
300 CHAPTER 8. FIRST-ORDER LOGIC MODULO THEORIES

8.2 Syntax and Semantics

Similar to the Nelson-Oppen theory combination, Section 7.1, the starting point
are two theories over two disjoint signatures. However, in first-order logic modulo
theories there are universally quantified variables.

As usual in the superposition context I consider equality as the only pred-
icate. Nevertheless, for convenience, I write x ≥ 1 ∨ P (x) ∨ ¬N(x) ∨ f(x) ≈ x
instead of x ≥ 1 ∨ fP (x) ≈ true∨fN (x) ̸≈ true∨f(x) ≈ x.

Definition 8.2.1 (Hierarchic Theory and Specification). Let T B = (ΣB , CB)
be a many-sorted theory, called the background theory and ΣB the background
signature. Let ΣF be a many sorted signature with ΩB∩ΩF = ∅, SB ⊂ SF , called
the foreground signature or free signature. Let ΣH = (SB ∪SF ,ΩB ∪ΩF) be the
union signature and N be a set of clauses over ΣH , and T H = (ΣH , N) called
a hierarchic theory. A pair H = (T H , T B) is called a hierarchic specification.

For the rest I assume a hierarchic specification H = (T H , T B). I abbreviate
|=T B ϕ (|=T H ϕ) with |=B ϕ (|=H ϕ), meaning that ϕ is valid in the respective
theory, see Definition 3.17.1. Terms, atoms, literals build over ΣB are called
pure background terms, pure background atoms, and pure background literals,
respectively. Non-variable terms, atoms, literals build over ΣF are called free
terms, free atoms, free literals. A variable of sort S ∈ (SF \ SB) is also called a
free variable and a free term. Any term of some sort S ∈ SB built out of ΣH is
called a background term. A substitution σ is called simple if xSσ ∈ TS(ΣB ,X)
for all S ∈ SB .

Example 8.2.2 (Classes of Terms). Let T B be linear rational arithmetic and
ΣF = ({S,LA}, {g, a}) where a : S and g : LA → LA. Then the terms xLA + 3
and g(xLA) are all of sort LA, but xLA + 3 is a pure background term whereas
g(xLA) is a free term and an unpure background term. So the substitution
σ = {yLA 7→ xLA + 3} is simple while σ = {yLA 7→ g(xLA)} is not.

Definition 8.2.3 (Hierarchic Algebras). Given a hierarchic specification H =
(T H , T B), T B = (ΣB , CB), T H = (ΣH , N), a ΣH -algebra A is called hierar-
chic if A|ΣB ∈ CB . A hierarchic algebra A is called a model of a hierarchic
specification H, if A |= N .

Definition 8.2.4 (Abstracted Term, Atom, Literal, Clause). A term t is
called abstracted with respect to a hierarchic specification H = (T H , T B), if
t ∈ TS(ΣB ,X) or t ∈ TT (ΣF ,X) for some S ∈ SB , T ∈ SB ∪SF . An equational
atom t ≈ s is called abstracted if t and s are abstracted and both pure or both
unpure, accordingly for literals. A clause is called abstracted of all its literals
are abstracted.

Given a clause set N of a hierarchic specification H = (T H , T B) the clauses
in N can be transformed into abstracted clauses, preserving satisfiability by the
below abstraction rule.

AbstractionN ⊎ {C ∨ E[t]p[s]q} ⇒ABSTR N ∪ {C ∨ xs ̸≈ s ∨ E[xS]q}

8.3. THE SUP(T) CALCULUS ON ABSTRACTED CLAUSES 301

provided t, s are non-variable terms, q ̸< p, sort(s) = S, and either top(t) ∈ ΣF

and top(s) ∈ ΣB or top(t) ∈ ΣB and top(s) ∈ ΣF

Proposition 8.2.5 (Properties of the Abstraction). Given a finite clause set N
out of a hierarchic specification H = (T H , T B), ⇒ABSTR terminates on N and
preserves satisfiability. For any clause C ∈ (N ⇓ABSTR) and any literal E ∈ C,
E does not both contain a function symbol from ΣB and a function symbol from
ΣF .

Proof. For termination consider the number of all different term occurrences in
all atoms E that have a ΣB and ΣF top symbol, respectively. An application of
the rule strictly decreases the number of such occurrences. For the preservation
of satisfiability consider the clause (C ∨ xs ̸≈ s ∨ E[xS]q){xs 7→ s}. Finally, if
some equation E contains a function symbol from ΣB and a function symbol
from ΣF , then ⇒ABSTR is applicable.

From now on I assume fully abstracted clauses C, i.e., for all atoms s ≈ t
occurring in C, either s, t ∈ T (ΣB ,X) or s, t ∈ T (ΣF ,X). This justifies the
notation of clauses Λ ∥ C where all pure background literals are in Λ and
belong to FOL(ΣB ,X) and all literals in C belong to FOL(ΣF ,X). The literals
in Λ form a conjunction and the literals in C a disjunction and the overall clause
the implication Λ → C. For a clause Λ ∥ C the background theory part Λ is
called the constraint and C the free part of the clause.

Note that a clause C∨x ̸≈ y with sort(x) ∈ SB can be replaced by C{x 7→ y}
and for an atom x ≈ y with sort(x) ∈ SB it is moved to the constraint.

Example 8.2.6 (Abstracted Clause). Continuing Example 8.2.2, the unab-
stracted clause

g(x) ≤ 1 + y ∨ g(g(1)) ≈ 2

corresponds to the abstracted clause

z ̸≈ g(x) ∨ z ≤ 1 + y ∨ u ̸≈ 2 ∨ v ̸≈ 1 ∨ g(g(v)) ≈ u

that is written

z > 1 + y ∧ u ≈ 2 ∧ v ≈ 1 ∥ z ̸≈ g(x) ∨ g(g(v)) ≈ u

8.3 The SUP(T) Calculus on Abstracted Clauses

As usual the calculus is presented with respect to a reduction ordering ≺, total
on ground terms. For the SUP(T) calculus I assume that any pure base term
is strictly smaller than any term containing a function symbol from ΣF . This
justifies the below ordering conditions with respect to the constraint notation
of clauses and can, e.g., be obtained by an LPO where all symbols from ΣB are
smaller in the precedence than the symbols from ΣF .

Superposition Right (N⊎{Λ ∥ D∨t ≈ t′,Γ ∥ C∨s[u] ≈ s′}) ⇒SUPT

(N ∪ {Λ ∥ D ∨ t ≈ t′,Γ ∥ C ∨ s[u] ≈ s′} ∪ {(Λ,Γ ∥ D ∨ C ∨ s[t′] ≈ s′)σ})

8.10. COMPLEXITY 321

8.10 Complexity

In Section 3.15 I have already shown that unsatisfiability of a first-order clause
set is undecidable. Extending first-order clauses with linear arithmetic general-
izes the logic, therefore first-order logic modulo linear arithmetic is undecidable
as well. However, for FOL(LIA) there is a more compact and a more natural
proof in the sense that a natural reduction of the halting problem for a simple
programming language becomes available.

The simple programming language was invented by Minsky [?] and is based
on a so called 2-counter machine. The memory of the machine are two integer
counters k1, k2, where the integers are not limited in size, resulting in the name.
The counters may be initialized at the beginning with arbitrary positive values.

A program consists of a finite number of programming lines, each coming
with a unique and consecutive line number and containing exactly one instruc-
tion. The available instructions are:

inc(ki) increment counter ki and proceed with the next line,
td(ki, n) if ki > 0 then decrement ki and proceed with the next line,

otherwise goto line n and leave the counters unchanged,
goton goto line n,
halt halt the computation.

The following 2-counter machine program adds the initial values of the coun-
ters and stores the values in k1.

