
1.4. ORDERINGS 17

1.4 Orderings

An ordering R is a binary relation on some set M . Depending on particular
properties such as

(reflexivity) ∀x ∈M R(x, x)
(irreflexivity) ∀x ∈M ¬R(x, x)

(antisymmetry) ∀x, y ∈M (R(x, y) ∧R(y, x)→ x = y)
(transitivity) ∀x, y, z ∈M (R(x, y) ∧R(y, z)→ R(x, z))
(totality) ∀x, y ∈M (R(x, y) ∨R(y, x))

there are different types of orderings. The relation = is the identity relation
onM . The quantifier ∀ reads “for all”, and the boolean connectives ∧, ∨, and→
read “and”, “or”, and “implies”, respectively. For example, the above formula
stating reflexivity ∀x ∈M R(x, x) is a shorthand for “for all x ∈M the relation
R(x, x) holds”.

C

Actually, the definition of the above properties is informal in the sense
that I rely on the meaning of certain symbols such as ∈ or →. While
the former is assumed to be known from school math, the latter is
“explained” above. So, strictly speaking this book is neither self contained,
nor overall formal. For the concrete logics developed in subsequent chapters, I
will formally define → but here, where it is used to state properties needed to
eventually define the notion of an ordering, it remains informal. Although it is
possible to develop the overall content of this book in a completely formal style,
such an approach is typically impossible to read and comprehend. Since this
book is about teaching a general framework to eventually generate automated
reasoning procedures this would not be the right way to go. In particular, being
informal starts already with the use of natural language. In order to support
this “mixed” style, examples and exercises deepen the understanding and rule
out potential misconceptions.

Now, based on the above defined properties of a relation, the usual notions
with respect to orderings are stated below.

Definition 1.4.1 (Orderings). A (partial) ordering ⪰ (or simply ordering) on
a set M , denoted (M,⪰), is a reflexive, antisymmetric, and transitive binary
relation on M . It is a total ordering if it also satisfies the totality property.
A strict (partial) ordering ≻ is a transitive and irreflexive binary relation on
M . A strict ordering is well-founded, if there is no infinite descending chain
m0 ≻ m1 ≻ m2 ≻ . . . where mi ∈M .

Given a strict partial order ≻ on some setM , its respective partial order ⪰ is
constructed by adding the identities (≻ ∪ =). If the partial order ⪰ extension of
some strict partial order ≻ is total, then we call also ≻ total. As an alternative,
a strict partial order ≻ is total if it satisfies the strict totality axiom ∀x, y ∈
M (x ̸= y → (R(x, y)∨R(y, x))). Given some ordering ≻ the respective ordering
≺ is defined by a ≺ b iff b ≻ a.

18 CHAPTER 1. PRELIMINARIES

Example 1.4.2. The well-known relation ≤ on N, where k ≤ l if there is a j
so that k + j = l for k, l, j ∈ N, is a total ordering on the naturals. Its strict
subrelation < is well-founded on the naturals. However, < is not well-founded
on Z.

Definition 1.4.3 (Minimal and Smallest Elements). Given a strict ordering
(M,≻), an element m ∈M is called minimal, if there is no element m′ ∈M so
that m ≻ m′. An element m ∈ M is called smallest, if m′ ≻ m for all m′ ∈ M
different from m.

Note the subtle difference between minimal and smallest. There may be
several minimal elements in a setM but only one smallest element. Furthermore,
in order for an element being smallest in M it needs to be comparable to all
other elements from M .

Example 1.4.4. In N the number 0 is smallest and minimal with respect to <.
For the set M = {q ∈ Q | 5 ≤ q} the ordering < on M is total, has the minimal
and smallest element 5 but is not well-founded.

If < is the ancestor relation on the members of a human family, then <
typically will have several minimal elements, the currently youngest children of
the family, but no smallest element, as long as there is a couple with more than
one child. Furthermore, < is not total, but well-founded.

