
220 CHAPTER 4. EQUATIONAL LOGIC

Corollary 4.1.6 (Convergence of E). If a set of equations E is convergent then
s ≈E t if and only if s↔∗ t if and only if s ↓E= t ↓E .

Corollary 4.1.7 (Decidability of ≈E). If a set of equations E is finite and
convergent then ≈E is decidable.

The above Lemma 4.1.5 shows equivalence of the syntactically defined re-
lations ↔∗

E and ⇒∗
E . What is missing, in analogy to Herbrand’s theorem for

first-order logic without equality Theorem 3.5.5, is a semantic characterization
of the relations by a particular algebra.

Definition 4.1.8 (Quotient Algebra). For sets of unit equations this is a
quotient algebra: Let X be a set of variables. For t ∈ T (Σ,X) let [t] =
{t′ ∈ T (Σ,X)) | E ⇒∗

E t ≈ t′} be the congruence class of t. Define a
Σ-algebra IE , called the quotient algebra, technically T (Σ,X)/E, as follows:
SIE = {[t] | t ∈ TS(Σ,X)} for all sorts S and fIE ([t1], . . . , [tn]) = [f(t1, . . . , tn)]
for f : sort(t1)× . . .× sort(tn)→ T ∈ Ω for some sort T .

Lemma 4.1.9 (IE is an E-algebra). IE = T (Σ,X)/E is an E-algebra.

Proof. Firstly, all functions fIE are well-defined: if [ti] = [t′i], then
[f(t1, . . . , tn)] = [f(t′1, . . . , t

′
n)]. This follows directly from the Congruence rule

for ⇒∗.
Secondly, let ∀x1 . . . xn(s ≈ t) be an equation in E. Let β be an arbitrary

assignment. It has to be shown that IE(β)(∀x⃗(s ≈ t)) = 1, or equivalently, that
IE(γ)(s) = IE(γ)(t) for all γ = β[xi 7→ [ti] | 1 ≤ i ≤ n] with [ti] ∈ sort(xi)

IE .
Let σ = {x1 7→ t1, . . . , xn 7→ tn}, with ti ∈ Tsort(xi)(Σ,X), then sσ ∈ IE(γ)(s)
and tσ ∈ IE(γ)(t). By the Instance rule, E ⇒∗ sσ ≈ tσ is derivable, hence
IE(γ)(s) = [sσ] = [tσ] = IE(γ)(t).

Lemma 4.1.10 (⇒E is complete). Let X be a countably infinite set of variables;
let s, t ∈ TS(Σ,X). If IE |= ∀x⃗(s ≈ t), then E ⇒∗

E s ≈ t is derivable.

Proof. Assume that IE |= ∀x⃗(s ≈ t), i.e., IE(β)(∀x⃗(s ≈ t)) = 1. Consequently,
IE(γ)(s) = IE(γ)(t) for all γ = β[xi 7→ [ti] | 1 ≤ i ≤ n] with [ti] ∈ sort(xi)

IE .
Choose ti = xi, then [s] = IE(γ)(s) = IE(γ)(t) = [t], so E ⇒∗ s ≈ t is derivable
by definition of IE .

Theorem 4.1.11 (Birkhoff’s Theorem). Let X be a countably infinite set of
variables, let E be a set of (universally quantified) equations. Then the following
properties are equivalent for all s, t ∈ TS(Σ,X):

1. s↔∗
E t.

2. E ⇒∗
E s ≈ t is derivable.

3. s ≈E t, i.e., E |= ∀x⃗(s ≈ t).

4. IE |= ∀x⃗(s ≈ t).

4.2. CRITICAL PAIRS 221

Proof. (1.)⇔(2.): Lemma 4.1.5.
(2.)⇒(3.): By induction on the size of the derivation for E ⇒∗ s ≈ t.
(3.)⇒(4.): Obvious, since IE = T (Σ,X)/E is an E-algebra.
(4.)⇒(2.): Lemma 4.1.10.