1 td(k2, 4)

2 inc(k1)

3 goto 1

4 halt

Theorem 8.10.1 (2-Counter Machine Halting Problem). The halting problem
for 2-counter machines is undecidable [?].

Proof. (Idea) By a reduction to the halting problem for Turing machines.

A 2-counter machine program can be immediately be translated into a
FOL(LIA) clause set N such that the N is unsatisfiable iff the program reaches
the halt instruction. There is only one predicate symbol R of arity three needed,
where the first argument encodes the current line and the other two arguments
the respective counters. Then clauses corresponding to the above program with
start values n, m for the k1, k2, respectively is:

x = n, y = m→R(1, x, y),

y > 0, y′ = y − 1, R(1, x, y)→R(2, x, y′),

y = 0, R(1, x, y)→R(4, x, y′),

x′ = x+ 1, R(2, x, y)→R(3, x′, y),

R(3, x, y)→R(1, x, y),

R(4, x, y)→ .

322 CHAPTER 8. FIRST-ORDER LOGIC MODULO THEORIES

A consequence is that unsatisfiability of a FOL(LIA) clause set with a single
ternary predicate symbol is undecidable.

Proposition 8.10.2 (FOL(LIA) Undecidability with a Single Ternary Predi-
cate). Unsatisfiability of a FOL(LIA) clause set with a single ternary predicate
is undecidable.

The ternary predicate is not mandatory. There is a translation of a 2-counter
machine program into FOL(LIA) using exactly one monadic predicate. This is
surprising because, the monadic fragment, i.e., arbitrary FOL formulas over
solely monadic predicates is decidable. The idea of the translation is to encode
a state (i, n,m) where the program is at line i with respective counter values
n, m by the integer 2n · 3m · pi where pi is the ith prime number following 3.
The state 2n · 3m · pi corresponds to the clause x = n, y = m → R(i, x, y) to
be true with respect to the ternary predicate encoding. For example, the initial
state correspond, expressed by the above clause x = n, y = m → R(1, x, y) is
expressed by the integer 2n · 3m · 5. The above 2-counter machine program is
then translated into

x = k→S(x),

5y = x, 3y′ = y, x′ = 7y′, S(x)→S(x′)

5y = x, 3y′ + 1 = y, x′ = 13y′, S(x)→S(x′)

5y = x, 3y′ + 2 = y, x′ = 13y′, S(x)→S(x′)

7y = x, x′ = 2y, x′′ = 11x′, S(x)→S(x′′)

11y = x, x′ = 5y, S(x)→S(x′)

13y = x, S(x)→

where k = 2n · 3m · 5, and the line numbers 1, 2, 3, 4 of the original 2-counter
machine program correspond to the prime numbers 5, 7, 11, 13, respectively.
Note that divisibility in general can only be expressed by a quantifier alter-
nation on the basis of multiplication: ∀x, y.x | y iff ∀x, y∃z.x · z = y. But since
in the encoding constant prime numbers are used, divisibility can be encoded
without a quantifier alternation, by explicitely considering all finitely many re-
mainders.

Proposition 8.10.3 (FOL(LIA) Undecidability with a single Monadic Predi-
cate). Unsatisfiability of a FOL(LIA) clause set with a single monadic predicate
is undecidable [?].

8.11 Further Decidable FOL(T) Fragments

In this section I study three FOL(T) fragments that are decidable. The frag-
ments are obtained by syntactic restrictions. I assume in this section that the
considered clause sets are sufficiently complete, but compactness needs not to
hold. Furthermore, I don’t consider equations, i.e., the SUP(T) calculus instanti-
ates to the ordered resolution calculus modulo theories: Superposition Right only

8.12. BERNAYS-SCHÖNFINKEL WITH SIMPLE BOUNDS 323

generates tautologies, Superposition Left becomes ordered resolution, Equality
Factoring becomes factoring and Equality Resolution is not applicable.

8.11.1 Totally Ordered Clause Sets

For this fragment the only requirement is that satisfiability of constraints is
decidable. For example, a constraint language of non-linear real arithmetic.

Definition 8.11.1 (Closed Literal Set). Let M be a set of first-order (non-
equational) literals over ΣF closed under SUP(T) inferences: for any two clauses
C1, C2 ∈ 2M and SUP(T) inference D out of C1, C2, it holds D ⊂M . Then M
is called a closed literal set.

Definition 8.11.2 (Totally Ordered Horn Clause Sets). Let M be a closed
literal set, and ≺ be a well-founded partial ordering on M stable under substi-
tution and instantiation such that for all Λ ∥ C ∈ N : (i) C ⊂M , (ii) C is Horn,
(iii) if C = C ′ ∨ P (t1, . . . , tn) then for all L ∈ C ′: L ≺ P (t1, . . . , tn). Then N is
called a totally ordered Horn clause set.

Recall that an ordering ≺ is stable under substitution if L ≺ K implies
Lσ ≺ Kσ for any σ. It is stable under instantiation if Lσ ⪯ L for any σ.

Lemma 8.11.3 (Saturation of Totally Ordered Horn Clause Sets Terminates).
Let N be a totally ordered Horn clause set. Then SUP(T) terminates on N .

Proof. For Horn clause sets every SUP(T) inference has the form: from Λ1 ∥
C ∨ P (t1, . . . , tn) and Λ2 ∥ D ∨ ¬P (s1, . . . , sn) the clause (Λ1,Λ2 ∥ C ∨D)σ is
inferred where σ is the mgu of P (t1, . . . , tn) and P (s1, . . . , sn). Now (C ∨D)σ is
a purely negative clause and (C∨D)σ ≺mul (D∨¬P (s1, . . . , sn))σ, by definition
of the total literal ordering ⪯. The ordering ≺mul is well-founded, hence SUP(T)
terminates.

Theorem 8.11.4 (Satisfiability of Totally Ordered Horn Clause Sets is Decid-
able). Let N be a totally ordered Horn clause set. Then satisfiability of N is
decidable.

Example 8.11.5 (Predicate Preference). Let N be a clause set and P1, . . . , Pn
be the predicates in N . Let ≺ be a total order on the Pi. It can be extended
to literals by Pi(t1, . . . , tn) ≺ Pj(t1, . . . , tn) if Pi ≺ Pj . The extension is stable
under substitution and instantiation. Then satisfiability of any totally ordered
Horn clause set with respect to ≺ is decidable.

8.12 Bernays-Schönfinkel with Simple Bounds

In this section I only consider clauses Λ ∥ C where Λ is a conjunction of simple
bounds over LRA and C is a Bernays-Schönfinkel clauses, i.e., the free part
only consists of variables and constants. A simple bound is an (in)equality x#k
where k ∈ Z and # ∈ {<,≤, >,≥,=, ̸=}. In Section 3.16 I have introduced

324 CHAPTER 8. FIRST-ORDER LOGIC MODULO THEORIES

a number of calculi that can decide the Bernays-Schönfinkel fragment. Here
I prove that Bernays-Schönfinkel with simple bounds can also be decided by
exactly the superposition variant introduced in Section 3.16.1. I assume that in
any inferred clauses by superposition or instantiation the constraint is always
simplified, i.e., for any clause Λ ∥ C all constraint variables occur in C, for every
such variable x there is at most one upper and one lower bound and duplicates
are removed.

Lemma 8.12.1 (BS with Simple Bounds Invariants). Let N be a clause set of
the Bernay-Schönfinkel fragment with simple bounds. Then

1. Any inference between clauses from N results again in a BS clause with
simple bounds. The class of Bernays-Schoenfinkel clauses with simple
bounds is closed under SUP(T) inferences.

2. Let {k1, . . . , kn} be all numeric values occurring in the constraints in N .
Then also for any clause inferred by SUP(T) from N , only the numeric
values {k1, . . . , kn} occur.

