
3.7. UNIFICATION 153

Now its time to prove completeness for standard first-order tableau. The
basic idea is, similar to superposition in the propositional and also first-order
case, Section 3.12. If a tableau cannot be closed there exists a model for some
branch.

Theorem 3.6.9 (Standard First-Order Tableau is Complete). If ϕ is valid then
the tableau calculus computes {((¬ϕ), J)} ⇒∗

FT N and N is closed.

Proof. Proof by contradiction. Assume N is not closed. Therefore, it must con-
tain an open branch. By Lemma 3.6.8 this branch constitutes a Hintikka set.
By Lemma 3.6.7 the branch constitutes a model for ¬ϕ, hence ϕ cannot be
valid.

One of the disadvantages of the standard tableau calculus is the guessing of
ground terms in γ-Extensions. To get rid of this, the idea is to simply keep the
universally quantified variable. Then branches are no longer closed by syntac-
tically complementary formulas, but by complementary formulas modulo “ap-
propriate instantiation” of the universally quantified variables. This requires a
procedure that computes, in the simplest case, for two literals a substitution
that makes them complementary, i.e., the respective atoms equal. Searching for
a substitution making two terms, atoms (formulas) equal is called unification,
see Section 3.7.

Lemma 3.6.10 (Compactness of First-Order Logic). Let N be a, possibly
countably infinite, set of first-order logic ground clauses. Then N is unsatisfiable
iff there is a finite subset N ′ ⊆ N such that N ′ is unsatisfiable.

Proof. If N is unsatisfiable, saturation via the tableau calculus generates a
closed tableau. So there is an i such that N ⇒i

TAB N ′ and N ′ is closed. Every
closed branch is the result of finitely many tableau rule applications on finitely
many clauses {C1, . . . , Cn} ⊆ N . Let M be the union of all these finite clause
sets, soM ⊆ N . Tableau is sound, soM is a finite, unsatisfiable subset of N .

3.7 Unification

Definition 3.7.1 (Unifier). Two terms s and t of the same sort are said to
be unifiable if there exists a well-sorted substitution σ so that sσ = tσ, the
substitution σ is then called a well-sorted unifier of s and t. The unifier σ is
called a most general unifier, written σ = mgu(s, t), if any other well-sorted
unifier τ of s and t it can be represented as τ = στ ′, for some well-sorted
substitution τ ′. A well-sorted subsitution σ is called a matcher from s to t, if
sσ = t.

Obviously, two terms of different sort cannot be made equal by well-sorted
instantiation. Since well-sortedness is preserved by all rules of the unification

154 CHAPTER 3. FIRST-ORDER LOGIC

calculus, we assume from now an that all equations, terms, and substitutions
are well-sorted.

The first calculus is the naive standard unification calculus that is typically
found in the (old) literature on automated reasoning [40]. A state of the naive
standard unification calculus is a set of equations E or ⊥, where ⊥ denotes that
no unifier exists. The set E is also called a unification problem. The start state
for checking whether two terms s, t, sort(s) = sort(t), (or two non-equational
atoms A, B) are unifiable is the set E = {s = t} (E = {A = B}). A variable x
is solved in E if E = {x = t} ⊎ E′, x ̸∈ vars(t) and x ̸∈ vars(E).

A variable x ∈ vars(E) is called solved in E if E = E′ ⊎ {x = t} and
x ̸∈ vars(t) and x ̸∈ vars(E′).

Tautology E ⊎ {t = t} ⇒SU E

Decomposition E ⊎ {f(s1, . . . , sn) = f(t1, . . . , tn)} ⇒SU E ∪ {s1 =
t1, . . . , sn = tn}

Clash E ⊎ {f(s1, . . . , sn) = g(s1, . . . , sm)} ⇒SU ⊥
if f ̸= g

Substitution E ⊎ {x = t} ⇒SU E{x 7→ t} ∪ {x = t}
if x ∈ vars(E) and x ̸∈ vars(t)

Occurs Check E ⊎ {x = t} ⇒SU ⊥
if x ̸= t and x ∈ vars(t)

Orient E ⊎ {t = x} ⇒SU E ∪ {x = t}
if t ̸∈ X

Theorem 3.7.2 (Soundness, Completeness and Termination of ⇒SU). If s, t
are two terms with sort(s) = sort(t) then

1. if {s = t} ⇒∗
SU E then any equation (s′ = t′) ∈ E is well-sorted, i.e.,

sort(s′) = sort(t′).

2. ⇒SU terminates on {s = t}.

