
First-Order Logic

3.3.1 Definition (Substitution (well-sorted))
A well-sorted substitution is a mapping σ : X → T (Σ,X ) so that

1. σ(x) ̸= x for only finitely many variables x and
2. sort(x) = sort(σ(x)) for every variable x ∈ X .

The application σ(x) of a substitution σ to a variable x is often
written in postfix notation as xσ. The variable set
dom(σ) := {x ∈ X | xσ ̸= x} is called the domain of σ.
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The term set codom(σ) := {xσ | x ∈ dom(σ)} is called the
codomain of σ. From the above definition it follows that dom(σ) is
finite for any substitution σ. The composition of two substitutions
σ and τ is written as a juxtaposition στ , i.e., tστ = (tσ)τ .
A substitution σ is called idempotent if σσ = σ. A substitution σ is
idempotent iff dom(σ) ∩ vars(codom(σ)) = ∅.
Substitutions are often written as sets of pairs
{x1 7→ t1, . . . , xn 7→ tn} if dom(σ) = {x1, . . . , xn} and xiσ = ti for
every i ∈ {1, . . . ,n}.
The modification of a substitution σ at a variable x is defined as
follows:

σ[x 7→ t ](y) =
{

t if y = x
σ(y) otherwise
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A substitution σ is identified with its extension to formulas and
defined as follows:

1. ⊥σ = ⊥,
2. ⊤σ = ⊤,
3. (f (t1, . . . , tn))σ = f (t1σ, . . . , tnσ),
4. (P(t1, . . . , tn))σ = P(t1σ, . . . , tnσ),
5. (s ≈ t)σ = (sσ ≈ tσ),
6. (¬ϕ)σ = ¬(ϕσ),
7. (ϕ ◦ ψ)σ = ϕσ ◦ ψσ where ◦ ∈ {∨,∧},
8. (Qxϕ)σ = Qz(ϕσ[x 7→ z]) where Q ∈ {∀,∃}, z and x are of the

same sort and z is a fresh variable.

The result tσ (ϕσ) of applying a substitution σ to a term t (formula
ϕ) is called an instance of t (ϕ).
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The substitution σ is called ground if it maps every domain
variable to a ground term, i.e., the codomain of σ consists of
ground terms only.
If the application of a substitution σ to a term t (formula ϕ)
produces a ground term tσ (a variable-free formula,
vars(ϕσ) = ∅), then tσ (ϕσ) is called ground instance of t (ϕ) and
σ is called grounding for t (ϕ). The set of ground instances of a
clause set N is given by
grd(Σ,N) = {Cσ | C ∈ N, σ is grounding for C} is the set of
ground instances of N.
A substitution σ is called a variable renaming if codom(σ) ⊆ X
and for any x , y ∈ X , if x ̸= y then xσ ̸= yσ.
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3.3.2 Lemma (Substitutions and Assignments)
Let β be an assignment of some interpretation A of a term t and
σ a substitution. Then

β(tσ) = β[x1 7→ β(x1σ), . . . , xn 7→ β(xnσ)](t)

where dom(σ) = {x1, . . . , xn}.
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Firstly, we define the classic Herbrand interpretations for formulas
without equality.

3.5.1 Definition (Herbrand Interpretation)
A Herbrand Interpretation (over Σ) is a Σ-algebra H such that

1. SH := TS(Σ) for every sort S ∈ S
2. fH : (s1, . . . , sn) 7→ f (s1, . . . , sn) where f ∈ Ω, arity(f ) = n,

si ∈ SH
i and f : S1 × . . .× Sn → S is the sort declaration for f

3. PH ⊆ (SH
1 × . . .× SH

m ) where P ∈ Π, arity(P) = m and
P ⊆ S1 × . . .× Sm is the sort declaration for P
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3.5.2 Lemma (Herbrand Interpretations are Well-Defined)
Every Herbrand Interpretation is a Σ-algebra.
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3.5.3 Proposition (Representing Herbrand Interpretations)
A Herbrand interpretation A can be uniquely determined by a set
of ground atoms I

(s1, . . . , sn) ∈ PA iff P(s1, . . . , sn) ∈ I
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3.5.5 Theorem (Herbrand)
Let N be a finite set of Σ-clauses. Then N is satisfiable iff N has
a Herbrand model over Σ iff grd(Σ,N) has a Herbrand model over
Σ.