Universal Algebra
T (Σ,X)/E = T (Σ,X)/≈E = T (Σ,X)/↔∗

E is called the free E-algebra with
generating set X/≈E = {[x] | x ∈ X}: Every mapping ϕ : X/≈E → B for some

E-algebra B can be extended to a homomorphism ϕ̂ : T (Σ,X)/E → B.
T (Σ, ∅)/E = T (Σ, ∅)/≈E = T (Σ, ∅)/↔∗

E is called the initial E-algebra.
≈E = {(s, t) | E |= s ≈ t} is called the equational theory of E.
≈IE = {(s, t) | T (Σ, ∅)/E |= s ≈ t} is called the inductive theory of E.

Example 4.1.12. Let E = {∀x(x+ 0 ≈ x), ∀x∀y(x+ s(y) ≈ s(x+ y))}. Then
x+ y ≈IE y + x, but x+ y ̸≈E y + x.

4.2 Critical Pairs

By Theorem 4.1.11 the semantics of E and ↔∗
E coincide. In order to decide

↔∗
E we need to turn →∗

E in a confluent and terminating relation. If ↔∗
E is

terminating then confluence is equivalent to local confluence, see Newman’s
Lemma, Lemma 1.6.6. Local confluence is the following problem for TRS: if
t1 E← t0 →E t2, does there exist a term s so that t1 →∗

E s ∗
E← t2? If the two

rewrite steps happen in different subtrees (disjoint redexes) then a repetition
of the respective other step yields the common term s. If the two rewrite steps
happen below each other (overlap at or below a variable position) again a rep-
etition of the respective other step yields the common term s. If the left-hand
sides of the two rules overlap at a non-variable position there is no obvious way
to generate s.

More technically two rewrite rules l1 → r1 and l2 → r2 overlap if there exist
some non-variable subterm l1|p such that l2 and l1|p have a common instance
(l1|p)σ1 = l2σ2. If the two rewrite rules do not have common variables, then
only a single substitution is necessary, the mgu σ of (l1|p) and l2.

Definition 4.2.1 (Critical Pair). Let li → ri (i = 1, 2) be two rewrite rules in
a TRS R without common variables, i.e., vars(l1)∩vars(l2) = ∅. Let p ∈ pos(l1)
be a position so that l1|p is not a variable and σ is an mgu of l1|p and l2. Then
r1σ ← l1σ → (l1σ)[r2σ]p. ⟨r1σ, (l1σ)[r2σ]p⟩ is called a critical pair of R. The
critical pair is joinable (or: converges), if r1σ ↓R (l1σ)[r2σ]p.

Recall that vars(li) ⊇ vars(ri) for the two rewrite rules by Definition 4.1.1.
Furthermore, the definition of the rule includes overalaps of a rule with itself.
Such overlaps on top-level are always joinable.

222 CHAPTER 4. EQUATIONAL LOGIC

Theorem 4.2.2 (“Critical Pair Theorem”). A TRS R is locally confluent iff
all its critical pairs are joinable.

Proof. (⇒) Obvious, since joinability of a critical pair is a special case of local
confluence.

(⇐) Suppose s rewrites to t1 and t2 using rewrite rules li → ri ∈ R at positions
pi ∈ pos(s), where i = 1, 2. The two rules are variable disjoint, hence s|pi = liσ
and ti = s[riσ]pi . There are two cases to be considered:

1. Either p1 and p2 are in disjoint subtrees (p1 || p2) or

2. one is a prefix of the other (w.l.o.g., p1 ≤ p2).

Case 1: p1 || p2. Then s = s[l1σ]p1 [l2σ]p2 , and therefore t1 = s[r1σ]p1 [l2σ]p2
and t2 = s[l1σ]p1 [r2σ]p2 . Let t0 = s[r1σ]p1 [r2σ]p2 . Then clearly t1 →R t0 using
l2 → r2 and t2 →R t0 using l1 → r1.
Case 2: p1 ≤ p2.
Case 2.1: p2 = p1q1q2, where l1|q1 is some variable x. In other words, the second
rewrite step takes place at or below a variable in the first rule. Suppose that x
occurs m times in l1 and n times in r1 (where m ≥ 1 and n ≥ 0). Then t1 →∗

R t0
by applying l2 → r2 at all positions p1q

′q2, where q
′ is a position of x in r1.