3. if {s = t} ⇒∗
SU E then σ is a unifier (mgu) of E iff σ is a unifier (mgu) of

{s = t}.

4. if {s = t} ⇒∗
SU ⊥ then s and t are not unifiable.

5. if {s = t} ⇒∗
SU {x1 = t1, . . . , xn = tn} and this is a normal form, then

{x1 7→ t1, . . . , xn 7→ tn} is an mgu of s, t.

3.7. UNIFICATION 155

Proof. 1. by induction on the length of the derivation and a case analysis for
the different rules.
2. for a state E = {s1 = t1, . . . , sn = tn} take the measure µ(E) := (n,M, k)
where n is the number of unsolved variables,M the multiset of all term depths of
the si, ti and k the number of equations t = x in E where t is not a variable. The
state ⊥ is mapped to (0, ∅, 0). Then the lexicographic combination of > on the
naturals and its multiset extension shows that any rule application decrements
the measure.
3. by induction on the length of the derivation and a case analysis for the
different rules. Clearly, for any state where Clash, or Occurs Check generate ⊥
the respective equation is not unifiable.
4. a direct consequence of 3.
5. if E = {x1 = t1, . . . , xn = tn} is a normal form, then for all xi = ti we have
xi ̸∈ vars(ti) and xi ̸∈ vars(E \ {xi = ti}), so {x1 = t1, . . . , xn = tn}{x1 7→
t1, . . . , xn 7→ tn} = {t1 = t1, . . . , tn = tn} and hence {x1 7→ t1, . . . , xn 7→ tn} is
an mgu of {x1 = t1, . . . , xn = tn}. By 3. it is also an mgu of s, t.

Example 3.7.3 (Size of Standard Unification Problems). Any normal form of
the unification problem E given by
{f(x1, g(x1, x1), x3, . . . , g(xn, xn)) = f(g(x0, x0), x2, g(x2, x2), . . . , xn+1)}

with respect to ⇒SU is exponentially larger than E.

C

Note that the exponential growth cannot happen for a matching prob-
lem. In order to find a matcher σ from s to t, i.e., sσ = t the size of
the substituion σ is bound by t, thus linear in size of the input s, t.
The rules of ⇒SU without Orient and Occurs check are sufficient to compute a
matcher, see Exercise ??.

The second calculus, polynomial unification, prevents the problem of expo-
nential growth by introducing an implicit representation for the mgu. For this
calculus the size of a normal form is always polynomial in the size of the input
unification problem.

Tautology E ⊎ {t = t} ⇒PU E

Decomposition E ⊎ {f(s1, . . . , sn) = f(t1, . . . , tn)} ⇒PU E ⊎ {s1 =
t1, . . . , sn = tn}

Clash E ⊎ {f(t1, . . . , tn) = g(s1, . . . , sm)} ⇒PU ⊥
if f ̸= g

Occurs Check E ⊎ {x = t} ⇒PU ⊥
if x ̸= t and x ∈ vars(t)

Orient E ⊎ {t = x} ⇒PU E ⊎ {x = t}

156 CHAPTER 3. FIRST-ORDER LOGIC

if t ̸∈ X

Substitution E ⊎ {x = y} ⇒PU E{x 7→ y} ⊎ {x = y}
if x ∈ vars(E) and x ̸= y

Cycle E ⊎ {x1 = t1, . . . , xn = tn} ⇒PU ⊥
if there are positions pi with ti|pi = xi+1, tn|pn = x1 and some pi ̸= ϵ

Merge E ⊎ {x = t, x = s} ⇒PU E ⊎ {x = t, t = s}
if t, s ̸∈ X and |t| ≤ |s|

Theorem 3.7.4 (Soundness, Completeness and Termination of ⇒PU). If s, t
are two terms with sort(s) = sort(t) then

1. if {s = t} ⇒∗
PU E then any equation (s′ = t′) ∈ E is well-sorted, i.e.,

sort(s′) = sort(t′).

2. ⇒PU terminates on {s = t}.

3. if {s = t} ⇒∗
PU E then σ is a unifier (mgu) of E iff σ is a unifier (mgu) of

{s = t}.

4. if {s = t} ⇒∗
PU ⊥ then s and t are not unifiable.

Theorem 3.7.5 (Normal Forms generated by ⇒PU). Let {s = t} ⇒∗
PU {x1 =

t1, . . . , xn = tn} be a normal form. Then

1. xi ̸= xj for all i ̸= j and without loss of generality xi /∈ vars(ti+k) for all
i, k, 1 ≤ i < n, i+ k ≤ n.

2. the substitution {x1 7→ t1}{x2 7→ t2} . . . {xn 7→ tn} is an mgu of s = t.