Here grd(Σ,N) = {Cσ | C ∈ N, σ grounding in Σ}
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First-Order Logic Theories
In Section 3.2 the semantics of a first-order formula is defined
with respect to all algebras that assign meaning to the symbols of
the signature. For many applications this is too crude. For
example, let us assume we consider the signature of simple
linear integer arithmetic without divisibility relations,
ΣLIA = ({LIA}, {0,1,+,−} ∪ Z, {≤, <,>,≥}). Then a standard
first-order algebra A is, e.g., LIAA = {0,1}, 0A = 0, 1A = 1,
kA = (|k | mod 2) for all k ∈ Z, +A(0,0) = 0,
+A(1,0) = +A(0,1) = +A(1,1) = 1,
−A(0,0) = −A(1,1) = −A(0,1) = 0, −A(1,0) = 1, and the
relations ≤, <, >, ≥ are interpreted as usual over the domain
{0,1}. Obviously, A is not the standard interpretation of linear
integer arithmetic, because the domain is not the integers, and ,
e.g., A |= 8 < 9 but also A |= 10 < 9.
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Is there a way to fix the semantics to the intended interpretation?
Actually, there are two: the syntactic way by requiring any algebra
A of the signature ΣLIA to satisfy a set of closed first-order
formulas, called axioms, or the semantic way of fixing a set of
algebras for ΣLIA. In both cases, the set of algebras and axioms
is a called a theory T . For both cases I assume that the axioms
are satisfiable and there is either at least on algebra in T ,
respectively.
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For the above example, the semantic way would be simply to fix
the standard linear integer interpretation for T = {ΣLIA} as the
only algebra to be considered. The syntactic way would mean to
add enough formulas such that any algebra satisfying the
formulas is the desired algebra. More concretely, the formulas

T = {{k ̸≈ l | for all k , l ∈ Z, k ̸= l}∪
{k < l | for all k , l ∈ Z, k < l}}

Note, that the right hand side ̸= and < are the standard relations
on the integers. For any algebra A satisfying the infinitely many
axioms of T , A |= 8 < 9 and A |= 9 < 10 and LIAA will contain at
least as many different elements as the integers. So LIAA = Z is
a possible domain of an algebra for T , but also LIAA = Q would
satisfy the above axioms.
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Fixing a set of algebras is actually the more general and powerful
mechanism. However, it has also disadvantages. Given a finite
set of axioms T proving with respect to T amounts to classical
first-order theorem proving, e.g., validity is semi-decidable. Given
a set T of algebras, proving with respect to the algebras is
typically beyond first-order logic theorem proving, e.g., for
T = {ΣLIA} theorem proving means inductive theorem proving, in
general, hence, validity is no longer semi-decidable, but
undecidable.

November 17, 2022 38/134



First-Order Logic

3.17.1 Definition (First-Order Logic Theory)
Given a first-order many-sorted signature Σ, a theory T is a
non-empty set of Σ-algebras.
For some first-order formula ϕ over Σ we say that ϕ is
T -satisfiable if there is some A ∈ T such that A(β) |= ϕ for some
β. We say that ϕ is T -valid (T -unsatisfiable) if for all A ∈ T and
all β it holds A(β) |= ϕ (A(β) ̸|= ϕ). In case of validity I also write
|=T ϕ.
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Alternatively, T may contain a set of satisfiable axioms which
then stand for all algebras satisfying the axioms.

The Σ-algebras can be restricted to term-generated models as
long as there are “enough” constants (function) symbols in Σ, in
general infinitely many are sufficient. Due to the
Löwenheim-Skolem theorem different infinite cardinalities cannot
be distinguished by first-order formulas.
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Complexity

What is the complexity of deciding validity/unsatisfiability of a
first-order formula?

1.3.6 Definition (PCP)
Given two finite lists of words (u1, . . . ,un) and (v1, . . . , vn) the
Post Correspondence Problem (PCP) is to find a finite index list
(i1, . . . , ik ), 1 ≤ ij ≤ n, so that ui1ui2 . . . uik = vi1vi2 . . . vik .

1.3.7 Theorem (Post 1946)
PCP is undecidable.
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3.15.1 Theorem (First-Order Unsatisfiability is Undecidable)
Unsatisfiability of a set of first-order clauses is undecidable.

Proof.
(Construction) By a reduction of PCP, Definition 1.3.6,
Theorem 1.3.7. So let (u1, . . . ,un) and (v1, . . . , vn) be finite words
over alphabet {a,b}. The first-order signature contains two unary
functions ga and gb, a constant ϵ, and a relation R of arity two, all
over some sort S. Then a word pair ui , vi is encoded by
first-order clauses

¬R(x , y) ∨ R(ui(x), vi(y))
where ui(x) and vi(x) stand for the encodings of the words
through respective nested occurrences of ga and gb. The
intended meaning of R(x , y) is that the word pair x , y can be
derived from the PCP.
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Proof.
(Ctd)
The empty pair is encoded by the ground clause

R(ϵ, ϵ)

but it is a trivial solution to the PCP that needs to be ruled out.
This is done by the two clauses

¬R(ga(x),ga(x)), ¬R(gb(x),gb(x)).

I call the clause set consisting of these clauses N. Now the PCP
over the two word lists has a solution iff N is unsatisfiable.
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