3. For any arithmetic variable x at most n non-redundant simple bounds out
of {k1, . . . , kn} can be generated.

Condensation-BS (N ⊎ {Λ ∥ L1 ∨ · · · ∨ Ln}) ⇒SUP (N ∪ {rdup((Λ ∥
L1 ∨ . . . ∨ Ln)σi,j) | σi,j = mgu(Li, Lj) and σi,j ̸= ⊥})
provided any ground instantiation on the free variables (L1∨· · ·∨Ln)δ contains
at least two duplicate literals with identical simple bounds

Lemma 8.12.2. Let N be a BS clause set with simple bounds. There are
only finitely many BSS clauses derivable from N where Condensation-BS is not
applicable.

Theorem 8.12.3. Satisfiability of a BS clause set with simple bounds is decid-
able.

8.13 Bernays-Schönfinkel with Bounded Vari-
ables

In this section I only consider clauses Λ ∥ C where for each arithmetic variable
x ∈ vars(C) there are bounds i ≤ x ≤ j in Λ, i, j ∈ Z, i ≤ j and all arith-
metic variables are integer variables. The constraint λ may contain any further,
even non-linear constraints. For example, the constraint language of non-linear
integer arithmetic, i.e., polynomials are allowed.

Theorem 8.13.1 (BS with Bounded Constraints is Decidable). Satisfiability
of BS clause sets with bounded constraints over the integers is decidable.

8.14. SCLT CLAUSE LEARNING FROM SIMPLEMODELSMODULO THEORIES325

Proof. For any arithmetic variable x occurring in a clause Λ ∥ C there are ex-
actly j − i integer instances satisfying the bound i ≤ x ≤ j. Thus by eager
instantiation of the integer variables any BS clause set with bounded NIA con-
straints can be transformed into a BS clause set, where the arithmetic values
are considered as extra constants of the arithmetic sort.

8.14 SCLT Clause Learning from Simple Models
Modulo Theories

Let T B be first-order logic background theory over signature ΣB = (SB,ΩB,ΠB)
and term-generated ΣB-algebras CB: T B = (ΣB, CB). A constant c ∈ ΩB is called
a domain constant if cA ̸= dA for all A ∈ CB and for all d ∈ ΩB with d ̸= c.
Let ΣF = (SF ,ΩF ,ΠF) be a foreground signature with respect to T B where
SB ⊆ SF , ΩB ∩ ΩF = ∅, and ΠB ∩ΠF = ∅.

Definition 8.14.1 (Hierarchic Specification). A hierarchic specification is a
pair H = (T B,ΣF) with associated signature ΣH = (SF ,ΩB ∪ ΩF ,ΠB ∪ ΠF).
It generates hierarchic ΣH-algebras. A ΣH-algebra A is called hierarchic with
respect to its background theory T B, if AH|ΣB ∈ CB.

As usual, AH|ΣB is obtained from a AH-algebra by removing all carrier sets
SA for all S ∈ (SF \ SB), all functions from ΩF and all predicates from ΠF .
We write |=H for the entailment relation with respect to hierarchic algebras and
formulas from ΣH and |=B for the entailment relation with respect to the CB
algebras and formulas from ΣB.

Terms, atoms, literals build over ΣB are called pure background terms, pure
background atoms, and pure background literals, respectively. All terms, atoms,
with a top-symbol from ΩB or ΠB, respectively, are called background terms,
background atoms, respectively. A background atom or its negation is a back-
ground literal. All terms, atoms, with a top-symbol from ΩF or ΠF , respectively,
are called foreground terms, foreground atoms, respectively. A foreground atom
or its negation is a foreground literal. Given a set (sequence) of H literals, the
function bgd returns the set (sequence) of background literals and the function
fgd the respective set (sequence) of foreground literals.

As a running example, I consider in detail the Bernays-Schoenfinkel clause
fragment over linear arithmetic: BS(LRA). The background theory is linear ra-
tional arithmetic over the many-sorted signature ΣLRA = (SLRA,ΩLRA,ΠLRA)
with SLRA = {LRA}, ΩLRA = {0, 1,+,−} ∪ Q, ΠLRA = {≤, <, ̸=,=, >,≥})
where LRA is the linear arithmetic sort, the function symbols consist of 0, 1,+,−
plus the rational numbers and predicate symbols ≤, <,=, ̸=, >,≥. The lin-
ear arithmetic theory T LRA = (ΣLRA, {ALRA}) consists of the linear arith-
metic signature together with the standard model ALRA of linear arithmetic.
This theory is then extended by the free (foreground) first-order signature
ΣBS = ({LRA},ΩBS,ΠBS) where ΩBS is a set of constants of sort LRA dif-
ferent from ΩLRA constants, and ΠBS is a set of first-order predicates over the

326 CHAPTER 8. FIRST-ORDER LOGIC MODULO THEORIES

sort LRA. We are interested in hierarchic algebras ABS(LRA) over the signature
ΣBS(LRA) = ({LRA},ΩBS∪ΩLRA,ΠBS∪ΠLRA) that are ΣBS(LRA) algebras such
that ABS(LRA)|ΣLRA = ALRA.

Definition 8.14.2 (Simple Substitutions). A substitution σ is called simple if
xSσ ∈ TS(ΣB,X) for all xS ∈ dom(σ) and S ∈ SB.

As usual, clauses are disjunctions of literals with implicitly universally quan-
tified variables. We often write a ΣH clause as a constrained clause, denoted
Λ ∥ C where Λ is a conjunction of background literals and C is a disjunction
of foreground literals semantically denoting the clause ¬Λ ∨ C. A constrained
closure is denoted as Λ ∥ C ·σ where σ is grounding for Λ and C. A constrained
closure Λ ∥ C · σ denotes the ground constrained clause Λσ ∥ Cσ.

In addition, we assume a well-founded, total, strict ordering ≺ on ground
literals, called an H-order, such that background literals are smaller than fore-
ground literals. This ordering is then lifted to constrained clauses and sets
thereof by its respective multiset extension. We overload ≺ for literals, con-
strained clauses, and sets of constrained clause if the meaning is clear from
the context. We define ⪯ as the reflexive closure of ≺ and N⪯Λ∥C := {D |
D ∈ N and D ⪯ Λ ∥ C}. For example, an instance of an LPO with according
precedence can serve as ≺.

Definition 8.14.3 (Abstracted/Pure Clause). A clause Λ ∥ C is abstracted if
the arguments of SB sort of any predicate from ΠF in an atom in C are only
variables. Λ ∥ C is called pure if it does not contain symbols from ΩF ranging
into a sort of SB.

These two notions are extended to clause sets in the natural way. Any clause
set can be transformed into an abstracted clause set.

AbstractionN ⊎ {C ∨ E[t]p[s]q} ⇒ABSTR N ∪ {C ∨ xs ̸≈ s ∨ E[xS]q}
provided t, s are non-variable terms, q ̸< p, sort(s) = S, and either top(t) ∈ ΣF

and top(s) ∈ ΣB or top(t) ∈ ΣB and top(s) ∈ ΣF

In case of BS(LRA) abstraction can only be applied to constants below a
predicate.

Definition 8.14.4 (Clause Redundancy). A ground constrained clause Λ ∥ C
is redundant with respect to a set N of ground constrained clauses and an
order ≺ if N⪯Λ∥C |=H Λ ∥ C. A clause Λ ∥ C is redundant with respect to
a clause set N , an H-order ≺, and a set of constants B if for all Λ′ ∥ C ′ ∈
grd((SF , B,ΠB ∪ ΠF),Λ ∥ C) the clause Λ′ ∥ C ′ is redundant with respect to
∪D∈N grd((SF , B,ΠB ∪ΠF), D).

Assumption 8.14.5 (Considered Clause Sets). For the rest of this section I
consider only pure, abstracted clause sets N . I assume that the background
theory T B is term-generated, compact, contains an equality =, and that all
constants of the background signature are domain constants. I further assume
that the set ΩF contains infinitely many constants for each background sort.

