
2.7. PROPOSITIONAL SUPERPOSITION 65

logic Factorization and Condensation are actually different, i.e., a Factoriza-
tion inference is no longer a Condensation simplification, in general. They are
separated here to eventually obtain the same set of rules propositional and first-
order logic. This is needed for a proper lifting proof of first-order completeness
that us actually reduced to the ground fragment of first-order logic that can be
considered as a variant of propositional logic.

Proposition 2.6.5. The reduction rules Subsumption, Tautology Deletion,
Condensation and Subsumption Resolution are sound.

Proof. This is obvious for Tautology Deletion and Condensation. For Subsump-
tion we have to show that C1 |= C2, because this guarantees that if N ∪ {C1}
has a model, N ⊎ {C1, C2} has a model too. So assume A(C1) = 1 for an arbi-
trary A. Then there is some literal L ∈ C1 with A(L) = 1. Since C1 ⊆ C2, also
L ∈ C2 and therefore A(C2) = 1. Subsumption Resolution is the combination
of a Resolution application followed by a Subsumption application.

Theorem 2.6.6 (Resolution Termination). If reduction rules are preferred over
inference rules and no inference rule is applied twice to the same clause(s), then
⇒+

RES is well-founded.

Proof. If reduction rules are preferred over inference rules, then the overall
length if a clause cannot exceed n, where n is the number of variables. Mul-
tiple occurrences of the same literal are removed by rule Condensation, multiple
occurrences of the same variable with different sign result in an application of
rule Tautology Deletion. The number of such clauses can be overestimated by
3n because every variable occurs at most once positively, negatively or not at all
in clause. Hence, there are at most 2n3n different resolution applications.

C

Of course, what needs to be shown is that the strategy employed in
Theorem 2.6.6 is still complete. This is not completely trivial. This
result becomes a particular instance of superposition completeness.
Exercise ?? contains the completeness part when the reduction rules are pre-
ferred over inference rules.

2.7 Propositional Superposition

Superposition was originally developed for first-order logic with equality [9].
Here I introduce its projection to propositional logic. Compared to the resolution
calculus superposition adds (i) ordering and selection restrictions on inferences,
(ii) an abstract redundancy notion, (iii) the notion of a partial model, based
on the ordering for inference guidance, and (iv) a saturation concept.

Definition 2.7.1 (Clause Ordering). Let ≺ be a total strict ordering on Σ.
Then ≺ can be lifted to a total ordering on literals by ≺⊆≺L and P ≺L ¬P and

66 CHAPTER 2. PROPOSITIONAL LOGIC

¬P ≺L Q, ¬P ≺L ¬Q for all P ≺ Q. The ordering ≺L can be lifted to a total
ordering on clauses ≺C by considering the multiset extension of ≺L for clauses.

For example, if P ≺ Q, then P ≺L ¬P ≺L Q ≺L ¬Q and P ∨ Q ≺C
P ∨Q ∨Q ≺C ¬Q because {P,Q} ≺mul

L {P,Q,Q} ≺mul
L {¬Q}.

Proposition 2.7.2 (Properties of the Clause Ordering). (i) The orderings on
literals and clauses are total and well-founded.
(ii) Let C and D be clauses with P = atom(max(C)), Q = atom(max(D)),
where max(C) denotes the maximal literal in C.

1. If Q ≺L P then D ≺C C.

2. If P = Q, P occurs negatively in C but only positively inD, thenD ≺C C.

Eventually, I overload ≺ with ≺L and ≺C . So if ≺ is applied to literals it
denotes ≺L, if it is applied to clauses, it denotes ≺C . Note that ≺ is a total
ordering on literals and clauses as well. Eventually we will restrict inferences to
maximal literals with respect to ≺. For a clause set N , I define N≺C = {D ∈
N | D ≺ C}.