Well-founded orderings can be combined to more complex well-founded or-
derings by lexicographic or multiset extensions.

Definition 1.4.5 (Lexicographic and Multiset Ordering Extensions). Let
(M1,≻1) and (M2,≻2) be two strict orderings. Their lexicographic combination
≻lex= (≻1,≻2) on M1 ×M2 is defined as (m1,m2) ≻ (m′

1,m
′
2) iff m1 ≻1 m

′
1 or

m1 = m′
1 and m2 ≻2 m

′
2.

Let (M,≻) be a strict ordering. The multiset extension ≻mul to multisets
over M is defined by S1 ≻mul S2 iff S1 ̸= S2 and ∀m ∈ M [S2(m) > S1(m) →
∃m′ ∈M (m′ ≻ m ∧ S1(m

′) > S2(m
′))].

The definition of the lexicographic ordering extensions can be expanded to
n-tuples in the obvious way. So it is also the basis for the standard lexicographic
ordering on words as used, e.g., in dictionaries. In this case theMi are alphabets,
say a-z, where a ≺ b ≺ . . . ≺ z. Then according to the above definition tiger ≺
tree.

Example 1.4.6 (Multiset Ordering). Consider the multiset extension of (N, >).
Then {2} >mul {1, 1, 1} because there is no element in {1, 1, 1} that is larger
than 2. As a border case, {2, 1} >mul {2} because there is no element that has
more occurrences in {2} compared to {2, 1}. The other way round, 1 has more
occurrences in {2, 1} than in {2} and there is no larger element to compensate
for it, so {2} ≯mul {2, 1}.

Proposition 1.4.7 (Properties of Lexicographic and Multiset Ordering Exten-
sions). Let (M,≻), (M1,≻1), and (M2,≻2) be orderings. Then

1.5. INDUCTION 19

1. ≻lex is an ordering on M1 ×M2.

2. if (M1,≻1) and (M2,≻2) are well-founded so is ≻lex.

3. if (M1,≻1) and (M2,≻2) are total so is ≻lex.

4. ≻mul is an ordering on multisets over M .

5. if (M,≻) is well-founded so is ≻mul.

6. if (M,≻) is total so is ≻mul.

Please recall that multisets are finite.

T

The lexicographic ordering on words is not well-founded if words of
arbitrary length are considered. Starting from the standard ordering
on the alphabet, e.g., the following infinite descending sequence can
be constructed: b ≻ ab ≻ aab ≻ It becomes well-founded if it is lexicograph-
ically combined with the length ordering, see Exercise ??.

Lemma 1.4.8 (König’s Lemma). Every finitely branching tree with infinitely
many nodes contains an infinite path.

1.5 Induction

More or less all sets of objects in computer science or logic are defined induc-
tively. Typically, this is done in a bottom-up way, where starting with some
definite set, it is closed under a given set of operations.

Example 1.5.1 (Inductive Sets). In the following, some examples for induc-
tively defined sets are presented:

1. The set of all Sudoku problem states, see Section 1.1, consists of the set of
start states (N ;⊤;⊤) for consistent assignments N plus all states that can
be derived from the start states by the rules Deduce, Conflict, Backtrack,
and Fail. This is a finite set.

2. The set N of the natural numbers, consists of 0 plus all numbers that can
be computed from 0 by adding 1. This is an infinite set.

3. The set of all strings Σ∗ over a finite alphabet Σ. All letters of Σ are
contained in Σ∗ and if u and v are words out of Σ∗ so is the word uv, see
Section 1.2. This is an infinite set.

20 CHAPTER 1. PRELIMINARIES

All the previous examples have in common that there is an underlying well-
founded ordering on the sets induced by the construction. The minimal elements
for the Sudoku are the problem states (N ;⊤;⊤), for the natural numbers it is 0
and for the set of strings it is the empty word. Now in order to prove a property
of an inductive set it is sufficient to prove it (i) for the minimal element(s) and
(ii) assuming the property for an arbitrary set of elements, to prove that it holds
for all elements that can be constructed “in one step” out those elements. This
is the principle of Noetherian Induction.