8.14. SCLT CLAUSE LEARNING FROM SIMPLEMODELSMODULO THEORIES327

Example 8.14.6 (Pure Clauses). With respect to BS(LRA) the unit clause
x ≥ 5, 3x + 4y = z ∥ Q(x, y, z) is abstracted and pure while the clause x ≥
5, 3x + 4y = a, z = a ∥ Q(x, y, z) is abstracted but not pure because of the
foreground constant a of the LRA sort, and the clause x ≥ 5, 3x + 4y = 7 ∥
Q(x, y, 7) is not abstracted.

Note that for pure, abstracted clause sets, any unifier between two foreground
literals is simple and its codomain consists of variables only.

In order for the SCL(T) calculus to be effective, decidability in T B is needed
as well. For the calculus we implicitly use the following equivalence: A ΣB sen-
tence

∃x1, . . . , xnϕ

where ϕ is quantifier free is true, i.e., |=B ∃x1, . . . , xnϕ iff the ground formula

ϕ{x1 7→ a1, . . . , xn 7→ an}

where the ai are Ω
F constants of the respective background sorts isH satisfiable.

Together with decidability in T B this guarantees decidability of the satisfiability
of ground constraints from constrained clauses.

If not stated otherwise, satisfiability means satisfiability with respect to H.
The function adiff(B) for some finite sequence of background sort constants de-
notes a constraint that implies different interpretations for the constants in B.
In case the background theory enables a strict ordering < as LRA does, then
the ordering can be used for this purpose. For example, adiff([a, b, c]) is then the
constraint a < b < c. In case the background theory does not enable a strict or-
dering, then inequations can express disjointness of the constants. For example,
adiff([a, b, c]) is then constraint a ̸= b ∧ a ̸= c ∧ b ̸= c. An ordering constraint
has the advantage over an inequality constraint that it also breaks symmetries.
Assuming all constants to be different will eventually enable a satisfiability test
for foreground literals based on purely syntactic complementarity.

The inference rules of SCL(T) are represented by an abstract rewrite system.
They operate on a problem state, a six-tuple Γ = (M ;N ;U ;B; k;D) where M
is a sequence of annotated ground literals, the trail ; N and U are the sets of
initial and learned constrained clauses; B is a finite sequence of constants of
background sorts for instantiation; k counts the number of decisions in M ; and
D is a constrained closure that is either ⊤, Λ ∥ ⊥ · σ, or Λ ∥ C · σ. Foreground
literals inM are either annotated with a number, a level; i.e., they have the form
Lk meaning that L is the k-th guessed decision literal, or they are annotated
with a constrained closure that propagated the literal to become true, i.e., they
have the form (Lσ)(Λ∥C∨L)·σ. An annotated literal is called a decision literal if
it is of the form Lk and a propagation literal or a propagated literal if it of in
the form L · σ(Λ∥C∨L)·σ. A ground foreground literal L is of level i with respect
to a problem state (M ;N ;U ;B; k;D) if L or comp(L) occurs in M and the first
decision literal left from L (comp(L)) in M , including L, is annotated with i.
If there is no such decision literal then its level is zero. A ground constrained
clause Λ ∥ C is of level i with respect to a problem state (M ;N ;U ;B; k;D) if

328 CHAPTER 8. FIRST-ORDER LOGIC MODULO THEORIES

i is the maximal level of a foreground literal in C; the level of an empty clause
Λ ∥ ⊥ · σ is 0. A ground literal L is undefined in M if neither L nor comp(L)
occur in M . The initial state for a first-order, pure, abstracted H clause set
N is (ϵ;N ; ∅;B; 0;⊤), where B is a finite sequence of foreground constants of
background sorts. These constants cannot occur in N , because N is pure. The
final state (ϵ;N ;U ;B; 0; Λ ∥ ⊥) denotes unsatisfiability of N . Given a trail M
and its foreground literals fgd(M) = {L1, . . . , Ln} an H ordering ≺ induced by
M is any H ordering where Li ≺ Lj if Li occurs left from Lj in M , or, Li is
defined in M and Lj is not.

The transition rules for SCL(T) are

Propagate (M ;N ;U ;B; k;⊤) ⇒SCL(T) (M,Lσ(Λ∥C0∨L)δ·σ,Λ′σ;N ;U ;B; k;⊤)
provided Λ ∥ C ∈ (N ∪ U), σ is grounding for Λ ∥ C, adiff(B) ∧ bgd(M) ∧ Λσ
is satisfiable, C = C0 ∨C1 ∨L, C1σ = Lσ ∨ . . .∨Lσ, C0σ does not contain Lσ,
δ is the mgu of the literals in C1 and L, Λ′σ are the background literals from
Λσ that are not yet on the trail, fgd(M) |= ¬(C0σ), codom(σ) ⊆ B, and Lσ is
undefined in M

The rule Propagate applies exhaustive factoring to the propagated literal
with respect to the grounding substitution σ and annotates the factored clause
to the propagation. By writing M,Lσ(Λ∥C0∨L)δ·σ,Λ′σ we denote that all back-
ground literals from Λ′σ are added to the trail.

Decide (M ;N ;U ;B; k;⊤) ⇒SCL(T) (M,Lσk+1,Λσ;N ;U ;B; k + 1;⊤)
provided Lσ is undefined in M , |Lσ| ∈ atoms(grd((S, B,Π), N ∪ U)), |Kσ| ∈
atoms(grd((S, B,Π), N ∪ U)) for all Kσ ∈ Λσ, σ is grounding for Λ, all back-
ground literals in Λσ are undefined in M , adiff(B)∧bgd(M)∧Λσ is satisfiable,
and codom(σ) ⊆ B

Making sure that no duplicates of background literals occur on the trail by
rules Propagate and Decide together with a fixed finite sequence B of constants
and the restriction of Propagate and Decide to undefined literals guarantees that
the number of potential trails of a run is finite. Requiring the constants from B
to be different by the adiff(B) constraint enables a purely syntactic consistency
check for foreground literals.

Conflict (M ;N ;U ;B; k;⊤) ⇒SCL(T) (M ;N ;U ;B; k; Λ ∥ D · σ)
provided Λ ∥ D ∈ (N ∪ U), σ is grounding for Λ ∥ D, adiff(B) ∧ bgd(M) ∧ Λσ
is satisfiable, fgd(M) |= ¬(Dσ), and codom(σ) ⊆ B

Resolve (M,LρΛ∥C∨L·ρ;N ;U ;B; k; (Λ′ ∥ D ∨ L′) · σ) ⇒SCL(T)

(M,LρΛ∥C∨L·ρ;N ;U ;B; k; (Λ ∧ Λ′ ∥ D ∨ C)η · σρ)
provided Lρ = comp(L′σ), and η = mgu(L, comp(L′))

8.14. SCLT CLAUSE LEARNING FROM SIMPLEMODELSMODULO THEORIES329

Note that Resolve does not remove the literal Lρ from the trail. This is
needed if the clause Dσ contains further literals complementary of Lρ that have
not been factorized.

Factorize (M ;N ;U ;B; k; (Λ ∥ D∨L∨L′) ·σ) ⇒SCL(T) (M ;N ;U ;B; k; (Λ ∥
D ∨ L)η · σ)
provided Lσ = L′σ, and η = mgu(L,L′)

Note that Factorize is not limited with respect to the trail. It may apply to
any two literals that become identical by application of the grounding substitu-
tion σ.