Example 2.7.3 (Propositional Clause Ordering). Let P ≺ Q ≺ R ≺ S and
consider the clause set

N = {P ∨ ¬Q,Q ∨ ¬R,P ∨ ¬S, P ∨Q ∨ S}

then
N≺C = ∅ if C = P ∨ ¬Q
N≺C = {P ∨ ¬Q,Q ∨ ¬R} if C = S
N≺C = {P ∨ ¬Q,Q ∨ ¬R,P ∨Q ∨ S} if C = ¬S

Definition 2.7.4 (Abstract Redundancy). A clause C is redundant with respect
to a clause set N if N≺C |= C.

Tautologies are redundant. Subsumed clauses are redundant if ⊆ is strict.
Duplicate clauses are anyway eliminated quietly because the calculus operates
on sets of clauses.

C

Note that for finite N , and any C ∈ N redundancy N≺C |= C can
be decided but is as hard as testing unsatisfiability for a clause set
N . So the goal is to invent redundancy notions that can be efficiently

decided and that are useful.

Definition 2.7.5 (Selection Function). The selection function sel maps clauses
to one of its negative literals or ⊥. If sel(C) = ¬P then ¬P is called selected in
C. If sel(C) = ⊥ then no literal in C is selected.

The selection function is, in addition to the ordering, a further means to
restrict superposition inferences. If a negative literal is selected on a clause, any
superposition inference must be on the selected literal.

2.7. PROPOSITIONAL SUPERPOSITION 67

Definition 2.7.6 (Partial Model Construction). Given a clause set N and
a total ordering ≺ we can construct a (partial) Herbrand model NI for N
inductively as follows:

NC :=
⋃
D≺C δD

δD :=


{P} if D = D′ ∨ P, P strictly maximal, no literal

selected in D and ND ̸|= D

∅ otherwise

NI :=
⋃
C∈N δC

Clauses C with δC ̸= ∅ are called productive.

Proposition 2.7.7. Some properties of the partial model construction.

1. For every D with (C ∨ ¬P) ≺ D we have δD ̸= {P}.

2. If δC = {P} then NC ∪ δC |= C.

3. If NC |= D and D ≺ C then for all C ′ with C ≺ C ′ we have NC′ |= D
and in particular NI |= D.

4. There is no clause C with P ∨ P ≺ C such that δC = {P}.

T

Please properly distinguish: N is a set of clauses interpreted as the
conjunction of all clauses. N≺C is of set of clauses from N strictly
smaller than C with respect to ≺. NI , NC are sets of atoms, often
called Herbrand Interpretations. NI is the overall (partial) model for N , whereas
NC is generated from all clauses from N strictly smaller than C. Validity is
defined by NI |= P if P ∈ NI and NI |= ¬P if P ̸∈ NI , accordingly for NC .

Given some clause set N , the partial model NI can be extended to a val-
uation A by defining A(NI) := NI ∪ {¬P | P ̸∈ NI}. For some Herbrand
interpretation NI (NC) I define NI |= ϕ if A(NI)(ϕ) = 1.

Superposition Left (N ⊎ {C1 ∨ P,C2 ∨¬P}) ⇒SUP (N ∪ {C1 ∨ P,C2 ∨
¬P} ∪ {C1 ∨ C2})
where (i) P is strictly maximal in C1 ∨ P (ii) no literal in C1 ∨ P is selected
(iii) ¬P is maximal and no literal selected in C2 ∨ ¬P , or ¬P is selected in
C2 ∨ ¬P

Factoring (N⊎{C∨P ∨P}) ⇒SUP (N∪{C∨P ∨P}∪{C∨P})
where (i) P is maximal in C ∨ P ∨ P (ii) no literal is selected in C ∨ P ∨ P

Note that the superposition factoring rule differs from the resolution factor-
ing rule in that it only applies to positive literals. Abstract redundancy can also

68 CHAPTER 2. PROPOSITIONAL LOGIC

be lifted to inferences, in the propositional case to Superposition Left applica-
tions. A Superposition Left inference

(N ⊎ {C1 ∨ P,C2 ∨ ¬P})⇒SUP (N ∪ {C1 ∨ P,C2 ∨ ¬P} ∪ {C1 ∨ C2})

is redundant if either one of the clauses C1 ∨ P,C2 ∨ ¬P is redundant, or if
N≺C2∨¬P |= C1∨C2. For a Factoring inference, the conclusion C ∨P makes the
premise C ∨P ∨P , so it is sufficient to require that C ∨P ∨P is not redundant
in order to guarantee C ∨ P to be non-redundant.