Proof. 1. If xi = xj for some i ̸= j then Merge is applicable. If xi ∈ vars(ti)
for some i then Occurs Check is applicable. If the xi cannot be ordered in the
described way, then either Substitution or Cycle is applicable.
2. Since xi /∈ vars(ti+k) the composition yields the mgu.

Lemma 3.7.6 (Size of Unifiers). Let {s = t} be a unification problem between
two non-variable terms. Then

1. if s and t are linear then for any unifier σ and any term r ∈ codom(σ),
|r| < |s| and |r| < |t| as well as depth(r) < depth(s) and depth(r) <
depth(t),

2. if s is shallow and linear, then the mgu σ of s and t is also a matcher from
s to t, i.e., sσ = t

Proof. Both parts follow directly from the structure of the terms s, t: if they are
both linear then the substitution rule is never applied. If s is shallow and linear,
it has the form f(x1, . . . , xn), all xi different, then the unifier is σ = {xi 7→ t|i |
1 ≤ i ≤ n}.

164 CHAPTER 3. FIRST-ORDER LOGIC

C In addition to the consideration of repeated subformulas, discussed
in Section 2.5, for first-order renaming another technique can pay off:

generalization. Consider the formula [ϕ1 ∨ (Q1(a1) ∧Q2(a1))] ∧ [ϕ2 ∨ (Q1(a2) ∧
Q2(a2))]∧ . . .∧ [ϕn∨ (Q1(an)∧Q2(an)]. SimpleRenaming on obvious renamings
applied to this formula will independently rename any occurrences of a formula
(Q1(ai)∧Q2(ai)). However generalization pays off here. By adding the definition
∀x, y (R(x, y) → (Q1(x) ∧ Q2(y))) and replacing the ith occurrence of the con-
junct by R(x, y){x 7→ ai, y 7→ ai} one definition for all subformula occurrences
suffices.

3.10 First-Order Resolution

As already mentioned, I still consider first-order logic without equality. First-
order resolution on ground clauses corresponds to propositional resolution. Each
ground atom becomes a propositional variable. However, since there are up to
infinitely many ground instances for a first-order clause set with variables and
it is not a priori known which ground instances are needed in a proof, the
first-order resolution calculus operates on clauses with variables. Roughly, the
relationship between ground resolution and first-order resolution corresponds to
the relationship between standard tableau and free-variable tableau. However,
the variables in free-variable tableau can only be instantiated once, whereas in
resolution they can be instantiated arbitrarily often.

Propositional (or first-order ground) resolution is refutationally complete,
without reduction rules it is not guaranteed to terminate on satisfiable sets of
clauses, and inferior to the CDCL calculus. However, in contrast to the CDCL
calculus, resolution can be easily extended to non-ground clauses via unification.
The problem to generalize the CDCL calculus lies in the generalization of the
model representation. For example, whereas in propositional logic the maximal
size of a partial model (trail) is linear in the size of a clause set, this does not hold
for first-order logic. There can’t even be an overall finite model representation for
all satisfiable first-order clause sets. I’ll discuss this in more detail in Section 3.15.

Lemma 3.10.1. Let A be a Σ− algebra and let ϕ be a Σ− formula with free
variables x1, . . . , xn. Then A |= ∀x1, . . . , xnϕ iff A |= ϕ

Lemma 3.10.2. Let ϕ be a Σ−formula with free variables x1, . . . , xn, let σ be
a substitution and let y1, . . . , ym be free variables of ϕσ. Then A |= ∀x1, . . . , xnϕ
implies A |= ∀y1, . . . , ymϕσ.

In particular, if A is a model of an (implicitly universally quantified) clause
C then it is also a model of all (implicitly universally quantified) instances Cσ
of C. Consequently, if it is shown that some instances of clauses in a set N are
unsatisfiable then it is also shown that N itself is unsatisfiable.

General Resolution through Instantiation

3.10. FIRST-ORDER RESOLUTION 165

The approach is to instantiate clauses appropriately. An example is shown
in Figure 3.3. However, this may lead to several problems. First of all, more
than one instance of a clause can participate in a proof and secondly, which is
even worse, there are infinitely many possible instances. Due to the fact that
instantiation must produce complementary literals so that inferences become
possible, the idea is to not instantiate more than necessary to get complemen-
tary literals. An instantiation of the clause set from Figure 3.3 is again shown
in Figure 3.4 with the difference that the latter instantiates only as much as
necessary, inevitably reducing the number of substitutions.

P (z′, z′) ∨ ¬Q(z) ¬P (a, y) P (x′, b) ∨Q(f(x′, x))

P (a, a) ∨ ¬Q(f(a, b))

¬P (a, a) ¬P (a, b)
P (a, b) ∨Q(f(a, b))

¬Q(f(a, b)) Q(f(a, b))

⊥

{z′ 7→ a,
z 7→ f(a, b)}

{y 7→ a} {y 7→ b} {x′ 7→ a,
x 7→ b}

Figure 3.3: Instantiation of the clause set N =
P (z′, z′) ∨ ¬Q(z),¬P (a, y), P (x′, b) ∨Q(f(x′, x))

Lifting Principle
In order to overcome the problem of effectively and efficiently saturating in-

finite sets of clauses as they arise from taking the (ground) instances of finitely
many general clauses (with variables), the general idea is to lift the resolution
principle as proposed by Robinson [77]. The lifting is as follows: For the reso-
lution of general clauses, equality of ground atoms is generalized to unifiability
of general atoms and only the most general (minimal) unifiers (mgu) are com-
puted.

The advantage of the method in Robinson [77] compared with Gilmore [43]
is that unification enumerates only those instances of clauses that participate
in an inference. Moreover, clauses are not right away instantiated into ground
clauses. Rather they are instantiated only as far as required for an inference.
Inferences with non-ground clauses in general represent infinite sets of ground
inferences which are computed simultaneously in a single step.

The first-order resolution calculus consists of the inference rules Resolution
and Factoring and generalizes the propositional resolution calculus (Section 2.6).
Variables in clauses are implicitly universally quantified, so they can be instanti-
ated in an arbitrary way. For the application of any inference or reduction rule,

166 CHAPTER 3. FIRST-ORDER LOGIC

P (z′, z′) ∨ ¬Q(z) ¬P (a, y) P (x′, b) ∨Q(f(x′, x))

P (a, a) ∨ ¬Q(z)

¬P (a, a) ¬P (a, b)
P (a, b) ∨Q(f(a, x))

¬Q(z) Q(f(a, x))

¬Q(f(a, x)) Q(f(a, x))

⊥

{z′ 7→ a}
{y 7→ a} {y 7→ b}

{x′ 7→ a}

{z 7→ f(a, x)}

Figure 3.4: Instantiation of the clause set N =
P (z′, z′) ∨ ¬Q(z),¬P (a, y), P (x′, b) ∨ Q(f(x′, x)) with a reduced number
of instantiations.

I can therefore assume that the involved clauses don’t share any variables, i.e.,
variables are a priori renamed. Furthermore, clauses are assumed to be unique
with respect to renaming in a set.

Resolution (N⊎{D∨A,¬B∨C}) ⇒RES (N∪{D∨A,¬B∨C}∪{(D∨C)σ})
if σ = mgu(A,B) for atoms A,B

Factoring (N ⊎{C ∨L∨K}) ⇒RES (N ∪{C ∨L∨K}∪{(C ∨L)σ})
if σ = mgu(L,K) for literals L,K

The reduction rules are

Subsumption (N ⊎ {C1, C2}) ⇒RES (N ∪ {C1})
provided C1σ ⊂ C2 for some matcher σ

Tautology Dele-
tion

(N ⊎ {C ∨A ∨ ¬A}) ⇒RES (N)

Condensation (N ⊎ {C}) ⇒RES (N ∪ {C ′})
where C ′ is the result of removing duplicate literals from Cσ for some matcher
σ and C ′ subsumes C

3.10. FIRST-ORDER RESOLUTION 167

Subsumption
Resolution

(N ⊎ {C1 ∨ L,C2 ∨K}) ⇒RES (N ∪ {C1 ∨ L,C2})

where Lσ = comp(K) and C1σ ⊆ C2

Lemma 3.10.3 (Lifting Lemma). Let C and D be variable-disjoint clauses.
There is one version for Resolution and one for Factoring.

(i) if (N ⊎ {Dδ ∨ Aδ,¬Bγ ∨ Cγ}) ⇒RES (N ∪ {Dδ ∨ Aδ,¬Bγ ∨ Cγ} ∪
{(Dδ ∨ Cγ)σ}) where σ = mgu(Aδ,Bγ) then (N ⊎ {D ∨ A,¬B ∨ C}) ⇒RES

(N∪{D∨A,¬B∨C}∪{(D∨C)σ′}) where σ′ = mgu(A,B) and (D∨C)σ′δγσ =
(Dδ ∨ Cγ)σ.