Skip (M,L;N ;U ;B; k; Λ′ ∥ D · σ) ⇒SCL(T) (M ;N ;U ;B; l; Λ′ ∥ D · σ)
provided L is a foreground literal and comp(L) does not occur in Dσ, or L is a
background literal; if L is a foreground decision literal then l = k− 1, otherwise
l = k

Note that Skip can also skip decision literals. This is needed because we
won’t eventually require exhaustive propagation. While exhaustive propagation
in CDCL is limited to the number of propositional variables, in the context of
our logic, for example BS(LRA), it is exponential in the arity of foreground
predicate symbols and can lead to an unfair exploration of the space of possible
inferences, harming completeness, see Example 8.14.9.

Backtrack (M,Ki+1,M ′;N ;U ;B; k; (Λ ∥ D ∨ L) · σ) ⇒SCL(T)

(M,Lσ(Λ∥D∨L)·σ,Λ′σ;N ;U ∪ {Λ ∥ D ∨ L};B; i;⊤)
provided Lσ is of level k, and Dσ is of level i, Λ′σ are the background literals
from Λσ that are not yet on the trail

The definition of Backtrack requires that if Lσ is the only literal of level k
in (D ∨ L)σ then additional occurrences of Lσ in D have to be factorized first
before Backtrack can be applied.

Grow (M ;N ;U ;B; k;⊤) ⇒SCL(T) (ϵ;N ;U ;B ∪B′; 0;⊤)
provided B′ is a non-empty sequence of foreground constants of background
sorts distinct from the constants in B

In case the adiff constraint is implemented by a strict ordering predicate on
the basis of the sequence B, it can be useful to inject the new constants B′ into
B ∪B′ such that the ordering of the constants from B is not changed. This can
help caching background theory results for testing trail satisfiability.

Definition 8.14.7. The rules Propagate, Decide, Grow, and Conflict are called
conflict search rules and the rules Resolve, Skip, Factorize, and Backtrack are
called conflict resolution rules.

330 CHAPTER 8. FIRST-ORDER LOGIC MODULO THEORIES

Recall that the goal of our calculus is to replace the ordering restrictions of
the hierarchic superposition calculus with a guiding model assumption. All our
inferences are hierarchic superposition inferences where the ordering restrictions
are neglected.

Example 8.14.8 (Inconsistent Trail). Consider a clause set N = {R(x, y), x ≤
y ∥ ¬R(x, y) ∨ P (x), x ≥ y ∥ ¬R(x, y) ∨ ¬P (y)}; if we were to remove the
adiff(B) constraint from the side conditions of rule Propagate we would be able
to obtain inconsistent trails. Starting with just B = {a, b} as constants it is
possible to propagate three times and obtain the trail M = [R(a, b), P (a), a ≤
b,¬P (b), a ≥ b], M is clearly inconsistent as M |= P (a), M |= ¬P (b) yet a = b.

Example 8.14.9 (Exhaustive Propagation). Consider a BS(LRA) clause set
N = {x = 0 ∥ Nat(x), y = x + 1 ∥ ¬Nat(x) ∨ Nat(y)} ∪ N ′ where N ′ is
unsatisfiable and nothing can be propagated from N ′. Let us further assume
that N ′ is satisfiable with respect to any instantiation of variables with natural
numbers. If propagation is not restricted, then the first two clauses will consume
all constants in B. For example, if B = [a, b, c] then the trail [Nat(a), a =
0,Nat(b), b = a + 1,Nat(c), c = b + 1] will be derived. Now all constants are
fixed to natural numbers. So there cannot be a refutation of N ′ anymore. An
application of Grow will not solve the issue, because again the first two rules
will fix all constants to natural numbers via exhaustive propagation.

Definition 8.14.10 (Well-formed States). A state (M ;N ;U ;B; k;D) is well-
formed if the following conditions hold:

1. all constants appearing in (M ;N ;U ;B; k;D) are from B or occur in N .

2. M ∧ adiff(B) is satisfiable

3. N |=H U ,

4. Propagating clauses remain propagating and conflict clauses remain false:

(a) ifD = Λ ∥ C ·σ then Cσ is false in fgd(M) and bgd(M)∧adiff(B)∧Λσ
is satisfiable,

(b) if M = M1, Lσ
(Λ∥C∨L)·σ,M2 then Cσ is false in fgd(M1), Lσ is un-

defined in M1, and bgd(M1) ∧ adiff(B) ∧ Λσ is satisfiable.

5. All clauses in N ∪ U are pure. In particular, they don’t contain any con-
stants from B.

Lemma 8.14.11 (Rules preserve Well-Formed States). The rules of SCL(T)
preserve well-formed states.

Proof. We prove each of the five properties by induction on the length of a
derivation starting from the initial state (ϵ;N ; ∅;B; k;⊤). The induction step
for the first two claims is

(M ;N ;U ;B; k;D)⇒SCL(T) (M
′;N ′;U ′;B′; k′;D′).

8.14. SCLT CLAUSE LEARNING FROM SIMPLEMODELSMODULO THEORIES331

1. In the initial state (ϵ;N ; ∅;B; k;⊤) constants can only appear in N and
B, so it satisfies the claim. For the inductive step we do a case analysis on
the rule application and prove con((M ′;N ′;U ′;B′; k′;D′)) ⊆ con(N ′) ∪ B′ by
case analysis on the rules of SCL(T). If we have applied Propagate or Decide
then N ′ = N , U ′ = U , B′ = B, D′ = D = ⊤ and M ′ = M,Lσ. So we
only need to prove that con(M ′) ⊆ con(N) ∪ B. Both rules require |Lσ| ∈
atoms(grd((S, B,Π), N ∪ U)) satisfying the claim.

In case of the rules Grow, Skip, or Backtrack, then con(N)∪B ⊆ con(N ′)∪B′

and con(M ′) ∪ con(U ′) ∪ con(D′) ⊆ con(M) ∪ con(U) ∪ con(D).

If the rule Conflict was used then only the last component of the state
changed D′ = Λ ∥ C · σ with codom(σ) ⊆ B and con(Λ ∥ C) ⊆ con(N) ∪ B by
induction hypothesis.

If one of the rules Resolve or Factorize were used then as for Conflict the only
component of the state that changed was the conflict clause and the constants
in D′ are a subset of the constants in M and D.

2. In the initial state (ϵ;N ; ∅;B; k;⊤) the condition adiff(B) is satisfied as we
assume constants in B to be distinct. For the inductive step we do a case analysis
on the rule application. If the rule used was one of Conflict, Backtrack, Skip,
Resolve, or Factorize, then M =M ′,M ′′ with M ′′ possibly empty and B = B′,
so that M ∧ adiff(B) satisfiable implies M ′ ∧ adiff(B′) to be satisfiable. If the
rule Grow was used then we have M ′ = ϵ and that all constants in B′ = B⊕B′′

are distinct, so that satisfiability of adiff(B′) is immediate. If the rule used was
Propagate or Decide then we have M ′ = M,Lσ,Λσ and B′ = B, from the
preconditions on the rules we also know that Lσ is undefined in M and that
bgd(M ′) ∧ adiff(B′) is satisfiable.

3. By induction on the number of learned clauses. We prove that for each ap-
plication of Backtrack

(M,Ki+1,M ′;N ;U ;B; k;D ∨ L · σ)
⇒Backtrack

SCL(T) (M,Lσ(Λ∥D∨L)·σ,Λ′σ;N ;U ∪ {Λ ∥ D ∨ L};B; i;⊤)

we have N ∪U |=H D ∨L. Following conflict resolution backward we can find a
sequence of constrained closures C1 · σ1, . . . , Cn · σn, where Cn · σn = D ∨ L · σ
such that C1 ∈ (N ∪U) is the most recent conflict clause, and Cj+1 is either the
result of a factorization on Cj or the result of a resolution inference between Cj
and a clause in (N ∪ U). By induction on the length of conflict resolution and
soundness of resolution and factoring we get N ∪ U |=H D ∨ L.