Definition 2.7.8 (Saturation). A set N of clauses is called saturated up to
redundancy, if any inference from non-redundant clauses inN yields a redundant
clause with respect to N or is already contained in N .

Alternatively, saturation can be defined on the basis of redundant inferences.
An superposition inference is called redundant if the inferred clause is redundant
with respect to all clauses smaller than the maximal premise of the inference.
Then a set N is saturated up to redundancy if all inferences from clauses from
N are redundant.

Examples for specific redundancy rules that can be efficiently decided and
are already well-known from the resolution calculus, Section 2.6, are

Subsumption (N ⊎ {C1, C2}) ⇒SUP (N ∪ {C1})
provided C1 ⊂ C2

Tautology Dele-
tion

(N ⊎ {C ∨ P ∨ ¬P}) ⇒SUP (N)

Condensation (N ⊎ {C1 ∨ L ∨ L}) ⇒SUP (N ∪ {C1 ∨ L})

Subsumption
Resolution

(N ⊎ {C1 ∨L,C2 ∨ comp(L)}) ⇒SUP (N ∪ {C1 ∨L,C2})

where C1 ⊆ C2

A clause C where Condensation is not applicable is called condensed.

Proposition 2.7.9. All clauses removed by Subsumption, Tautology Deletion,
Condensation and Subsumption Resolution are redundant with respect to the
kept or added clauses.

Corollary 2.7.10 (Soundness). Superposition is sound.

Superposition is a refinement of resolution, so soundness is a consequence of
the soundness part of Theorem 2.6.1.

Theorem 2.7.11 (Completeness). If N is saturated up to redundancy and
⊥ /∈ N then N is satisfiable and NI |= N .

Proof. The proof is by contradiction. So I assume: (i) for any clause D derived
by Superposition Left or Factoring from N that D is redundant, i.e., N≺D |= D,
(ii) ⊥ /∈ N and (iii) NI ̸|= N . Then there is a minimal, with respect to ≺, clause

2.7. PROPOSITIONAL SUPERPOSITION 69

C∨L ∈ N such that NI ̸|= C∨L and L is a selected literal in C∨L or no literal
in C ∨ L is selected and L is maximal. This clause must exist because ⊥ /∈ N .

The clause C ∨ L is not redundant. For otherwise, N≺C∨L |= C ∨ L and
hence NI |= C ∨ L, because NI |= N≺C∨L, a contradiction.

I distinguish the case L is a positive and no literal selected in C ∨L or L is a
negative literal. Firstly, assume L is positive, i.e., L = P for some propositional
variable P . Now if P is strictly maximal in C ∨ P then actually δC∨P = {P}
and hence NI |= C ∨P , a contradiction. So P is not strictly maximal. But then
actually C ∨ P has the form C ′

1 ∨ P ∨ P and Factoring derives C ′
1 ∨ P where

(C ′
1 ∨ P) ≺ (C ′

1 ∨ P ∨ P). Now C ′
1 ∨ P is not redundant, strictly smaller than

C∨L, we have C ′
1∨P ∈ N and NI ̸|= C ′

1∨P , a contradiction against the choice
that C ∨ L is minimal.

Secondly, let us assume L is negative, i.e., L = ¬P for some propositional
variable P . Then, since NI ̸|= C ∨ ¬P we know P ∈ NI . So there is a clause
D ∨ P ∈ N where δD∨P = {P} and P is strictly maximal in D ∨ P and
(D ∨ P) ≺ (C ∨ ¬P). So Superposition Left derives C ∨ D where (C ∨ D) ≺
(C∨¬P). The derived clause C∨D cannot be redundant, because for otherwise
either N≺D∨P |= D∨P or N≺C∨¬P |= C∨¬P . So C∨D ∈ N and NI ̸|= C∨D,
a contradiction against the choice that C ∨ L is the minimal false clause.