Theorem 1.5.2 (Noetherian Induction). Let (M,≻) be a well-founded order-
ing, and letQ be a predicate over elements ofM . If for allm ∈M the implication

if Q(m′), for all m′ ∈M so that m ≻ m′, (induction hypothesis)
then Q(m). (induction step)

is satisfied, then the property Q(m) holds for all m ∈M .

Proof. Let X = {m ∈ M | Q(m) does not hold}. Suppose, X ̸= ∅. Since (M,≻
) is well-founded, X has a minimal element m1. Hence for all m′ ∈M with
m′ ≺ m1 the property Q(m′) holds. On the other hand, the implication which
is presupposed for this theorem holds in particular also for m1, hence Q(m1)
must be true so that m1 cannot be in X - a contradiction.

Note that although the above implication sounds like a one step proof tech-
nique it is actually not. There are two cases. The first case concerns all elements
that are minimal with respect to ≺ in M and for those the predicate Q needs
to hold without any further assumption. The second case is then the induction
step showing that by assuming Q for all elements strictly smaller than some m,
Q holds for m.

Now for context free grammars. Let G = (N,T, P, S) be a context-free
grammar (possibly infinite) and let q be a property of T ∗ (the words over the
alphabet T of terminal symbols of G).

q holds for all words w ∈ L(G), whenever one can prove the following two
properties:

1. (base cases)
q(w′) holds for each w′ ∈ T ∗ so that X ::= w′ is a rule in P .

2. (step cases)
If X ::= w0X0w1 . . . wnXnwn+1 is in P with Xi ∈ N , wi ∈ T ∗, n ≥ 0,
then for all w′

i ∈ L(G,Xi), whenever q(w
′
i) holds for 0 ≤ i ≤ n, then also

q(w0w
′
0w1 . . . wnw

′
nwn+1) holds.

Here L(G,Xi) ⊆ T ∗ denotes the language generated by the grammar G from
the non-terminal Xi.

Let G = (N,T, P, S) be an unambiguous (why?) context-free grammar. A
function f is well-defined on L(G) (that is, unambiguously defined) whenever
these 2 properties are satisfied:

1.6. REWRITE SYSTEMS 21

1. (base cases)
f is well-defined on the words w′ ∈ T ∗ for each rule X ::= w′ in P .

2. (step cases)
IfX ::= w0X0w1 . . . wnXnwn+1 is a rule in P then f(w0w

′
0w1 . . . wnw

′
nwn+1)

is well-defined, assuming that each of the f(w′
i) is well-defined.

1.6 Rewrite Systems

The final ingredient to actually start the journey through different logical sys-
tems is rewrite systems. Here I define the needed computer science background
for defining algorithms in the form of rule sets. In Section 1.1 the rewrite rules
Deduce, Conflict, Backtrack, and Fail defined an algorithm for solving 4 × 4
Sudokus. The rules operate on the set of Sudoku problem states, starting with
a set of initial states (N ;⊤;⊤) and finishing either in a solution state (N ;D;⊤)
or a fail state (N ;⊤;⊥). The latter are called normal forms (see below) with
respect to the above rules, because no more rule is applicable to a solution state
(N ;D;⊤) or a fail state (N ;⊤;⊥).

Definition 1.6.1 (Rewrite System). A rewrite system is a pair (M,→), where
M is a non-empty set and → ⊆ M ×M is a binary relation on M . Figure 1.4
defines the needed notions for →.

→0 = { (a, a) | a ∈M } identity
→i+1 = →i ◦→ i+ 1-fold composition
→+ =

⋃
i>0→i transitive closure

→∗ =
⋃
i≥0→i = →+ ∪→0 reflexive transitive closure

→= = →∪→0 reflexive closure
→−1 = { (b, c) | c→ b } inverse
↔ = →∪← symmetric closure
↔+ = (↔)+ transitive symmetric closure
↔∗ = (↔)∗ refl. trans. symmetric closure

Figure 1.4: Notation on →

For a rewrite system (M,→) consider a sequence of elements ai that are
pairwise connected by the symmetric closure, i.e., a1 ↔ a2 ↔ a3 . . . ↔ an.
Then ai is called a peak in such a sequence, if actually ai−1 ← ai → ai+1.

C

Actually, in Definition 1.6.1 I overload the symbol→ that has already
denoted logical implication, see Section 1.4, with a rewrite relation.
This overloading will remain throughout this book. The rule symbol

22 CHAPTER 1. PRELIMINARIES

⇒ is only used on the meta level in this book, e.g., to define the Sudoku al-
gorithm on problem states, Section 1.1. Nevertheless, these meta rule systems
are also rewrite systems in the above sense. The rewrite symbol → is used on
the formula level inside a problem state. This will become clear when I turn to
more complex logics starting from Chapter 2.

Definition 1.6.2 (Reducible). Let (M,→) be a rewrite system. An element
a ∈M is reducible, if there is a b ∈M such that a→ b. An element a ∈M is in
normal form (irreducible), if it is not reducible. An element c ∈ M is a normal
form of b, if b →∗ c and c is in normal form, denoted by c = b↓. Two elements
b and c are joinable, if there is an a so that b→∗ a ∗← c, denoted by b ↓ c.

Traditionally, c = b↓ implies that the normal form of b is unique. However,
when defining logical calculi as abstract rewrite systems on states in subsequent
chapters, sometimes it is useful to write c = b↓ even if c is not unique. In this
case, c is an arbitrary irreducible element obtained from reducing b.

Definition 1.6.3 (Properties of →). A relation → is called

Church-Rosser if b↔∗ c implies b ↓ c
confluent if b ∗← a→∗ c implies b ↓ c
locally confluent if b← a→ c implies b ↓ c
terminating if there is no infinite descending chain b0 → b1 . . .
normalizing if every b ∈ A has a normal form
convergent if it is confluent and terminating

Lemma 1.6.4. If → is terminating, then it is normalizing.

T

The reverse implication of Lemma 1.6.4 does not hold. Assuming this
is a frequent mistake. Consider M = {a, b, c} and the relation a→ b,
b→ a, and b→ c. Then (M,→) is obviously not terminating, because

we can cycle between a and b. However, (M,→) is normalizing. The normal form
is c for all elements of M . Similarly, there are rewrite systems that are locally
confluent, but not confluent, see Figure . In the context of termination the
property holds, see Lemma 1.6.6.

Theorem 1.6.5. The following properties are equivalent for any rewrite system
(M,→):

(i) → has the Church-Rosser property.

(ii) → is confluent.

Proof. (i) ⇒ (ii): trivial.
(ii)⇒ (i): by induction on the number of peaks in the derivation b↔∗ c.

Lemma 1.6.6 (Newman’s Lemma : Confluence versus Local Confluence). Let
(M,→) be a terminating rewrite system. Then the following properties are
equivalent:

(i) → is confluent

1.6. REWRITE SYSTEMS 23

(ii) → is locally confluent

Proof. (i) ⇒ (ii): trivial.
(ii) ⇒ (i): Since → is terminating, it is a well-founded ordering (see Ex-

ercise ??). This justifies a proof by Noetherian induction where the property
Q(a) is “a is confluent”. Applying Noetherian induction, confluence holds for
all a′ ∈M with a→+ a′ and needs to be shown for a. Consider the confluence
property for a: b ∗← a→∗ c. If b = a or c = a the proof is done. For otherwise,
the situation can be expanded to b ∗← b′ ← a→ c′ →∗ c as shown in Figure 1.5.
By local confluence there is an a′ with b′ →∗ a′ ∗← c′. Now b′, c′ are strictly
smaller than a, they are confluent and hence can be rewritten to a single a′′,
finishing the proof (see Figure 1.5).

a

b ′

b

c ′ c

a ′

d a ′′

L.C.

I.H.

I.H.

*

*

*

* **

*

*

Figure 1.5: Proof of (ii) ⇒ (i) of Newman’s Lemma 1.6.6

Lemma 1.6.7. If → is confluent, then every element has at most one normal
form.

Proof. Suppose that some element a ∈ A has normal forms b and c, then b ∗←
a →∗ c. If → is confluent, then b →∗ d ∗← c for some d ∈ A. Since b and c are
normal forms, both derivations must be empty, hence b→0 d 0← c, so b, c, and
d must be identical.

Corollary 1.6.8. If → is normalizing and confluent, then every element b has
a unique normal form.

Proposition 1.6.9. If→ is normalizing and confluent, then b↔∗ c if and only
if b↓ = c↓.

Proof. Either using Theorem 1.6.5 or directly by induction on the length of the
derivation of b↔∗ c.

24 CHAPTER 1. PRELIMINARIES

1.7 Calculi: Rewrite Systems on Logical States

The previous section introduced computational properties of rewrite systems.
There, for a rewrite system (M,→), the elements of M are abstract. In this
section I assume that the elements of M are states including formulas of some
logic. If the elements ofM are actually such states, then a rewrite system (M,→)
is also called a calculus. In this case, in addition to properties like termination
or confluence, properties such as soundness and completeness make sense as
well. Although these properties were already mentioned in Section 1.1 they are
presented here on a more abstract level.

Starting from Chapter 2 I will introduce various logics and calculi for these
logics where the below properties make perfect sense. The Sudoku language
is a (very particular) logic as well. It motivates only partly the below no-
tions, because the boolean structure of a Sudoku formula is very simple. It
is a conjunction N of equations f(x, y) = z (see Section 1.1). Then a Su-
doku formula N is called satisfiable if it can be extended to a formula N ∧N ′

such that all squares are defined exactly once in N ∧ N ′ and N ∧ N ′ rep-
resents a Sudoku solution. In this case the formula N ∧ N ′ is also called a
model of N . In case the Sudoku formula is not satisfiable the actual derivation
(N ;⊤;⊤) ⇒∗ (N ;⊤;⊥) represents a proof of unsatisfiability. For example, the
Sudoku formula f(1, 1) = 1 ∧ f(1, 2) = 2 ∧ f(1, 3) = 3 ∧ f(2, 4) = 4 is unsatisfi-
able. A Sudoku formula N is valid if for any extended formula N ∧N ′ such that
all squares are defined exactly once in N ∧N ′ the formula N ∧N ′ represents a
Sudoku solution. The Sudoku rewrite system investigates satisfiability.

With respect to the above definitions the only valid Sudoku formulas are
actually formulas N where values for all squares are defined in N . For otherwise,
for some undefined square an extension N ′ could just add a value that violates
a Sudoku constraint.

As another example consider solving systems of linear equations over the
rationals, e.g., solving a system like

3x+ 4y = 4
x− y = 6.

One standard method solving such a system is variable elimination. To this
end, first two equations are normalized with respect to one variable, here I
choose y:

y = 1− 3
4x

y = x− 6.

Next the two equations are combined and normalized to an equation for the
remaining variables, here x:

7
4x = 7

1.7. CALCULI: REWRITE SYSTEMS ON LOGICAL STATES 25

eventually yielding the solution x = 4 and y = −2. The below rewrite system
describes the solution process via variable elimination. It operates on a set N
of equations. The rule Eliminate eliminates one variable from two equations via
a combination. The notion

.
= includes the above exemplified normalizations on

the equations, in particular, transforming the equations to isolate a variable,
and transforming it into a unique form for comparison.

Eliminate {x .
= s, x

.
= t} ⊎N ⇒LAE {x

.
= s, x

.
= t, s

.
= t} ∪N

provided s ̸= t, and s
.
= t ̸∈ N

Fail {q1
.
= q2} ⊎N ⇒LAE ∅

provided q1, q2 ∈ Q, q1 ̸= q2

Executing the two rules on the above example with N = {3x+4y = 4, x−y =
6} yields:

N

⇒Eliminate
LAE N ∪ { 74x = 7},
⇒Eliminate

LAE N ∪ {x = 4, y = −2},

where Eliminate is first applied to y and then to x. Now no more rule is
applicable. The rewrite system terminates.

In general, it is confluent, because no equations are eliminated from N except
for rule Fail that immediately produces a normal form. The rules are sound,
because variable elimination is sound and Fail is sound. Any solution after the
application of a rule also solves the equations before the application of a rule.
The LEA system only terminates in combination with a variable elimination
strategy. There is an ordering on the variables and all variables are eliminated
one after the other exhaustively with respect to the ordering.

So, if the initial system of equations has a solution, the rules will identify the
solution. Once the rule set terminates, either N = ∅ and there is no solution,
or a solution is present in the final N . If the original system of equations is
not under-determined, N contains an equation x = q for each variable x where
q ∈ Q.

The LAE system is complete, because variable elimination does not rule out
any solutions. In general, this can be shown by ensuring that any solution before
the application of a rule solves also the equations after application of a rule.

For the system two normalized forms are needed. For the application of
Eliminate the two equations are transformed such that the selected variable is
isolated. For comparison, the equations are transformed in unique normal form,
e.g., in a form a1x1 + . . .+ anxn = q where ai, q ∈ Q.

The LAE rewrite system can be further improved by adding a subsumption
rule removing redundant equations. For example, the rule

Subsume {s .
= t, s′

.
= t′} ⊎N ⇒LAES {s

.
= t} ∪N

26 CHAPTER 1. PRELIMINARIES

provided s
.
= t and qs′

.
= qt′ are identical for some q ∈ Q

Delete {x .
= c, x

.
= t′} ⊎N ⇒LAES {x

.
= c, c

.
= t′} ∪N

c ∈ Q

deletes an equation if it is a variant of an existing one that can be obtained
by multiplication with a constant. Obviously, adding this rule improves the
performance of the rewrite system, but now it is no longer obvious that the
rewrite system consisting of the rules Eliminate, Subsume, and Fail is confluent,
sound, terminating, and complete.

In general, a calculus consists of inference and reduction rewrite rules. While
inference rules add formulas of the logic to a state, reduction rules remove
formulas from a state or replace formulas by simpler ones.

A calculus or rewrite system on some state can be sound, complete, strongly
complete, refutationally complete or terminating. Terminating means that it
terminates on any input state, see the previous section. Now depending on
whether the calculus investigates validity (unsatisfiability) or satisfiability of
the formulas contained in the state the aforementioned notions have (slightly)
different meanings.

Validity Satisfiability

Sound If the calculus derives a
proof of validity for the
formula, it is valid.

If the calculus derives sat-
isfiability of the formula, it
has a model.

Complete If the formula is valid, a
proof of validity is deriv-
able by the calculus.

If the formula has a model,
the calculus derives satis-
fiability.

Strongly
Complete

For any validity proof of
the formula, there is a
derivation in the calculus
producing this proof.

For any model of the for-
mula, there is a derivation
in the calculus producing
this model.

There are some assumptions underlying these informal definitions. First, the
calculus actually produces a proof in case of investigating validity, and in case of
investigating satisfiability it produces a model. This in fact requires the specific
notion of a proof and a model. Then soundness means in both cases that the
calculus has no bugs. The results it produces are correct. Completeness means
that if there is a proof (model) for a formula, the calculus could eventually
find it. Strong completeness requires in addition that any proof (model) can
be found by the calculus. A variant of a complete calculus is a refutationally
complete calculus: a calculus is refutationally complete, if for any unsatisfiable
formula it derives a proof of contradiction. Many automated theorem procedures
like resolution (see Section 2.6), or tableaux (see Section 2.4) are actually only
refutationally complete.