4. For the initial state the properties 4a and 4b obviously hold. For the induction
step and an application of the rules Decide, Skip, and Grow there is nothing to
show.

Consider a state (M ;N ;U ;B; k; ∆ ∥ D · δ) obtained by an application of
Conflict. By the side conditions of Conflict adiff(B)∧bgd(M)∧∆δ is satisfiable
and fgd(M) |= ¬(Dδ) is shown for 4a. There is nothing to show for 4b.

332 CHAPTER 8. FIRST-ORDER LOGIC MODULO THEORIES

Consider an application of rule Resolve

(M,LρΛ∥(C∨L)·ρ;N ;U ;B; k; Λ′ ∥ (D ∨ L′) · σ)
⇒Resolve

SCL(T) (M,LρΛ∥(C∨L)·ρ;N ;U ;B; k; Λ ∧ Λ′ ∥ (D ∨ C)η · ρσ)

by induction hypothesis bgd(M) ∧ adiff(B) ∧ Ληρσ is satisfiable and Cηρσ
is false in fgd(M), because Ληρσ = Λρ and Cηρσ = Cρ because η is
the mgu and we always assume clauses to be variable disjoint. Using the
same argument bgd(M,Lσ) ∧ adiff(B) ∧ Λ′ηδσ is satisfiable and (D ∨ L′)ηδσ)
is false in fgd(M,Lσ). Therefore (D ∨ C)η · ρσ is false in fgd(M,Lσ) and
bgd(M,Lσ)∧ adiff(B)∧ (Λ′ ∧Λ)ηδσ is satisfiable, proving 4a. There is nothing
to show for 4b.

For an application of the rule Factorize there is nothing to show for 4b and
4a obviously holds because the set of different ground literals in (D ∨ L ∨ L′)σ
and (D ∨ L)σ is identical.

For an application of the rule Propagate there is nothing to show for 4a. For
4b consider the step

(M ;N ;U ;B; k;⊤)
⇒Propagate

SCL(T) (M,Lσ(Λ∥C0∨L)δ·σ,Λ′σ;N ;U ;B; k;⊤)

where the side conditions of the rule imply the claim modulo the removal of
duplicate literals Lσ.

Finally, when applying Backtrack

(M,Ki+1,M ′;N ;U ;B; k; (Λ ∥ D ∨ L) · σ)
⇒Backtrack

SCL(T) (M,Lσ(Λ∥D∨L)·σ,Λ′σ;N ;U ∪ {Λ ∥ D ∨ L};B; i;⊤)

there is nothing to show for 4a. For 4b we know by induction hypothesis that
(D ∨ L)σ is false in fgd(M,Ki+1,M ′). The literal Lσ is of level k and Dσ of
level i, k > i, hence Dσ is false in fgd(M) and Lσ undefined in fgd(M). Further-
more, bgd(M,Ki+1,M ′) ∧ adiff(B) ∧ Λσ is satisfiable by induction hypothesis,
so bgd(M) ∧ adiff(B) ∧ Λσ is satisfiable as well.

4. For the initial state all clauses are pure by assumption. Conflict picks a
clause from N ∪ U that is pure by induction hypothesis. Resolve and Factorize
only apply unifiers between pure literals to the resulting clause, hence also only
produce pure clauses from pure clauses. Finally, Backtrack adds the pure learned
clause to N ∪ U .

Definition 8.14.12 (Stuck State). A state (M ;N ;U ;B; k;D) is called stuck
if D ̸= Λ ∥ ⊥ · σ and none of the rules Propagate, Decide, Conflict, Resolve,
Factorize, Skip, or Backtrack is applicable.

Proposition 8.14.13 (Form of Stuck States). If a run (without rule Grow)
ends in a stuck state (M ;N ;U ;B; k;D) where Conflict was applied eagerly,
then D = ⊤ and all ground foreground literals that can be build from the
foreground literals in N by instantiation with constants from B are defined in
M .

8.14. SCLT CLAUSE LEARNING FROM SIMPLEMODELSMODULO THEORIES333

Proof. First we prove that stuck states never appear during conflict resolution.
Consider a well-formed state (M ;N ;U ;B; k; ∆ ∥ D·δ), we prove by case analysis
that either Skip, Resolve, Factorize or Backtrack can be applied. IfM =M ′, Lσ
and Lσ is either a background literal or a foreground literal such that comp(Lσ)
is not contained in Dδ then Skip can be applied. If M = M ′, LσΛ∥C·σ with
Dδ = D′ ∨ comp(Lσ) then Resolve can be applied. If M = M ′, Lσk,M ′′ and
D′ contains multiple occurrences of comp(Lσ) then Factorize can be applied. In
summary, we can reach a state with a unique literal Lδ of level k in Dδ. Then
Backtrack is applicable. Finally, if in some state (M ;N ;U ;B; k;⊤) where Con-
flict is not applicable, some atom |L| ∈ atoms(grd((S, B,Π), N)) is undefined,
we can always apply Decide.

Lemma 8.14.14 (Stuck States Produce Ground Models). If a state
(M ;N ;U ;B; k;⊤) is stuck then M ∧ adiff(B) |= grd((S, B,Π), N ∪ U).

Proof. By contradiction. Note thatM∧adiff(B) is satisfiable, Lemma 8.14.11.2.
Consider any clause (Λ ∥ C)σ ∈ grd((S, B,Π), N ∪ U). It can only be not true
in M ∧ adiff(B) if fgd(M) |= ¬(Cσ) and bgd(M) ∧ adiff(B) ∧ Λσ is satisfiable.
But then Conflict would be applicable, a contradiction.

Example 8.14.15 (SCL(T) Model Extraction). In some cases it is possi-
ble to extract an overall model from the ground trail of a stuck state of an
SCL(T) derivation. Consider B = [a, b, c] and a satisfiable BS(LRA) constrained
clause set N = {x ≥ 1 ∥ P (x), x < 0 ∥ P (x), 0 ≤ x ∧ x < 1 ∥ ¬P (x),
2x ≥ 1 ∥ P (x)∨Q(x)}. Starting from state (ϵ;N ; ∅;B; 0;⊤) and applying Prop-
agate fairly a regular run can derive the following trail

M = P (a)x≥1∥P (x)·{x 7→a}, a ≥ 1, P (b)x<0∥P (x)·{x 7→b}, b < 0,

¬P (c)0≤x∧x<1∥¬P (x)·{x 7→c}, 0 ≤ c, c < 1, Q(c)2x≥1∥P∨Q(x)·{x 7→c}, 2c ≥ 1

The state (M ;N ; ∅;B; 0;⊤) is stuck and M |=H grd((S, B,Π), N). Moreover
from M we can generate an interpretation ABS(LRA) of N by generalizing the
foreground constants used for instantiation and interpreting the predicates P
and Q as formulas over ΣB, PA = {q ∈ Q | q < 0 ∨ q ≥ 1} and QA = {q ∈ Q |
2q ≥ 1 ∧ q < 1}.

Lemma 8.14.16 (Soundness). If a derivation reaches the state (M ;N ;U ;B; k; Λ ∥
⊥ · σ), then N is unsatisfiable.

Proof. All learned clauses are consequences of N ∪ U , Lemma 8.14.11.3. Fur-
thermore bgd(M) ∧ adiff(B) ∧ Λσ is satisfiable, Lemma 8.14.11.4a.

Definition 8.14.17 (Reasonable Run). A sequence of SCL(T) rule applications
is called a reasonable run if the rule Decide is only applied if there exists no
application of the rule Propagate that would generate a conflict.

Definition 8.14.18 (Regular Run). A sequence of SCL(T) rule applications
is called a regular run if it is a reasonable run the rule Conflict has precedence
over all other rules, and Resolve resolves away at least the rightmost foreground
literal from the trail.

334 CHAPTER 8. FIRST-ORDER LOGIC MODULO THEORIES

Example 8.14.19 (SCL(T) Refutation). Given a set of foreground constants
B = [a, b, c] and a BS(LRA) constrained clause set N = {C1 : x = 0 ∥ P (x),
C2 : y = x + 1 ∥ ¬P (x) ∨ P (y), C3 : z = 2 ∥ ¬P (z)} the following is a regular
derivation

(ϵ;N ; ∅;B; 0;⊤)
⇒Propagate

SCL(T) (P (a)C1·{x 7→a}, a = 0;N ; ∅;B; 0;⊤)
⇒Propagate

SCL(T) (. . . , P (b)C2·{x 7→a,y 7→b}, b = a+ 1;N ; ∅;B; 0;⊤)
⇒Propagate

SCL(T) (. . . , P (c)C2·{x7→b,y 7→c}, c = b+ 1;N ; ∅;B; 0;⊤)
⇒Conflict

SCL(T) (. . . , P (c)C2·{x7→b,y 7→c}, c = b+ 1;N ; ∅;B; 0; z = 2 ∥ ¬P (z) · {z 7→ c})
⇒Resolve

SCL(T) (. . . , P (c)C2·{x 7→b,y 7→c}, c = b+ 1;N ; ∅;B; 0;

z = x+ 1 ∧ z = 2 ∥ ¬P (x) · {z 7→ c, x 7→ b})
⇒Skip

SCL(T) (. . . , P (b)C2·{x 7→a,y 7→b}, b = a+ 1;N ; ∅;B; 0;

z = x+ 1 ∧ z = 2 ∥ ¬P (x) · {z 7→ c, x 7→ b})
⇒Resolve

SCL(T) (. . . , P (b)C2·{x 7→a,y 7→b}, b = a+ 1;N ; ∅;B; 0;

z = x+ 1 ∧ z = 2 ∧ x = x1 + 1 ∥ ¬P (x1) · {z 7→ c, x 7→ b, x1 7→ a})
⇒Skip

SCL(T) (P (a)C1·{x 7→a}, a = 0;N ; ∅;B; 0;

z = x+ 1 ∧ z = 2 ∧ x = x1 + 1 ∥ ¬P (x1) · {z 7→ c, x 7→ b, x1 7→ a})
⇒Resolve

SCL(T) (P (a)C1·{x 7→a}, a = 0;N ; ∅;B; 0;

z = x+ 1 ∧ z = 2 ∧ x = x1 + 1 ∧ x1 = 0 ∥ ⊥ · {z 7→ c, x 7→ b, x1 7→ a})

N is proven unsatisfiable as we reach a state in the form (M ;N ;U ;B; k; Λ ∥
⊥ · σ).

Example 8.14.20 (SCL(T) Clause learning). Given an initial constant set
B = [a] of fresh foreground constants and a BS(LRA) constrained clause set
N = {C1 : x ≥ y ∥ ¬P (x, y) ∨ Q(z), C2 : z = u + v ∥ ¬P (u, v) ∨ ¬Q(z), } the
following is an example of a regular run

(ϵ;N ; ∅;B; 0;⊤)
⇒Decide

SCL(T) (P (a, b)1;N ; ∅;B; 1;⊤)
⇒Propagate

SCL(T) (P (a, a)1, Q(a)C1·{x 7→a,y 7→a,z 7→a}, a ≥ a;N ; ∅;B; 1;⊤)
⇒Conflict

SCL(T) (P (a, a)1, Q(a)C1·{u7→a,v 7→a,z 7→a}, a ≥ a;N ; ∅;B; 1;

C2 · {x 7→ a, y 7→ a, z 7→ a})
⇒Resolve

SCL(T) (P (a, a)1, Q(a)C1·{x 7→a,y 7→a,z 7→a}, a ≥ a;N ; ∅;B; 1;x ≥ y ∧ z = u+ v ∥
¬P (x, y) ∨ ¬P (u, v) · {x 7→ a, y 7→ a, z 7→ a, u 7→ a, v 7→ a})

⇒Skip∗
SCL(T) (P (a, a)1;N ; ∅;B; 1;x ≥ y ∧ z = u+ v ∥

¬P (x, y) ∨ ¬P (u, v) · {x 7→ a, y 7→ a, z 7→ a, u 7→ a, v 7→ a})
⇒Factorize

SCL(T) (P (a, a)1;N ; ∅;B; 1;x ≥ y ∧ z = x+ y ∥ ¬P (x, y) · {x 7→ a, y 7→ a, z 7→ a})
⇒Backtrack

SCL(T) (¬P (a, a)(x≥y∧z=x+y∥¬P (x,y))·{x 7→a,y 7→a}, a ≥ a, a = a+ a;N ;

{x ≥ y ∧ z = x+ y ∥ ¬P (x, y)};B; 1;⊤)

8.14. SCLT CLAUSE LEARNING FROM SIMPLEMODELSMODULO THEORIES335

In this example the learned clauses x ≥ y∧z = x+y ∥ ¬P (x, y); note how there
are two distinct variables in the learned clause even if we had to use a single
constant for instantiations in conflict search.

Proposition 8.14.21. Let N be a set of constrained clauses. Then any appli-
cation of Decide in an SCL(T) regular run from starting state (ϵ;N ; ∅;B; 0;⊤)
does not create a conflict.

Proof. Assume the contrary: then Propagate would have been applicable before
Decide, contradicting with the definition of a regular and hence reasonable run.

Corollary 8.14.22. Let N be a set of constrained clauses. Then any conflict
in an SCL(T) regular run from starting state (ϵ;N ; ∅;B; 0;⊤) admits a regular
conflict resolution.

Proof. We need to prove that it is possible to apply Resolve during conflict
resolution. By Proposition 8.14.21 the rightmost foreground literal on the trail
is a propagation literal and by regularity we know that this literal appears in the
conflict clause. So a conflict resolution can start by skipping over the background
literals and then resolving once with the rightmost foreground literal.

Lemma 8.14.23 (Non-Redundant Clause Learning). Let N be a set of con-
strained clauses. Then clauses learned in an SCL(T) regular run from starting
state (ϵ;N ; ∅;B; 0;⊤) are not redundant.

Proof. Consider the following fragment of a derivation learning a clause:

⇒Conflict
SCL(T) (M ′′;N ;U ;B; k; Λ0 ∥ C0 · σ0)

⇒{Skip, Factorize, Resolve}∗

SCL(T) (M,Ki+1,M ′;N ;U ;B; k; Λn ∥ Cn · σn)
⇒Backtrack

SCL(T) (M,Lσ(Λn∥D∨L)·σ,Λ′
nσ;N ;U ∪ {Λn ∥ D ∨ L};B; i;⊤).

where Cn = D ∨ L and σ = σn. Let ≺ be any H order induced by M .
We prove that Λnσ ∥ Cnσ is not redundant with respect to ≺, B, and
(N ∪ U). By soundness of hierarchic resolution (N ∪ U) |= Λn ∥ Cn and
Λnσ is satisfiable with M ∧ adiff(B), and Cnσ is false under both M and
M,Ki+1,M ′, Lemma 8.14.11. For a proof by contradiction, assume there is
a N ′ ⊆ grd((S, B,Π), N ∪ U)⪯Λnσ∥Cnσ such that N ′ |=H Λnσ ∥ Cnσ. As
Λnσ ∥ Cnσ is false under M , there is a ground constrained clause Λ′ ∥ C ′ ∈ N ′

with Λ′ ∥ C ′ ⪯ Λnσ ∥ Cnσ, and all literals from C ′ are defined in M and false
by the definition of ≺. Furthermore, we can assume that adiff(B)∧bgd(M)∧Λ′

is satisfiable or Cnσ would be a tautology, because adiff(B) ∧ bgd(M) ∧Λnσ is
satisfiable.

The clause Λ0σ0 ∥ C0σ0 has at least one literal of level k and due to a regular
run, Definition 8.14.18, the rightmost trail literal is resolved away in Λnσ ∥ Cnσ,
Corollary 8.14.22. Therefore, the rightmost foreground literal does not appear
in Λ′ ∥ C ′, so by regularity Λ′ ∥ C ′ would have created a conflict at a previous
state.

336 CHAPTER 8. FIRST-ORDER LOGIC MODULO THEORIES

Of course, in a regular run the ordering of foreground literals on the trail
will change, i.e., the ordering underlying Lemma 8.14.23 will change as well.
Thus the non-redundancy property of Lemma 8.14.23 reflects the situation at
the time of creation of the learned clause. A non-redundancy property holding
for an overall run must be invariant against changes on the ordering. How-
ever, the ordering underlying Lemma 8.14.23 also entails a fixed subset ordering
that is invariant against changes on the overall ordering. This means that our
dynamic ordering entails non-redundancy criteria based on subset relations in-
cluding forward redundancy. From an implementation perspective, this means
that learned clauses need not to be tested for forward redundancy. Current res-
olution, or superposition based provers spent a reasonable portion of their time
in testing forward redundancy of newly generated clauses. In addition, also tests
for backward reduction can be restricted knowing that learned clauses are not
redundant.

Lemma 8.14.24 (Termination of SCL(T)). Let N be a set of constrained
clauses and B be a finite set of background constants. Then any regular run
with start state (ϵ;N ; ∅;B; 0;⊤) that uses Grow only finitely often terminates.

Proof. Since Grow can only be used a finite number of times we consider as a
start state the state after the final application of Grow and prove termination of
runs that never use Grow. We do so by giving an explicit termination measure
on the SCL(T) states. Given a state (M ;N ;U ;B; k;D) we define a termination
measure µ as µ(M ;N ;U ;B; k;D) = (u, s,m, r, d) ∈ N5 with a lexicographical
combination of > where

• l = | atoms(grd((S, B,Π), N ∪U))|, u = 3l− | grd((S, B,Π), U)|, and m =
|M |,

• in the case D = ⊤:

∗ s = 1 + l −m, d = 0, and r = 0,

• otherwise if D = ∆ ∥ D′ · δ:

∗ s = 0,

∗ ifM =M ′, L with L foreground literal then r is the number of copies
of L in D′δ

∗ if the rightmost literal of M is a background literal or if M is empty
then r = 0

∗ d is the number of literals in D′

The number of ground atoms l = | atoms(grd((S, B,Π), N ∪ U))| is an upper
bound to the length of the trail because the trail is consistent and no literal can
appear more than once on the trail. Similarly, every learned clause has at least
one non-redundant ground instance so | grd((S, B,Π), U)| increases whenever
SCL(T) learns a new clause and 3l is an upper bound to the ground instances of
all learned clauses in a regular run. This means that Backtrack strictly decreases

8.14. SCLT CLAUSE LEARNING FROM SIMPLEMODELSMODULO THEORIES337

u, Decide, Propagate, and Conflict strictly decrease s without modifying u,
Skip strictly decreases m without modifying u or s, Resolve strictly decreases r
without modifying u, s, or m, and finally Factorize strictly decreases d possibly
decreases r and does not modify u, s, or m.

Theorem 8.14.25 (Hierarchic Herbrand Theorem). Let N be a finite set of
clauses. N is unsatisfiable iff there exists a finite set N ′ = {Λ1 ∥ C1, . . . ,Λn ∥
Cn} of variable renamed copies of clauses from N and a finite set B of fresh
constants and a substitution σ, grounding for N ′ where codom(σ) = B such
that

∧
i Λiσ is T B satisfiable and

∧
i Ciσ is first-order unsatisfiable over ΣF .

Proof. Recall that N is a pure, abstracted clause set and that T B is term-
generated, compact background theory that contains an equality =, and that
all constants of the background signature are domain constants. Then by com-
pleteness of hierarchic superposition [?], N is unsatisfiable iff there exists a
refutation by hierarchic superposition. Let N ′ = {Λ1 ∥ C1, . . . ,Λn ∥ Cn} be a
finite set renamed copies of clauses from N such that there is a refutation by
hierarchic superposition such that each clause in N ′ and each derived clause
is used exactly once. This set exists because the refutation is finite and any
hierarchic superposition refutation can be transformed into a refutation where
every clause is used exactly once. Now let δ be the overall unifier of this refuta-
tion. This unifier exists, because all clauses in N ′ have disjoint variables and all
clauses in the refutation are used exactly once. Now we consider a finite set of
constants B and a substitution σ, codom(σ) = B, σ grounding for N ′, and for
all x, y ∈ dom(δ) we have xσ = yσ iff xδ = yδ . Now there is also a refutation
for N ′σ by hierarchic superposition where the clauses are inferred exactly in the
way they were inferred for N ′. It remains to be shown that

∧
i Λiσ is T B sat-

isfiable and
∧
i Ciσ is AH unsatisfiable. The hierarchic superposition refutation

terminates with the clause
∧
i Λiσ ∥ ⊥ where

∧
i Λiσ is satisfiable. Furthermore,

the refutation derives ⊥ from {C1σ, . . . , Cnσ} via superposition, proving the
theorem.

Finally, we show that an unsatisfiable clause set can be refuted by SCL(T)
with any regular run if we start with a sufficiently large sequence of constants
B and apply Decide in a fair way. In addition, we need a Restart rule to recover
from a stuck state.

Restart (M ;N ;U ;B; k;⊤) ⇒SCL(T) (ϵ;N ;U ;B; 0;⊤)
Of course, an unrestricted use of rule Restart immediately leads to non-

termination.

Theorem 8.14.26 (Refutational Completeness of SCL(T)). Let N be an un-
satisfiable clause set. Then any regular SCL(T) run will derive the empty clause
provided (i) Rule Grow and Decide are operated in a fair way, such that all
possible trail prefixes of all considered sets B during the run are eventually
explored, and (ii) Restart is only applied to stuck states.

338 CHAPTER 8. FIRST-ORDER LOGIC MODULO THEORIES

Proof. If N is unsatisfiable then by Theorem 8.14.25 there exists a a finite
set N ′ = {Λ1 ∥ C1, . . . ,Λn ∥ Cn} of variable renamed copies of clauses from
N and a finite set B of fresh constants and a substitution σ, grounding for N ′

where codom(σ) = B such that
∧
i Λiσ is T B satisfiable and

∧
i Ciσ is first-order

unsatisfiable over ΣF . If the SCL(T) rules are applied in a fair way, then they will
in particular produce trails solely consisting of literals from N ′σ. For these trails
all theory literals are satisfiable, because

∧
i Λiσ is T B satisfiable. Furthermore,

the states corresponding to these trails cannot end in a stuck state, because
this contradicts the unsatisfiability of

∧
i Ciσ. Instead, they all end in a conflict

with some clause in N ′σ. In addition, there are only finitely many such trails,
because the number of literals in N ′σ is finite. Now let µ((M ;N ;U ;B; k;⊤)) be
the multiset of the levels of all states with trails from N ′σ until a conflict occurs.
Each time a state with a trail from N ′σ results in a conflict, SCL(T) learns a
non-redundant clause that propagates at a strictly smaller level, Lemma 8.14.23.
Thus µ((M ;N ;U ;B; k;⊤)) strictly decreases after each Backtrack step after a
conflict on a trail with atoms from N ′σ. The clause learnt at level zero is the
empty clause.

Condition (i) of the above theorem is quite abstract. It can, e.g., be made
effective by applying rule Grow only after all possible trail prefixes with respect
to the current set B have been explored and to make sure that Decide does not
produce the same stuck state twice.

Historic and Bibliographic Remarks

