
178 CHAPTER 3. FIRST-ORDER LOGIC

Proof. Let C1 subsume C2 with substitution σ Subsumption is in NP because
the size of σ is bounded by the size of C2 and the subset relation can be checked
in time at most quadratic in the size of C1 and C2.

Propositional SAT can be reduced as follows. Assume a 3-SAT clause set
N . Consider a 3-place predicate R and a unary function g and a mapping from
propositional variables P to first order variables xP .

Lemma 3.13.7 (Lifting). Let D∨L and C∨L′ be variable-disjoint clauses and
σ a grounding substitution for C ∨L and D ∨L′. If there is a superposition left
inference

(N ⊎ {(D ∨ L)σ, (C ∨ L′)σ})⇒SUP (N ∪ {(D ∨ L)σ, (C ∨ L′)σ} ∪ {Dσ ∨ Cσ})

and if sel((D ∨ L)σ) = sel((D ∨ L))σ, sel((C ∨ L′)σ) = sel((C ∨ L′))σ , then
there exists a mgu τ such that

(N ⊎ {D ∨ L,C ∨ L′})⇒SUP (N ∪ {D ∨ L,C ∨ L′} ∪ {(D ∨ C)τ}).

Let C ∨L∨L′ be a clause and σ a grounding substitution for C ∨L∨L′. If
there is a factoring inference

(N ⊎ {(C ∨ L ∨ L′)σ})⇒SUP (N ∪ {(C ∨ L ∨ L′)σ} ∪ {(C ∨ L)σ})

and if sel((C ∨ L ∨ L′)σ) = sel((C ∨ L ∨ L′))σ , then there exists a mgu τ such
that

(N ⊎ {C ∨ L ∨ L′})⇒SUP (N ∪ {C ∨ L ∨ L′} ∪ {(C ∨ L)τ})

Note that in the above lemma the clause Dσ∨Cσ is an instance of the clause
(D∨C)τ . The reduction rules cannot be lifted in the same way as the following
example shows.

Example 3.13.8 (First-Order Reductions are not Liftable). Consider the two
clauses P (x) ∨ Q(x), P (g(y)) and grounding substitution {x 7→ g(a), y 7→ a}.
Then P (g(y))σ subsumes (P (x)∨Q(x))σ but P (g(y)) does not subsume P (x)∨
Q(x). For all other reduction rules similar examples can be constructed.

Lemma 3.13.9 (Soundness and Completeness). First-Order Superposition is
sound and complete.

Proof. Soundness is obvious. For completeness, Theorem 3.12.12 proves the
ground case. Now by applying Lemma 3.13.7 to this proof it can be lifted to the
first-order level, as argued in the following.

Let N be a an unsatisfiable set of first-order clauses. By Theorem 3.5.5 and
Lemma 3.6.10 there exist a finite unsatisfiable set N ′ of ground instances from
clauses from N such that for each clause Cσ ∈ N ′ there is a clause C ∈ N . Now
ground superposition is complete, Theorem 3.12.12, so there exists a derivation
of the empty clause by ground superposition from N ′: N ′ = N ′

0 ⇒SUP . . .⇒SUP

N ′
k and ⊥ ∈ N ′

k. Now by an inductive argument on the length of the derivation
k this derivation can be lifted to the first-order level. The invariant is: for any

3.13. FIRST-ORDER SUPERPOSITION 179

ground clause Cσ ∈ N ′
i used in the ground proof, there is a clause C ∈ Ni on

the first-order level. The induction base holds for N and N ′ by construction.
For the induction step Lemma 3.13.7 delivers the result.

There are questions left open by Lemma 3.13.9. It just says that a ground
refutation can be lifted to a first-order refutation. But what about abstract
redundancy, Definition 3.13.3? Can first-order redundant clauses be deleted
without harming completeness? And what about the ground model operator
with respect to clause sets N saturated on the first-order level. Is in this case
grd(Σ, N)I a model? The next two lemmas answer these questions positively.

Lemma 3.13.10 (Redundant Clauses are Obsolete). If a clause set N is unsat-
isfiable, then there is a derivation N ⇒∗

SUP N
′ such that ⊥ ∈ N ′ and no clause

in the derivation of ⊥ is redundant.