So the proof actually tells us that at any point in time we need only to
consider either a superposition left inference between a minimal false clause and
a productive clause or a factoring inference on a minimal false clause.

The proof relies on the abstract redundancy notion and not on the specific
redundancy rules introduced above. However, it also goes through on the basis
of the concrete redundancy notions, see Exercise ??.

According to Theorem 2.7.11 if a clause set N is saturated up to redundancy,
the interpretation NI is a model for N . This does not hold the other way round.
If NI is a model for N then N is not saturated, in general, see Exercise ??.

I mentioned already that the abstract redundancy notion of superposition
goes beyond the classical resolution reduction rules tautology deletion, subsump-
tion, subsumption resolution and condensation. For example consider the clause
set

N = {¬S ∨ P, S ∨Q ∨ ¬R, P ∨Q ∨ ¬R}

with ordering S ≺ P ≺ Q ≺ R. Then N≺P∨Q∨¬R |= P ∨ Q ∨ ¬R, i.e., the
clause P ∨Q∨¬R is redundant and can be deleted. This deletion is not justified
by any of the classical resolution reduction rules.

I

In practice, there is a tradeoff between the unsuccessful testing of a
powerful redundancy notion and keeping redundant clauses. Already
in propositional logic there are exponentially many resolution or su-
perposition inferences possible for a clause set. Testing the abstract superposi-
tion redundancy notion requires exponential run time in the size of the clause
set N≺C . Inferences generated with respect to the partial model operator NI

70 CHAPTER 2. PROPOSITIONAL LOGIC

following the proof of Theorem 2.7.11 are provably non-redundant with respect
to the abstract superposition redundancy notion. Actually, designing a proposi-
tional theorem proving algorithm following the proof of Theorem 2.7.11 results
in a deterministic system, without any choices once the atom ordering ≺ is fixed.
Unfortunately, the resulting system is not very powerful in practice, because it
cannot adopt to the problem structure. Please recall that the minimal literals
in the ordering are then always highly preferred in the resulting learned clauses.

A calculus nicely demonstrating the tradeoff between restricting inferences
and a corresponding redundancy notion preserving completeness is Lock Res-
olution [20]. For lock resolution an ordering is given per literal occurrence in
a clause by attaching an index to each individual literal. The literal with the
maximal index in a clause is then the maximal literal in that clause. Similar to
propositional superposition, inferences are restricted to maximal literals.

Lock Resolution (N ⊎ {C1 ∨ P i, C2 ∨ ¬P j}) ⇒LOCK (N ∪ {C1 ∨
P i, C2 ∨ ¬P j} ∪ {C1 ∨ C2})
where (i) i is a maximal index in C1 ∨ P i and (ii) j is a maximal index in
C2 ∨ ¬P j

Lock Factoring (N ⊎ {C ∨P i ∨P j}) ⇒LOCK (N ∪ {C ∨P i ∨P j} ∪
{C ∨ P j})
where j is a maximal index in in C ∨ P i ∨ P j

The below Example 2.7.12 demonstrates that for lock resolution there is no
compatible redundancy notion in the sense that even tautologies must not be
removed.

Example 2.7.12 (Lock Resolution). Consider the unsatisfiable clause set

P 1 ∨Q2 ¬P 3 ∨ ¬Q4

¬Q5 ∨ P 6 Q7 ∨ ¬P 8

over propositional variables P , Q. There are only two possible lock resolution
inferences between the two clauses in the first row and the two clauses in the
second row, respectively. They lead to the two tautologies P 1 ∨¬P 3 and ¬Q5 ∨
Q7.

Still, lock resolution is complete. It is just that all the well-known redundancy
criteria compatible with resolution or superposition are not compatible with lock
resolution.

2.8 Davis Putnam Logemann Loveland Proce-
dure (DPLL)

A DPLL problem state is a pair (M ;N) whereM a sequence of partly annotated
literals, and N is a set of clauses. In particular, the following states can be
distinguished:

