
68 CHAPTER 2. PROPOSITIONAL LOGIC

be lifted to inferences, in the propositional case to Superposition Left applica-
tions. A Superposition Left inference

(N ⊎ {C1 ∨ P,C2 ∨ ¬P})⇒SUP (N ∪ {C1 ∨ P,C2 ∨ ¬P} ∪ {C1 ∨ C2})

is redundant if either one of the clauses C1 ∨ P,C2 ∨ ¬P is redundant, or if
N≺C2∨¬P |= C1∨C2. For a Factoring inference, the conclusion C ∨P makes the
premise C ∨P ∨P , so it is sufficient to require that C ∨P ∨P is not redundant
in order to guarantee C ∨ P to be non-redundant.

Definition 2.7.8 (Saturation). A set N of clauses is called saturated up to
redundancy, if any inference from non-redundant clauses inN yields a redundant
clause with respect to N or is already contained in N .

Alternatively, saturation can be defined on the basis of redundant inferences.
An superposition inference is called redundant if the inferred clause is redundant
with respect to all clauses smaller than the maximal premise of the inference.
Then a set N is saturated up to redundancy if all inferences from clauses from
N are redundant.

Examples for specific redundancy rules that can be efficiently decided and
are already well-known from the resolution calculus, Section 2.6, are

Subsumption (N ⊎ {C1, C2}) ⇒SUP (N ∪ {C1})
provided C1 ⊂ C2

Tautology Dele-
tion

(N ⊎ {C ∨ P ∨ ¬P}) ⇒SUP (N)

Condensation (N ⊎ {C1 ∨ L ∨ L}) ⇒SUP (N ∪ {C1 ∨ L})

Subsumption
Resolution

(N ⊎ {C1 ∨L,C2 ∨ comp(L)}) ⇒SUP (N ∪ {C1 ∨L,C2})

where C1 ⊆ C2

A clause C where Condensation is not applicable is called condensed.

Proposition 2.7.9. All clauses removed by Subsumption, Tautology Deletion,
Condensation and Subsumption Resolution are redundant with respect to the
kept or added clauses.

Corollary 2.7.10 (Soundness). Superposition is sound.

Superposition is a refinement of resolution, so soundness is a consequence of
the soundness part of Theorem 2.6.1.

Theorem 2.7.11 (Completeness). If N is saturated up to redundancy and
⊥ /∈ N then N is satisfiable and NI |= N .

Proof. The proof is by contradiction. So I assume: (i) for any clause D derived
by Superposition Left or Factoring from N that D is redundant, i.e., N≺D |= D,
(ii) ⊥ /∈ N and (iii) NI ̸|= N . Then there is a minimal, with respect to ≺, clause

2.7. PROPOSITIONAL SUPERPOSITION 69

C∨L ∈ N such that NI ̸|= C∨L and L is a selected literal in C∨L or no literal
in C ∨ L is selected and L is maximal. This clause must exist because ⊥ /∈ N .

The clause C ∨ L is not redundant. For otherwise, N≺C∨L |= C ∨ L and
hence NI |= C ∨ L, because NI |= N≺C∨L, a contradiction.

I distinguish the case L is a positive and no literal selected in C ∨L or L is a
negative literal. Firstly, assume L is positive, i.e., L = P for some propositional
variable P . Now if P is strictly maximal in C ∨ P then actually δC∨P = {P}
and hence NI |= C ∨P , a contradiction. So P is not strictly maximal. But then
actually C ∨ P has the form C ′

1 ∨ P ∨ P and Factoring derives C ′
1 ∨ P where

(C ′
1 ∨ P) ≺ (C ′

1 ∨ P ∨ P). Now C ′
1 ∨ P is not redundant, strictly smaller than

C∨L, we have C ′
1∨P ∈ N and NI ̸|= C ′

1∨P , a contradiction against the choice
that C ∨ L is minimal.

Secondly, let us assume L is negative, i.e., L = ¬P for some propositional
variable P . Then, since NI ̸|= C ∨ ¬P we know P ∈ NI . So there is a clause
D ∨ P ∈ N where δD∨P = {P} and P is strictly maximal in D ∨ P and
(D ∨ P) ≺ (C ∨ ¬P). So Superposition Left derives C ∨ D where (C ∨ D) ≺
(C∨¬P). The derived clause C∨D cannot be redundant, because for otherwise
either N≺D∨P |= D∨P or N≺C∨¬P |= C∨¬P . So C∨D ∈ N and NI ̸|= C∨D,
a contradiction against the choice that C ∨ L is the minimal false clause.

So the proof actually tells us that at any point in time we need only to
consider either a superposition left inference between a minimal false clause and
a productive clause or a factoring inference on a minimal false clause.

The proof relies on the abstract redundancy notion and not on the specific
redundancy rules introduced above. However, it also goes through on the basis
of the concrete redundancy notions, see Exercise ??.