Conversely, t2 →∗
R t0 by applying l2 → r2 at all positions p1qq2, where q is a

position of x in l1 different from q1, and by applying l1 → r1 at p1 with the
substitution σ′, where σ′ = σ[x 7→ (xσ)[r2σ]q2].
Case 2.2: p2 = p1p, where p is a non-variable position of l1. Then s|p2 = l2σ
and s|p2 = (s|p1)|p = (l1σ)|p = (l1|p)σ, so σ is a unifier of l2 and l1|p.Let σ′ be
the mgu of l2 and l1|p, then σ = τ ◦ σ′ and ⟨r1σ′, (l1σ

′)[r2σ
′]p⟩ is a critical pair.

By assumption, it is joinable, so r1σ
′ →∗

R v ←∗
R (l1σ

′)[r2σ
′]p. Consequently,

t1 = s[r1σ]p1 = s[r1σ
′τ]p1 →∗

R s[vτ]p1 and t2 = s[r2σ]p2 = s[(l1σ)[r2σ]p]p1 =
s[(l1σ

′τ)[r2σ
′τ]p]p1 = s[((l1σ

′)[r2σ
′]p)τ]p1 →∗

R s[vτ]p1 .

Please note that critical pairs between a rule and (a renamed variant of)
itself must be considered, except if the overlap is at the root, i.e., p = ϵ, because
this critical pair always joins.

Corollary 4.2.3. A terminating TRS R is confluent if and only if all its critical
pairs are joinable.

Proof. By the Theorem 4.2.2 and because every locally confluent and terminat-
ing relation → is confluent, Newman’s Lemma, Lemma 1.6.6.

Corollary 4.2.4. For a finite terminating TRS, confluence is decidable.

Proof. For every pair of rules and every non-variable position in the first rule
there is at most one critical pair ⟨u1, u2⟩. Reduce every ui to some normal form
u′i. If u

′
1 = u′2 for every critical pair, then R is confluent, otherwise there is some

non-confluent situation u′1
∗
R← u1 ←R s→R u2 →∗

R u
′
2.

4.3. TERMINATION 223

4.3 Termination

Termination problems: Given a finite TRS R and a term t, are all R-reductions
starting from t terminating? Given a finite TRS R, are all R-reductions termi-
nating?

Proposition 4.3.1. Both termination problems for TRSs are undecidable in
general.

Proof. Encode Turing machines (TM) using rewrite rules and reduce the (uni-
form) halting problems for TMs to the termination problems for TRSs.

Consequence: Decidable criteria for termination are not complete.
Two Different Scenarios

Depending on the application, the TRS whose termination has to be shown
can be

1. fixed and known in advance, or

2. evolving (e.g., generated by some saturation process).

Methods for case 2. are also usable for case 1.. Many methods for case 1. are
not usable for case 2..

First consider case 2., additional techniques for case 1. will be considered
later.
Reduction Orderings

Goal: Given a finite TRS R, show termination of R by looking at finitely
many rules l→ r ∈ R, rather than at infinitely many possible replacement steps
s→R s

′.
A binary relation ⊐ over T (Σ,X) is called compatible with Σ-operations,

if s ⊐ s′ implies f(t1, . . . , s, . . . , tn) ⊐ f(t1, . . . , s
′, . . . , tn) for all f ∈ Ω and

s, s′, ti ∈ T (Σ,X).

Lemma 4.3.2. The relation ⊐ is compatible with Σ-operations, if and only if
s ⊐ s′ implies t[s]p ⊐ t[s′]p for all s, s′, t ∈ T (Σ,X) and p ∈ pos(t).

Note: compatible with Σ-operations = compatible with contexts.
A binary relation ⊐ over T (Σ,X) is called stable under substitutions, if s ⊐ s′

implies sσ ⊐ s′σ for all s, s′ ∈ T (Σ,X) and substitutions σ. A binary relation
⊐ is called a rewrite relation, if it is compatible with Σ-operations and stable
under substitutions.

Example 4.3.3. If R is a TRS, then →R is a rewrite relation.

A strict partial ordering over T (Σ,X) that is a rewrite relation is called
rewrite ordering. A well-founded rewrite ordering is called reduction ordering.

Theorem 4.3.4. A TRS R terminates if and only if there exists a reduction
ordering ≻ so that l ≻ r for every rule l→ r ∈ R.

224 CHAPTER 4. EQUATIONAL LOGIC

Proof. (⇒): s→R s
′ if and only if s = t[lσ]p, s

′ = t[rσ]p. If l ≻ r, then lσ ≻ rσ
and therefore t[lσ]p ≻ t[rσ]p. This implies →R ⊆ ≻. Since ≻ is a well-founded
ordering, →R is terminating.

(⇐): Define ≻ =→+
R. If→R is terminating, then ≻ is a reduction ordering.

The Interpretation Method
Proving termination by interpretation: Let A be a Σ-algebra; let ≻ be a

well-founded strict partial ordering on its universe. Define the ordering ≻A over
T (Σ,X) by s ≻A t iff A(β)(s) ≻ A(β)(t) for all assignments β : X → UA. Is
≻A a reduction ordering?

Lemma 4.3.5. ≻A is stable under substitutions.

Proof. Let s ≻A s′, that is, A(β)(s) ≻ A(β)(s′) for all assignments β : X → UA.
Let σ be a substitution. It has to be shown that A(γ)(sσ) ≻ A(γ)(s′σ) for all
assignments γ : X → UA. Choose β = γ ◦ σ, then by the substitution lemma,
A(γ)(sσ) = A(β)(s) ≻ A(β)(s′) = A(γ)(s′σ). Therefore sσ ≻A s′σ.

A function f : UnA → UA is called monotone with respect to ≻, if a ≻ a′

implies f(b1, . . . , a, . . . , bn) ≻ f(b1, . . . , a′, . . . , bn) for all a, a′, bi ∈ UA.

Lemma 4.3.6. If the interpretation fA of every function symbol f is monotone
w.r.t. ≻, then ≻A is compatible with Σ-operations.

Proof. Let s ≻ s′, that is, A(β)(s) ≻ A(β)(s′) for all β : X → UA. Let β : X →
UA be an arbitrary assignment. Then

A(β)(f(t1, . . . , s, . . . , tn)) = fA(A(β)(t1), . . . ,A(β)(s), . . . ,A(β)(tn))
≻ fA(A(β)(t1), . . . ,A(β)(s′), . . . ,A(β)(tn))
= A(β)(f(t1, . . . , s′, . . . , tn))

Therefore f(t1, . . . , s, . . . , tn) ≻A f(t1, . . . , s
′, . . . , tn).

Theorem 4.3.7. If the interpretation fA of every function symbol f is mono-
tone w.r.t. ≻, then ≻A is a reduction ordering.

Proof. By the previous two lemmas, ≻A is a rewrite relation. If there were
an infinite chain s1 ≻A s2 ≻A . . . , then it would correspond to an infinite
chain A(β)(s1) ≻ A(β)(s2) ≻ . . . (with β chosen arbitrarily). Thus ≻A is well-
founded. Irreflexivity and transitivity are proved similarly.

Polynomial Orderings
Polynomial orderings:

1. Instance of the interpretation method

2. The carrier set UA is N or some subset of N.

3. To every function symbol f with arity n a polynomial Pf (X1, . . . , Xn) ∈
N[X1, . . . , Xn] with coefficients in N is associated and indeterminates
X1, . . . , Xn. Then define fA(a1, . . . , an) = Pf (a1, . . . , an) for ai ∈ UA.

4.3. TERMINATION 225

Requirement 1: If a1, . . . , an ∈ UA, then fA(a1, . . . , an) ∈ UA. (Otherwise,
A would not be a Σ-algebra.)

