, no literal} \\ & \text{selected in } D \text{ and } N_D \not\models D \\ \emptyset & \text{otherwise} \end{cases}$$

$$N_{\mathcal{I}} := \bigcup_{C \in \mathcal{N}} \delta_C$$

Clauses *C* with $\delta_C \neq \emptyset$ are called *productive*.

• N: a set of clauses, interpreted as conjunction of all clauses.

- N_T , N_C are sets of atoms, often called Herbrand Interpretations.
- N_T is the overall (partial) model for N

$$\mathcal{N}_{\mathcal{I}} = \left\{ \mathcal{R}, S \right\}$$

$$- N_{\mathcal{I}} \models P \text{ if } P \in N_{\mathcal{I}}$$

$$- N_{\mathcal{I}} \models \neg P \text{ if } P \notin N_{\mathcal{I}}$$

$$- \mathcal{A}(N_{\mathcal{I}}) := N_{\mathcal{I}} \cup \left\{ \neg P \mid P \notin N_{\mathcal{I}} \right\}$$

$$\mathcal{A}(N_{\mathcal{I}}) = \left\{ \mathcal{R}, S, \neg Q \right\}$$

$$N_C := \bigcup_{D \prec C, D \in N} \delta_D$$

$$\delta_D := \begin{cases} \{P\} & \text{if } D = D' \vee P, P \text{ strictly maximal, no literal} \\ & \text{selected in } D \text{ and } N_D \not\models D \\ \emptyset & \text{otherwise} \end{cases}$$

$$\rightarrow N_C := \bigcup_{D \prec C, D \in N} \delta_D$$

 $\delta_D := \left\{ egin{array}{ll} \{P\} & ext{if } D = D' \lor P', P ext{ strictly maximal, no literal} \\ & ext{selected in } D ext{ and } N_D \not\models D \\ \emptyset & ext{otherwise} \end{array} \right.$

 $N_r = ER.53$

position

Ð.

Some properties of the partial model construction.

- (i) For every *D* with $(C \vee \neg P) \prec D$ we have $\delta_D \neq \{P\}$.
- (ii) If $\delta_C = \{P\}$ then $N_C \cup \delta_C \models C$.
- (iii) If $N_C \models D$ and $D \prec C$ then for all C' with $C \prec C'$ we have $N_{C'} \models D$ and in particular $N_T \models D$.
- (iv) There is no clause C with $P \lor P \prec C$ such that $\delta_C = \{P\}$.

(i) For every *D* with $(C \vee \neg P) \prec D$ we have $\delta_D \neq \{P\}$.

$$\delta_D := \begin{cases} \{P\} & \text{if } D = D' \lor P, P \text{ strictly maximal, no literal} \\ & \text{selected in } D \text{ and } N_D \not\models D \\ \emptyset & \text{otherwise} \end{cases}$$

(ii) If
$$\delta_C = \{P\}$$
 then $N_C \cup \delta_C \models C$.

$$\delta_D := \begin{cases} \{P\} & \text{if } D = D' \vee P, P \text{ strictly maximal, no literal} \\ & \text{selected in } D \text{ and } N_D \not\models D \\ \emptyset & \text{otherwise} \end{cases}$$

- (i) For every *D* with $(C \vee \neg P) \prec D$ we have $\delta_D \neq \{P\}$.
- (iii) If $N_C \models D$ and $D \prec C$ then for all C' with $C \prec C'$ we have $N_{C'} \models D$ and in particular $N_T \models D$.

$$N_C := \bigcup_{D \prec C, D \in N} \delta_D$$

(iv) There is no clause C with $P \lor P \prec C$ such that $\delta_C = \{P\}.$

$$\delta_D := \begin{cases} \{P\} & \text{if } D = D' \vee P, P \text{ strictly maximal, no literal} \\ & \text{selected in } D \text{ and } N_D \not\models D \\ \emptyset & \text{otherwise} \end{cases}$$

Superposition Inference Rules

```
Superposition Left (N \uplus \{C_1 \lor P, C_2 \lor \neg P\}) \Rightarrow_{SUP} (N \cup \{C_1 \lor P, C_2 \lor \neg P\} \cup \{C_1 \lor C_2\})
```

where (i) P is strictly maximal in $C_1 \vee P$ (ii) no literal in $C_1 \vee P$ is selected (iii) $\neg P$ is maximal and no literal selected in $C_2 \vee \neg P$, or $\neg P$ is selected in $C_2 \vee \neg P$

Factoring
$$(N \uplus \{C \lor P \lor P\}) \Rightarrow_{SUP} (N \cup \{C \lor P \lor P\}) \Rightarrow_{SUP} (N \cup \{C \lor P \lor P\})$$

where (i) P is maximal in $C \lor P \lor P$ (ii) no literal is selected in $C \lor P \lor P$

Superposition Left $(N \uplus \{C_1 \lor P, C_2 \lor \neg P\}) \Rightarrow_{SLIP}$ $(N \cup \{C_1 \lor P, C_2 \lor \neg P\} \cup \{C_1 \lor C_2\})$

where (i) *P* is strictly maximal in $C_1 \vee P$ (ii) no literal in $C_1 \vee P$ is selected (iii) $\neg P$ is maximal and no literal selected in $C_2 \vee \neg P$, or $\neg P$ is selected in $C_2 \vee \neg P$

	$\neg P \lor Q^*$ -	$\prec P \lor R^* \prec Q \lor \neg$	$ eg R^* \prec Q \lor S^*$
D	ω_o	1 50	7 Why?
1P V Q 4	9	Ø	
Pu Rx	9	(R3	"Productive counterport"
QV1Rx)	(R3	Ø	" Love Lounte por
QUSX	ER3	5.57	minimal false dause 1
A) => Superail	on Less NUE1	P v Q 7 November 9, 2022 87/10

Superposition Left
$$(N \uplus \{C_1 \lor P, C_2 \lor \neg P\}) \Rightarrow_{SUP} (N \cup \{C_1 \lor P, C_2 \lor \neg P\} \cup \{C_1 \lor C_2\})$$

where (i) *P* is strictly maximal in $C_1 \vee P$ (ii) no literal in $C_1 \vee P$ is selected (iii) $\neg P$ is maximal and no literal selected in $C_2 \vee \neg P$, or $\neg P$ is selected in $C_2 \vee \neg P$

	$P \lor Q^* \prec -$	$P \lor Q^* \prec P \lor R^*$	$^*\prec Q\vee \neg R^*\prec Q\vee S^*$
	No	\ \&p	whys
Pra	* Ø	6 Q3	Q* is str. wax, No# PVQ
7PV6		9	true
PVR	* [Q3	CR3	NO H PUR, R strict max.
Qui	R {Q,R}	Ø	true
QVS	EQ, R3	Ø	true
		$N_{I} = EQ, R3$	$\mathcal{N}_{\tau} \models \mathcal{N}$
			November 9, 2022 87/1