Proof. If N is unsatisfiable then there is a ground superposition refutation of
grd(Σ, N) such that no ground clause in the refutation is redundant. Now ac-
cording to Lemma 3.13.9 this proof can be lifted to the first-order level. Now
assume some clause C in the first-order proof is redundant that is the lifting of
some clause Cσ from the ground proof with respect to a grounding substitution
σ. The clause C is redundant by Definition 3.13.3 if all its ground instances are,
in particular, Cσ. But this contradicts the fact that the lifted ground proof does
not contain redundant clauses.

Lemma 3.13.11 (Model Property). If N is a saturated clause set and ⊥ ̸∈ N
then grd(Σ, N)I |= N .

Proof. As usual we assume that selection on the ground and respective non-
ground clauses is identical. Assume grd(Σ, N)I ̸|= N . Then there is a minimal
ground clause Cσ, C ̸= ⊥, C ∈ N such that grd(Σ, N)I ̸|= Cσ. Note that
Cσ is not redundant as for otherwise grd(Σ, N)I |= Cσ. So grd(Σ, N) is not
saturated. If Cσ is productive, i.e., Cσ = (C ′ ∨ L)σ such that L is positive, Lσ
strictly maximal in (C ′∨L)σ then Lσ ∈ grd(Σ, N)I and hence grd(Σ, N)I |= Cσ
contradicting grd(Σ, N)I ̸|= Cσ.

If Cσ = (C ′∨L∨L′)σ such that L is positive, Lσ maximal in (C ′∨L∨L′)σ
then, because N is saturated, there is a clause (C ′ ∨ L)τ ∈ N such that (C ′ ∨
L)τσ = (C ′ ∨ L)σ. Now (C ′ ∨ L)τ is not redundant, grd(Σ, N)I ̸|= (C ′ ∨ L)τ ,
contradicting the minimal choice of Cσ.

If Cσ = (C ′∨L)σ such that L is selected, or negative and maximal then there
is a clause (D′∨L′) ∈ N and grounding substitution ρ, such that L′ρ is a strictly
maximal positive literal in (D′∨L′)ρ, L′ρ ∈ grd(Σ, N)I and L′ρ = ¬Lσ. Again,
since N is saturated, there is variable disjoint clause (C ′ ∨D′)τ ∈ N for some
unifier τ , (C ′ ∨ D′)τσρ ≺ Cσ, and grd(Σ, N)I ̸|= (C ′ ∨ D′)τσρ contradicting
the minimal choice of Cσ.

Dynamic stuff: a clause C is called persistent in a derivation N →∗
SUP N

′ if

there is some i such that C ∈ Ni for N →i
SUP Ni and for all j > i, N →j

SUP Nj
then C ∈ Nj . A derivation N →∗

SUP N ′ is called fair if any two persistent

180 CHAPTER 3. FIRST-ORDER LOGIC

clauses C, D and any superposition inference C ′ out of the two clauses, there is
an index j such with N →j

SUP Nj →∗
SUP N

′ such that C ′ ∈ Nj .

Definition 3.13.12 (Persistent Clause). Let N0 ⇒SUP N1 ⇒SUP . . . be a,
possibly infinite, superposition derivation. A clause C is called persistent in this
derivation if C ∈ Ni for some i and for all j > i also C ∈ Nj .

Definition 3.13.13 (Fair Derivation). A derivation N0 ⇒SUP N1 ⇒SUP . . . is
called fair if for any persistent clause C ∈ Ni where factoring is applicable to
C, there is a j such that the factor of C ′ ∈ Nj or ⊥ ∈ Nj . If {C,D} ⊆ Ni are
persistent clauses such that superposition left is applicable to C, D then the
superposition left result is also in Nj for some j or ⊥ ∈ Nj .

Theorem 3.13.14 (Dynamic Superposition Completeness). If N is unsatisfi-
able and N = N0 ⇒SUP N1 ⇒SUP . . . is a fair derivation, then there is ⊥ ∈ Nj
for some j.

Proof. If N is unsatisfiable, then by Lemma 3.13.9 there is a derivation of ⊥
by superposition. Furthermore, no clause contributing to the derivation of ⊥ is
redundant (Lemma 3.13.10). So all clauses in the derivation of ⊥ are persistent.
The derivation N0 ⇒SUP N1 ⇒SUP . . . is fair, hence ⊥ ∈ Nj for some j.

Lemma 3.13.15. Let red(N) be all clauses that are redundant with respect to
the clauses in N and N , M be clause sets. Then

1. if N ⊆M then red(N) ⊆ red(M)

2. if M ⊆ red(N) then red(N) ⊆ red(N \M)

It follows that redundancy is preserved when, during a theorem proving
process, new clauses are added (or derived) or redundant clauses are deleted.
Furthermore, red(N) may include clauses that are not in N .

3.14 Implementation

3.14.1 A First-Order Superposition Theorem Prover

So far: static view on completeness of resolution: Saturated sets are inconsistent
if and only if they contain ⊥. This chapter considers a dynamic view:

1. How to achieve saturated sets in practice?

2. The theorems and are the basis for the completeness proof of the prover
STP .

Rules for Simplifications and Deletion
The following rules are employed for simplification of prover states N (there

are more possibilities):

3.15. COMPLEXITY 199

is obviously terminating, e.g., for an LPO with fR ≻ ga ≻ gb ≻ c ≻ d, but
not confluent, in general. Completing the system corresponds to searching for a
PCP solution.

Although validity (unsatisfiability) checking in equational and first-order
logic is undecidable, in general, there are meaningful subclasses such that these
problems become decidable. The first class I want to look at is a “classics” the
Bernays-Schönfinkel class.

Definition 3.15.3 (Bernays-Schönfinkel Fragment (BS)). A formula of the
Bernays-Schönfikel fragment has the form ∃x⃗.∀y⃗.ϕ such that ϕ is quantifier free
and does not contain constant symbols nor function symbols.

Transforming a Bernays-Schönfinkel formula into CNF via ⇒ACNF also
results in a set of clauses that only contains predicates, constant symbols,
and universally quantified variables. Such clause sets are also called Bernays-
Schönfinkel. The leading existential quantifiers ∃x⃗ of a BS formula ∃x⃗∀y⃗ϕ are
all Skolemized to Skolem constants. Therefore, a formula ∃x⃗.∀y⃗.ϕ where ϕ con-
tains constant symbols can be transformed into a BS formula by replacing the
constant symbols with existentially quantified variables.

Theorem 3.15.4 (BS is decidable). Unsatisfiability of a BS clause set is de-
cidable.

Proof. The set of all ground terms of a BS clause set N is finite. By Her-
brand’s theorem, Theorem 3.5.5, a clause set is unsatisfiable iff grd(Σ, N) is.
But grd(Σ, N) is finite, so its unsatisfiability is decidable by any propositional
calculus.

Interestingly, neither Resolution, nor Superposition terminate on a BS clause
set, in general. Further refinements to these calculi are needed. Tableau termi-
nates on BS clause sets. On the other hand, a clause set N is unsatisfiable iff the
finite clause set grd(Σ, N) is unsatisfiable. After ground instantiation this can be
decided by any propositional calculus. So if grd(Σ, N) is not “too large” this may
be even an effective idea in practice. However grd(Σ, N) grows exponentially in
the number of variables contained in clauses in N .

Deciding satisfiability of the BS fragment is NEXPTIME-complete. If the
BS fragment is further restricted to Horn clauses, satisfiability of the BS frag-
ment becomes DEXPTIME-complete. This is a common phaenomen for de-
cidable logic clause fragments that if the general fragment is complete for the
non-deterministic class, its Horn restriction is complete for the respective deter-
ministic class. For propositional logic, satisfiability of arbitrary clauses is NP-
complete, but satisfiability of Horn clauses is in P, actually it can be decided in
linear time, see Proposition 2.14.7.

The fact that the BS fragment is NEXPTIME-complete has consequences
for the size of models. Since NEXPTIME ̸= NP the size of BS models cannot be
polynomial in the size of an input clause set. Actually, searching for formalisms
that enable compact representations of BS models and efficient computations is
an active area of research.

200 CHAPTER 3. FIRST-ORDER LOGIC

C The class is expressive enough to encode many knowledge represen-
tation languages such as description logics or the ontology languages

of the WWW consortium. Furthermore, it has the potential to deliver exponen-
tially shorted refutations compared to reasoning on the ground level. Therefore,
it has the potential to support progress in applications where currently propo-
sitional reasoning is preferred.

Example 3.15.5. Non-Termination of Superposition on BS Consider the clause
set

N = {¬P (x, y) ∨ P (x, z) ∨ P (z, y), P (a, a)}
In the first clause all three literals are incomparable with respect to any ordering.
So there is at a least the superposition inference between the negative literal
¬P (x, y) and P (a, a) generating P (a, z) ∨ P (z, a). Again, the two literals are
incomparable, hence maximal, generating, e.g., P (a, z′)∨P (z′, z)∨P (z, a). This
process can be continued forever.

Example 3.15.6. Termination of Standard Tableau on BS Consider the clause
set

N = {¬P (x, y) ∨ P (x, z) ∨ P (z, y), P (a, a)}
After one α-Expansion leading to the branch (N,¬P (x, y) ∨ P (x, z) ∨
P (z, y), P (a, a)) there is only one γ-Expansion possible leading to (N,¬P (x, y)∨
P (x, z) ∨ P (z, y), P (a, a),¬P (a, a) ∨ P (a, a) ∨ P (a, a)). Now a β-Expansion re-
sults eventually in three branches where the branch containing ¬P (a, a) can
be closed and the two branches containing P (a, a) remain open. The resulting
tableau is saturated.

There is, in theory and in practice, a difference in techniques that are suc-
cessful in showing termination of calculi on first-order fragments depending on
whether grd(Σ, N) is finite or not. For the following fragment, monadic shal-
low linear Horn clauses (MSLH), grd(Σ, N) is infinite, in general. Superposition
terminates on this fragment, while no tableau calculus terminates.

Definition 3.15.7 (Monadic Shallow Linear Horn Clause). A clause ¬P1(t⃗1)∨
. . . ∨ ¬Pn(t⃗n) ∨Q1(s⃗1) ∨ . . . ∨Qm(s⃗m) is monadic shallow linear Horn, if

1. m ≤ 1, i.e., the clause is Horn,

2. all Pi, Qj are monadic predicates,

3. if m = 1 then s1 is a shallow, linear term f(x1, . . . , xn) or a ground term.

Now a clause set N is belongs to the MSLH fragment, if all its clauses are
monadic shallow linear horn clauses. Note that there are no restrictions on the
structure of terms in negative literals.

Theorem 3.15.8 (Unsatisfiability of MSLH Clause Sets is Decidable). The
unsatisfiability of a set of MSLH clauses is decidable.

Proof. By termination of superposition. For the proof I assume a KBO, all
symbols weight one, and function symbols are larger in the precedence than

3.16. DECISION PROCEDURES FOR THE BERNAYS-SCHÖNFINKEL (BS) FRAGMENT201

predicate symbols. Furthermore, the following selection strategy is needed for
termination. In any clause ¬P (t) ∨ C the literal ¬P (t) is selected, if

(i) t is a non-variable term,

(ii) or there is no non-variable term in a negative literal, and t is a variable
that does not occur in the positive literal of C,

(iii) or all negative literals have variable arguments but C does not contain
any positive literal.

The effect of this strategy is that clauses where no negative literal is selected
have on of the following two forms:

¬P1(x1) ∨ . . . ∨ ¬Pn(xn) ∨Q(f(x1, . . . , xn))
where not all xi of Q(f(x1, . . . , xn)) necessarily occur in a negative literal and
there may be several negative literals having some xj as its argument. For this
clause Q(f(x1, . . . , xn)) is the only strictly maximal literal. The second form is

¬P1(x) ∨ . . . ∨ ¬Pn(x) ∨Q(x)
where maximality depends on the precedence on the predicates. Importantly,
there are only finitely many different clauses of the above two forms with respect
to condensation and subsumption. If the positive Q contains a non-constant
ground term initially, this can also be transformed into a finite set of equivalent
clauses of the above first form. In addition, only for the above two forms a
positive literal can become maximal and therefore be used in a superposition
inference. Then any superposition inference generates either a clause of the
above form, and there are only finitely many, or the resulting clause is strictly
smaller with respect to the multiset of all subterms of the parent clause that
has not the above form.

3.16 Decision Procedures for the Bernays-
Schönfinkel (BS) Fragment

In Section 3.15 I showed that unsatisfiability (validity) of first-order logic (clause
sets) is undecidable, Theorem 3.15.1. So decision procedures can only exists for
fragments, e.g., the Bernays-Schönfinkel (BS) or the MSLH fragment introduced
in Section 3.15. This section presents several decision procedures for the BS
fragment. Some of them can be extended to complete calculi for full first-order
logic and some are refinements of full first-order logic calculi.

Historically, the BS fragment has been defined as all first-order sentences
of the form ∃x⃗.∀y⃗.ϕ where ϕ is quantifier free and does not contain constant
nor function symbols, Definition 3.15.3. After Skolemization, satisfiability is
equivalent to the formula ∀∗y⃗.(ϕ{x1 7→ a1, . . . , xn 7→ an}) for (fresh) constants
a1, . . . , an which can then be further transformed into CNF.

Thus the Herbrand domain of a BS clause set N is finite, consisting of all
constants in N . So is the equisatisfiable set grd(N) where satisfiability can then
be decided by any decision procedure for propositional logic. However, the set

202 CHAPTER 3. FIRST-ORDER LOGIC

grd(N) is exponentially larger than N , in general. If k is the maximal number
of variables of a clause in N , and n the number of different constants in N , then
worst-case | grd(N)| = O(|N | · nk). This motivates research for more flexible
calculi without a worst-case initial blow-up.

3.16.1 Superposition

The superposition calculus, Section 3.13, is not a decision procedure for the BS
fragment, i.e., it does not necessarily terminate on a clause set N of BS clauses,
see also Example 3.15.5. Consider a BS clause set consisting of the following
two clauses

1 ¬R(x, y) ∨ ¬R(y, z) ∨R(x, z)

2 R(x, y) ∨R(y, x)

describing a transitive and total relation R. With respect to any ordering
stable under substitution, the R literals are all incomparable in their respective
clauses. The only way to restrict inferences via the superposition calculus is
to select one of the negative literals in the transitivity clause, clause 1. The
superposition calculus generates an infinite number of clauses including

N0 = {1 : ¬R(x, y) ∨ ¬R(y, z) ∨R(x, z), 2 : R(x, y) ∨R(y, x)}

⇒1.1,2.1
SUP N0 ∪ {3 : ¬R(y, z) ∨R(x, z) ∨R(y, x)}

⇒3.1,2.1
SUP N1 ∪ {4 : R(x, z) ∨R(y, x) ∨R(z, y)}

⇒4.1,4.2
SUP N2 ∪ {5 : R(x, x)}

⇒4.1,3.1
SUP N3 ∪ {6 : R(x, z) ∨R(y, x) ∨R(y′, y) ∨R(z, y′)}

...

The crucial point is that neither clause 4 nor clause 6 is redundant because of
the underlying variable chains. The variable chain can be extended generating
clauses of length five, six, Obviously, such a clause containing a variable
chain contributes a refutation at most of the length of square of the number of
different constant symbols. Otherwise, it becomes redundant by the existence
of shorter clauses. So one way to turn superposition into a decision procedure
for the BS class is to add an additional condensation rule that unifies literals
in clauses as soon as all potential ground instantiations with constants yield
duplicates.

Condensation-BS (N ⊎ {L1 ∨ · · · ∨ Ln}) ⇒SUP (N ∪ {rdup((L1 ∨ . . . ∨
Ln)σi,j) | if Li, Lj are unifiable and σi,j = mgu(Li, Lj)})
provided any ground instance (L1 ∨ · · · ∨ Ln)δ contains at least two duplicate
literals

3.16. DECISION PROCEDURES FOR THE BERNAYS-SCHÖNFINKEL (BS) FRAGMENT203

Another way to prevent non-termination is by preventing the generation of
arbitrary long clauses. This can be done by a special splitting rule, that splits
non-Horn clauses into their Horn parts through instantiation. Assuming two
constants a, b for the above example, then clause 2 is replaced by clauses

2.1 R(a, b) ∨R(b, a)

2.2 R(a, a)

2.3 R(b, b).

Next the clause R(a, b)∨R(b, a) can be split, similar to a β-rule application
of tableau, resulting in two clause sets

M1 = {¬R(x, y) ∨ ¬R(y, z) ∨R(x, z), R(a, a), R(b, b), R(a, b)}
M2 = {¬R(x, y) ∨ ¬R(y, z) ∨R(x, z), R(a, a), R(b, b), R(b, a)}.

Now the original clause set N0 is satisfiable iffM1 orM2 are satisfiable. Em-
ploying a rigorous selection strategy where in every clause containing negative
literals one negative literal is selected, the superposition calculus will always
infer from a positive unit clause and a clause containing at least one negative
literal a shorter clause. So it will terminate.

A state is now a set of clause sets. Let k be the number of different constants
a1, . . . , ak in the initial clause set N . Then the initial state is the set M = {N},
Superposition Left is adopted to the new setting, Factoring is no longer needed
and the rules Instantiate and Split are added. The variables x1, . . . , xk constitute
a variable chain between literals L1, Lk inside a clause C, if there are literals
{L1, . . . , Lk} ⊆ C such that xi ∈ (vars(Li) ∩ vars(Li+1)), 1 ≤ i < k.

Superposition-BS M ⊎{N ⊎{P (t1, . . . , tn), C∨¬P (s1, . . . , sn)}} ⇒SUPBS

M ∪ {N ∪ {P (t1, . . . , tn), C ∨ ¬P (s1, . . . , sn)} ∪ {Cσ}}
where (i) ¬P (s1, . . . , sn) is selected in (C ∨ ¬P (s1, . . . , sn))σ (ii) σ is the mgu
of P (t1, . . . , tn) and P (s1, . . . , sn) (iii) C ∨ ¬P (s1, . . . , sn) is a Horn clause

Instantiation M ⊎ {N ⊎ {C ∨ A1 ∨ A2}} ⇒SUPBS M ∪ {N ∪ {(C ∨
A1 ∨A2)σi | σi = {x 7→ ai}, 1 ≤ i ≤ k}}
where x occurs in a variable chain between A1 and A2

Split M ⊎ {N ⊎ {C1 ∨ A1 ∨ C2 ∨ A2}} ⇒SUPBS M ∪ {N ∪
{C1 ∨A1}, N ∪ {C2 ∨A2}}
where vars(C1 ∨A1) ∩ vars(C2 ∨A2) = ∅

As usual, the clause parts C, C1, C2 may be empty. Note that after ex-
haustive application of Instantiation and Split, every clause purely containing
positive literals is a unit clause. This together with the below rigorous selection
strategy justifies the strong side conditions of Superposition BS compared to
Superposition Left and explains why Factoring is not needed.

204 CHAPTER 3. FIRST-ORDER LOGIC

Definition 3.16.1 (Rigorous Selection Strategy). A selection strategy is rig-
orous if in any clause containing a negative literal, a negative literal is selected.

Lemma 3.16.2 (SUPBS Basic Properties). The SUPBS rules have the follow-
ing properties:

1. Superposition BS is sound.

2. Instantiation is sound and complete.

3. Split is sound and complete.

Proof. 1. Follows from the soundness of Superposition Left.

2. Soundness follows from the soundness of variable instantiation. Complete-
ness follows from the fact that grd(C ∨A1 ∨A2) = grd({(C ∨A1 ∨A2)σi | σi =
{x 7→ ai}, 1 ≤ i ≤ k}}).

3. I proveN⊎{C1∨A1∨C2∨A2} is satisfiable iffN∪{C∨A1} orN∪{C2∨A2}
is satisfiable. The direction from right to left is obvious, because both C1 ∨ A1

and C2 ∨ A2 subsume C1 ∨ A1 ∨ C2 ∨ A2. For the other direction assume an
interpretation A satisfying N ⊎ {C1 ∨ A1 ∨ C2 ∨ A2}, in particular A |= C1 ∨
A1∨C2∨A2. This means for any valuation β we have A, β |= C1∨A1∨C2∨A2.
The sub-clauses C1 ∨A1, C2 ∨A2 are variable disjoint so β can be split into β1
assigning values to variables in C1 ∨ A1 and β2 assigning values to variables in
C2∨A2. Then A, β |= C1∨A1∨C2∨A2 for all β iff A, β1β2 |= C1∨A1∨C2∨A2

for all β1, β2 iff A, β1 |= C1 ∨A1 or A, β2 |= C2 ∨A2 for all β1, β2.

3.16.2 Non-Redundant Clause Learning (NRCL)

A pair C ·σ where σ is grounding is called a closure. The semantics of a closure
C · σ is the ground clause Cσ.

The NRCL calculus is a generalization of the CDCL calculus, Section 2.9,
to the BS fragment. The BS fragment can be finitely grounded, but with a
worst-case exponential blow up. So an obvious procedure would be to perform
the grounding and then run CDCL on the resulting first-order ground clauses.
Every first-order ground atom then corresponds to a propositional variable.
However, in general, it is not wise to incorporate into an automated reasoning
calculus a worst-case exponential preprocessing step. Therefore, NRCL rather
lifts the CDCL calculus to the first-order BS fragment.

Similar to a CDCL state, an NRCL state is a five tuple (Γ;N ;U ; j;C), where
Γ is a (partial) model assumption build from ground literals, N the initial BS
clause set, U the set of learned BS clauses, j the current level and C is either
⊤, ⊥ or a BS clause. Literals L ∈ Γ are either annotated with a number, a
level, i.e., they have the form Lk meaning that L is the k − th guessed decision
literal, or they are annotated with a pair consisting of a clause and a (ground)
substitution Lσ(C∨L)·σ that forced the literal to become true. A pair (C · σ)