Requirement 2: fA must be monotone (w.r.t.≻).
From now on:

1. UA = {n ∈ N | n ≥ 1}.

2. If arity(f) = 0, then Pf is a constant ≥ 1.

3. If arity(f) = n ≥ 1, then Pf is a polynomial P (X1, . . . , Xn), so that
every Xi occurs in some monomial with exponent at least 1 and non-zero
coefficient. ⇒ Requirements 1 and 2 are satisfied.

The mapping from function symbols to polynomials can be extended to
terms: A term t containing the variables x1, . . . , xn yields a polynomial Pt with
indeterminates X1, . . . , Xn (where Xi corresponds to β(xi)).

Example 4.3.8. Let Ω = {b/0, f/1, g/3}, Pb = 3, Pf (X1) = X2
1 , Pg(X1, X2, X3) =

X1 +X2X3 and t = g(f(b), f(x), y), then Pt(X,Y) = 9 +X2Y .

If P,Q are polynomials in N[X1, . . . , Xn], P > Q is written if P (a1, . . . , an) >
Q(a1, . . . , an) for all a1, . . . , an ∈ UA. Clearly, l ≻A r iff Pl > Pr iff Pl−Pr > 0.
The question is whether Pl − Pr > 0 can be checked automatically?

Hilbert’s 10th Problem: Given a polynomial P ∈ Z[X1, . . . , Xn] with integer
coefficients, is P = 0 for some n-tuple of natural numbers?

Theorem 4.3.9. Hilbert’s 10th Problem is undecidable.

Proposition 4.3.10. Given a polynomial interpretation and two terms l, r, it
is undecidable whether Pl > Pr.

Proof. By reduction of Hilbert’s 10th Problem.

One easy case: If restricted to linear polynomials, deciding whether Pl−Pr >
0 is trivial:

∑
kiai + k > 0 for all a1, . . . , an ≥ 1 if and only if ki ≥ 0 for all

i ∈ {1, . . . , n} and
∑
ki + k > 0.

Another possible solution: Test whether Pl(a1, . . . , an) > Pr(a1, . . . , an) for
all a1, . . . , an ∈ {x ∈ R | x ≥ 1}. This is decidable (but hard). Since UA ⊆ {x ∈
R | x ≥ 1} this implies Pl > Pr.

Alternatively: Use fast overapproximations.
Simplification Orderings

The proper subterm ordering ▷ is defined by s ▷ t if and only if s|p = t for
some position p ̸= ϵ of s.

A rewrite ordering ≻ over T (Σ,X) is called simplification ordering if it has
the subterm property: s▷ t implies s ≻ t for all s, t ∈ T (Σ,X).

Example 4.3.11. Let Remb be the rewrite system Remb = { f(x1, . . . , xn) →
xi | f ∈ Ω, 1 ≤ i ≤ n = f/n}. Define ▷emb = →+

Remb
and ⊵ = →∗

Remb

(“homeomorphic embedding relation”) and ▷emb is a simplification ordering.

226 CHAPTER 4. EQUATIONAL LOGIC

Lemma 4.3.12. If ≻ is a simplification ordering then s ▷emb t implies s ≻ t
and s⊵ t implies s ⪰ t.

Proof. Since ≻ is transitive and ⪰ is transitive and reflexive, it suffices to show
that s →Remb

t implies s ≻ t. By definition, s →Remb
t if and only if s = s[lσ]

and t = s[rσ] for some rule l→ r ∈ Remb. Obviously, l▷ r for all rules in Remb,
hence l ≻ r. Since ≻ is a rewrite relation, s = s[lσ] ≻ s[rσ] = t.

Goal: Show that every simplification ordering is well-founded (and therefore
a reduction ordering). Note: This works only for finite signatures! To fix this for
infinite signatures, the definition of simplification orderings and the definition
of embedding have to be modified.

Theorem 4.3.13 (“Kruskal’s Theorem”). Let Σ be a finite signature, let X be
a finite set of variables. Then for every infinite sequence t1, t2, t3, . . . there are
indexes j > i so that tj ⊵emb ti. (⊵emb is called a well-partial-ordering (wpo).)

Proof. The proof can be found in the book of Baader and Nipkow [7] pages
113–115.