Saturation of Sets of General Clauses

Definition 3.10.4 (Resolution Saturation). A set of clauses N is saturated up
to redundancy if for all C ∈ Res(N) it holds C ∈ N or C is subsumed by a
clause from N .

Corollary 3.10.5. Let N be a set of general clauses saturated under Res, i.e.,
Res(N) ⊆ N . Then also GΣ(N) is saturated, that is, Res(GΣ(N)) ⊆ GΣ(N).

Proof. W.l.o.g. assume that clauses in N are pairwise variable-disjoint. (Other-
wise they have to be made disjoint and this renaming process changes neither
Res(N) nor GΣ(N).) Let C ′ ∈ Res(GΣ(N)), meaning (i) there exist resolvable
ground instances Dσ and Cρ of N with resolvent C ′, or else (ii) C ′ is a factor
of a ground instance Cσ of C.

Case (i): By the Lifting Lemma, D and C are resolvable with a resolvent
C ′′ with C ′′τ = C ′, for a suitable substitution τ . As C ′′ ∈ N by assumption,
C ′ ∈ GΣ(N) is obtained.

Case (ii): Similar.

Herbrand’s Theorem

Lemma 3.10.6. Let N be a set of Σ-clauses, let A be an interpretation. Then
A |= N implies A |= GΣ(N).

Lemma 3.10.7. LetN be a set of Σ-clauses, letA be a Herbrand interpretation.
Then A |= GΣ(N) implies A |= N .

Theorem 3.10.8 (Herbrand). A set N of Σ-clauses is satisfiable if and only if
it has a Herbrand model over Σ.

Proof. (⇐) Assume N has a Herbrand model I over Σ, i.e., I |= N . Then N is
satisfiable.

(⇒) Let N ̸|= ⊥.

N ̸|= ⊥ ⇒ ⊥ ̸∈ Res∗(N) (resolution is sound)
⇒ ⊥ ̸∈ GΣ(Res

∗(N))
⇒ IGΣ(Res∗(N)) |= GΣ(Res

∗(N)) (Theorem ; Corollary 3.10.5)
⇒ IGΣ(Res∗(N)) |= Res∗(N) (Lemma 3.10.7)
⇒ IGΣ(Res∗(N)) |= N (N ⊆ Res∗(N))

168 CHAPTER 3. FIRST-ORDER LOGIC

The Theorem of Löwenheim-Skolem

Theorem 3.10.9 (Löwenheim–Skolem). Let Σ be a countable signature and
let S be a set of closed Σ-formulas. Then S is satisfiable iff S has a model over
a countable universe.

Proof. If both X and Σ are countable, then S can be at most countably infinite.
Now generate, maintaining satisfiability, a set N of clauses from S. This extends
Σ by at most countably many new Skolem functions to Σ′. As Σ′ is countable,
so is TΣ′ , the universe of Herbrand-interpretations over Σ′. Now apply Theo-
rem 3.5.5.

Refutational Completeness of General Resolution

Theorem 3.10.10 (Soundness and Completeness of Resolution). The resolu-
tion calculus is sound and complete:

N is unsatisfiable iff N ⇒∗
RES N

′ and ⊥ ∈ N ′ for some N ′

Theorem 3.10.11 (Soundness and Completeness of Resolution). Let N be a
set of first-clauses where Res(N) ⊆ N . Then

N |= ⊥ ⇔ ⊥ ∈ N.

Proof. Let Res(N) ⊆ N . By Corollary 3.10.5: Res(GΣ(N)) ⊆ GΣ(N)

N |= ⊥ ⇔ GΣ(N) |= ⊥ (Lemma 3.10.6/3.10.7; Theorem 3.5.5)
⇔ ⊥ ∈ GΣ(N) (propositional resolution sound and complete)
⇔ ⊥ ∈ N

Compactness of First-Order Logic

Theorem 3.10.12 (Compactness Theorem for First-Order Logic). Let S be
a set of first-order formulas. S is unsatisfiable if and only if some finite subset
S′ ⊆ S is unsatisfiable.

Proof. (⇐) Assume that S′ is unsatisfiable. Since S′ ⊆ S, S is also unsatisfiable.

(⇒) Let S be unsatisfiable and letN be the set of clauses obtained by Skolemiza-
tion and CNF transformation of the formulas in S. Clearly Res∗(N) is unsatis-
fiable. By Theorem 3.10.11, ⊥ ∈ Res∗(N), and therefore ⊥ ∈ Resn(N) for some
n ∈ N. Consequently, ⊥ has a finite resolution proof B of depth≤ n. Choose
S′ as the subset of formulas in S so that the corresponding clauses contain the
assumptions (leaves) of B.