Theorem 4.3.14 (Dershowitz). If Σ is a finite signature, then every simplifica-
tion ordering ≻ on T (Σ,X) is well-founded (and therefore a reduction ordering).

Proof. Suppose that t1 ≻ t2 ≻ t3 ≻ . . . is an infinite descending chain. First
assume that there is an x ∈ vars(ti+1) \ vars(ti). Let σ = {x 7→ ti}, then
ti+1σ ⊵ xσ = ti and therefore ti = tiσ ≻ ti+1σ ⪰ ti, contradicting reflexivity.

Consequently, vars(ti) ⊇ vars(ti+1) and ti ∈ T (Σ,V) for all i, where V is
the finite set vars(t1). By Kruskal’s Theorem, there are i < j with ti ⊴emb tj .
Hence ti ⪯ tj , contradicting ti ≻ tj .

There are reduction orderings that are not simplification orderings and ter-
minating TRSs that are not contained in any simplification ordering.

Example 4.3.15.

Let R = {f(f(x)) → f(g(f(x)))}. R terminates and →+
R is therefore a

reduction ordering. Assume that →R was contained in a simplification or-
dering ≻. Then f(f(x)) →R f(g(f(x))) implies f(f(x)) ≻ f(g(f(x))), and
f(g(f(x)))⊵embf(f(x)) implies f(g(f(x))) ⪰ f(f(x)), hence f(f(x)) ≻ f(f(x)).

4.4 Knuth-Bendix Completion (KBC)

Given a set E of equations, the goal of Knuth-Bendix completion is to transform
E into an equivalent convergent set R of rewrite rules. If R is finite this yields a
decision procedure for E. For ensuring termination the calculus fixes a reduction
ordering ≻ and constructs R in such a way that →R ⊆ ≻, i.e., l ≻ r for every

4.4. KNUTH-BENDIX COMPLETION (KBC) 227

l→ r ∈ R. For ensuring confluence the calculus checks whether all critical pairs
are joinable.

The completion procedure itself is presented as a set of abstract rewrite
rules working on a pair of equations E and rules R: (E0;R0) ⇒KBC (E1;R1)
⇒KBC (E2;R2) ⇒KBC The initial state is (E0, ∅) where E = E0 contains
the input equations. If ⇒KBC successfully terminates then E is empty and R is
the convergent rewrite system for E0. For each step (E;R) ⇒KBC (E′;R′) the
equational theories of E ∪ R and E′ ∪ R′ agree: ≈E∪R = ≈E′∪R′ . By cp(R) I
denote the set of critical pairs between rules in R.

Orient (E ⊎ {s
.
≈ t};R) ⇒KBC (E;R ∪ {s→ t})

if s ≻ t

Delete (E ⊎ {s ≈ s};R) ⇒KBC (E;R)

Deduce (E;R) ⇒KBC (E ∪ {s ≈ t};R)
if ⟨s, t⟩ ∈ cp(R)

Simplify-Eq (E ⊎ {s
.
≈ t};R) ⇒KBC (E ∪ {u ≈ t};R)

if s→R u

R-Simplify-Rule (E;R ⊎ {s→ t}) ⇒KBC (E;R ∪ {s→ u})
if t→R u

L-Simplify-Rule (E;R ⊎ {s→ t}) ⇒KBC (E ∪ {u ≈ t};R)
if s→R u using a rule l→ r ∈ R so that s ⊐ l, see below.

Trivial equations cannot be oriented and since they are not needed they can
be deleted by the Delete rule. The rule Deduce turns critical pairs between rules
in R into additional equations. Note that if ⟨s, t⟩ ∈ cp(R) then sR ←u →R t
and hence R |= s ≈ t. The simplification rules are not needed but serve as
reduction rules, removing redundancy from the state. Simplification of the left-
hand side may influence orientability and orientation of the result. Therefore, it
yields an equation. For technical reasons, the left-hand side of s → t may only
be simplified using a rule l→ r, if l→ r cannot be simplified using s→ t, that
is, if s ⊐ l, where the encompassment quasi-ordering ⊐∼ is defined by s ⊐∼ l if

s|p = lσ for some p and σ and ⊐ = ⊐∼ \⊏∼ is the strict part of ⊐∼.

Lemma 4.4.1. ⊐ is a well-founded strict partial ordering.

Lemma 4.4.2. If (E;R)⇒KBC (E′;R′), then ≈E∪R = ≈E′∪R′ .

Lemma 4.4.3. If (E;R)⇒KBC (E′;R′) and →R ⊆ ≻, then →R′ ⊆ ≻.

Proposition 4.4.4 (Knuth-Bendix Completion Correctness). If the completion
procedure on a set of equations E is run, different things can happen:

228 CHAPTER 4. EQUATIONAL LOGIC

1. A state where no more inference rules are applicable is reached and E is
not empty. ⇒ Failure (try again with another ordering?)

2. A state where E is empty is reached and all critical pairs between the
rules in the current R have been checked.

3. The procedure runs forever.

In order to treat these cases simultaneously some definitions are needed:

Definition 4.4.5 (Run). A (finite or infinite) sequence (E0;R0) ⇒KBC

(E1;R1) ⇒KBC (E2;R2) ⇒KBC . . . with R0 = ∅ is called a run of the
completion procedure with input E0 and ≻. For a run, E∞ =

⋃
i≥0Ei and

R∞ =
⋃
i≥0Ri.

Definition 4.4.6 (Persistent Equations). The sets of persistent equations of
rules of the run are E∗ =

⋃
i≥0

⋂
j≥iEj and R∗ =

⋃
i≥0

⋂
j≥iRj .

Note: If the run is finite and ends with En, Rn then E∗ = En and R∗ = Rn.

Definition 4.4.7 (Fair Run). A run is called fair if CP(R∗) ⊆ E∞ (i.e., if every
critical pair between persisting rules is computed at some step of the derivation).

Goal: Show: If a run is fair and E∗ is empty then R∗ is convergent and
equivalent to E0. In particular: If a run is fair and E∗ is empty then ≈E0 =
≈E∞∪R∞ =↔∗

E∞∪R∞
= ↓R∗ .

From now on, (E0;R0)⇒KBC (E1;R1)⇒KBC (E2;R2)⇒KBC . . . is a fair
run and R0 and E∗ are empty.

A proof of s ≈ t in E∞ ∪ R∞ is a finite sequence (s0, . . . , sn) so that s =
s0, t = sn and for all i ∈ {1, . . . , n} it holds:

1. si−1 ↔E∞ si or

2. si−1 →R∞ si or

3. si−1 R∞
← si.

The pairs (si−1, si) are called proof steps. A proof is called a rewrite proof in
R∗ if there is a k ∈ {0, . . . , n} so that si−1 →R∗ si for 1 ≤ i ≤ k and si−1 R∗

← si
for k + 1 ≤ i ≤ n.

Idea (Bachmair, Derschowitz, Hsiang): Define a well-founded ordering on
proofs so that for every proof that is not a rewrite proof in R∗ there is an
equivalent smaller proof. Consequence: For every proof there is an equivalent
rewrite proof in R∗. A cost c(si−1, si) is associated with every proof step as
follows:

1. If si−1 ↔E∞ si then c(si−1, si) = ({si−1, si},−,−) where the first compo-
nent is a multiset of terms and − denotes an arbitrary (irrelevant) term.

2. If si−1 →R∞ si using l→ r then c(si−1, si) = ({si−1}, l, si).

4.4. KNUTH-BENDIX COMPLETION (KBC) 229

3. If si−1 R∞
← si using l→ r then c(si−1, si) = ({si}, l, si−1).

Proof steps are compared using the lexicographical combination of the multiset
extension of the reduction ordering ≻, the encompassment ordering ⊐ and the
reduction ordering ≻. The cost c(P) of a proof P is the multiset of the cost of
its proof steps. The proof ordering ≻C compares the cost of proofs using the
multiset extension of the proof step ordering.

Lemma 4.4.8. ≻C is well-founded ordering.

Lemma 4.4.9. Let P be a proof in E∞ ∪R∞. If P is not a rewrite proof in R∗
then there exists an equivalent proof P ′ in E∞ ∪R∞ so that P ≻C P ′.

Proof. If P is not a rewrite proof in R∗ then it contains

1. a proof step that is in E∞ or

2. a proof step that is in R∞\R∗ or

3. a subproof si−1 R∗
← si → si+1 (peak).

It is shown that in all three cases the proof step or subproof can be replaced by
a smaller subproof:
Case 1.: A proof step using an equation s

.
≈ t is in E∞. This equation must be

deleted during the run.

If s
.
≈ t is deleted using Orient :

. . . si−1 ↔E∞ si . . . =⇒ . . . si−1 →R∞ si . . .

If s
.
≈ t is deleted using Delete:

. . . si−1 ↔E∞ si−1 . . . =⇒ . . . si−1 . . .

If s
.
≈ t is deleted using Simplify-Eq :

. . . si−1 ↔E∞ si . . . =⇒ . . . si−1 →R∞ s′ ↔E∞ si . . .

Case 2.: A proof step using a rule s→ t is in R∞\R∗. This rule must be deleted
during the run.

If s→ t is deleted using R-Simplify-Rule:

. . . si−1 →R∞ si . . . =⇒ . . . si−1 →R∞ s′ R∞
← si . . .

If s→ t is deleted using L-Simplify-Rule:

. . . si−1 →R∞ si . . . =⇒ . . . si−1 →R∞ s′ ↔E∞ si . . .

Case 3.: A subproof has the form si−1 R∗
← si →R∗ si+1.

230 CHAPTER 4. EQUATIONAL LOGIC

If there is no overlap or a non-critical overlap:

. . . si−1 R∗
← si →R∗ si+1 . . . =⇒ . . . si−1 →∗

R∗
s′ ∗

R∗
← si+1 . . .

If there is a critical pair that has been added using Deduce:

. . . si−1 R∗
← si →R∗ si+1 . . . =⇒ . . . si−1 ↔E∞ si+1 . . .

In all cases, checking that the replacement subproof is smaller than the
replaced subproof is routine.

Theorem 4.4.10 (KBC Soundness). Let (E0;R0) ⇒KBC (E1;R1) ⇒KBC

(E2;R2)⇒KBC . . . be a fair run and let R0 and E∗ be empty. Then

1. every proof in E∞ ∪R∞ is equivalent to a rewrite proof in R∗,

2. R∗ is equivalent to E0 and

3. R∗ is convergent.

Proof. 1. By well-founded induction on ≻C using the previous lemma.

2. Clearly, ≈E∞∪R∞ = ≈E0
. Since R∗ ⊆ R∞ this yields ≈R∗ ⊆ ≈E∞∪R∞ .

On the other hand, by 1. it holds that ≈E∞∪R∞ ⊆ ≈R∗ .

3. Since →R∗ ⊆ ≻, R∗ is terminating. By 1. it holds that R∗ is confluent.

Now using the proof of Theorem 3.15.2 termination of⇒KBC is undecidable.

Corollary 4.4.11 (KBC Termination). Termination of ⇒KBC is undecidable
for some given finite set of equations E.

Proof. Using exactly the construction of Theorem 3.15.2 it remains to be shown
that all computed critical pairs can be oriented. Critical pairs correspond-
ing to the search for a PCP solution result in equations fR(u(x), v(y)) ≈
fR(u

′(x), v′(y)) or fR(u
′(x), v′(x)) ≈ c. By chosing an appropriate ordering,

all these equations can be oriented. Thus ⇒KBC does not produce any unori-
entable equations. The rest follows from Theorem 3.15.2.

4.4.1 Unfailing Completion

Classical completion: Try to transform a set E of equations into an equivalent
convergent TRS. Fail, if an equation can neither be oriented nor deleted.

Unfailing completion (from Bachmair, Derschowitz and Plaisted [8]): If an
equation cannot be oriented, orientable instances can still be used for rewriting.
Note: If ≻ is total on ground terms, then every ground instance of an equation
is trivial or can be oriented. The goal is to derive a ground convergent set of
equations.