According to Theorem 2.7.11 if a clause set N is saturated up to redundancy,
the interpretation NI is a model for N . This does not hold the other way round.
If NI is a model for N then N is not saturated, in general, see Exercise ??.

I mentioned already that the abstract redundancy notion of superposition
goes beyond the classical resolution reduction rules tautology deletion, subsump-
tion, subsumption resolution and condensation. For example consider the clause
set

N = {¬S ∨ P, S ∨Q ∨ ¬R, P ∨Q ∨ ¬R}

with ordering S ≺ P ≺ Q ≺ R. Then N≺P∨Q∨¬R |= P ∨ Q ∨ ¬R, i.e., the
clause P ∨Q∨¬R is redundant and can be deleted. This deletion is not justified
by any of the classical resolution reduction rules.

I

In practice, there is a tradeoff between the unsuccessful testing of a
powerful redundancy notion and keeping redundant clauses. Already
in propositional logic there are exponentially many resolution or su-
perposition inferences possible for a clause set. Testing the abstract superposi-
tion redundancy notion requires exponential run time in the size of the clause
set N≺C . Inferences generated with respect to the partial model operator NI

70 CHAPTER 2. PROPOSITIONAL LOGIC

following the proof of Theorem 2.7.11 are provably non-redundant with respect
to the abstract superposition redundancy notion. Actually, designing a proposi-
tional theorem proving algorithm following the proof of Theorem 2.7.11 results
in a deterministic system, without any choices once the atom ordering ≺ is fixed.
Unfortunately, the resulting system is not very powerful in practice, because it
cannot adopt to the problem structure. Please recall that the minimal literals
in the ordering are then always highly preferred in the resulting learned clauses.

A calculus nicely demonstrating the tradeoff between restricting inferences
and a corresponding redundancy notion preserving completeness is Lock Res-
olution [20]. For lock resolution an ordering is given per literal occurrence in
a clause by attaching an index to each individual literal. The literal with the
maximal index in a clause is then the maximal literal in that clause. Similar to
propositional superposition, inferences are restricted to maximal literals.

Lock Resolution (N ⊎ {C1 ∨ P i, C2 ∨ ¬P j}) ⇒LOCK (N ∪ {C1 ∨
P i, C2 ∨ ¬P j} ∪ {C1 ∨ C2})
where (i) i is a maximal index in C1 ∨ P i and (ii) j is a maximal index in
C2 ∨ ¬P j

Lock Factoring (N ⊎ {C ∨P i ∨P j}) ⇒LOCK (N ∪ {C ∨P i ∨P j} ∪
{C ∨ P j})
where j is a maximal index in in C ∨ P i ∨ P j

The below Example 2.7.12 demonstrates that for lock resolution there is no
compatible redundancy notion in the sense that even tautologies must not be
removed.

Example 2.7.12 (Lock Resolution). Consider the unsatisfiable clause set

P 1 ∨Q2 ¬P 3 ∨ ¬Q4

¬Q5 ∨ P 6 Q7 ∨ ¬P 8

over propositional variables P , Q. There are only two possible lock resolution
inferences between the two clauses in the first row and the two clauses in the
second row, respectively. They lead to the two tautologies P 1 ∨¬P 3 and ¬Q5 ∨
Q7.

Still, lock resolution is complete. It is just that all the well-known redundancy
criteria compatible with resolution or superposition are not compatible with lock
resolution.

2.8 Davis Putnam Logemann Loveland Proce-
dure (DPLL)

A DPLL problem state is a pair (M ;N) whereM a sequence of partly annotated
literals, and N is a set of clauses. In particular, the following states can be
distinguished:

94 CHAPTER 2. PROPOSITIONAL LOGIC

I MiniSat [38] combines Restart and Forget as follows: there is always
a limit c for the number of learned clauses. If c clauses are learned,

then they are sorted with respect to an activity score. The c
2 clauses with lowest

score are thrown away, c is increased by a constant and a Restart is performed.
Recall that performing a restart is needed to clear the trail. The VSIDS heuristic
together with phase saving directs the search towards the same state that was
generated before the restart.

2.10.5 The Overall Algorithm and Further Heuristics &
Strategies

Algorithm 5 presents a CDCL solver including most aspects discussed in previ-
ous sections. It implements a reasonable strategy and includes the incorporation
of the VSIDS heuristic and restarts. It does not contain a heuristic for an initial
VSIDS score. Typical solutions are to start with a score of 0 for all variables or to
start with the number of variable occurrences in N . Similarly for an application
of the rule Decide. For a variable with maximal VSIDS score either the positive
or the negative literal can be decided. Again this can be implemented via a
heuristic on the number of literal occurrences in N . Important is phase saving :
once a literal has been decided, after removal from the trail due to Restart or
Backtrack, if it is decided again, it is decided with the same sign.

The restart heuristic typically considers also unit clauses. Once a unit clause
is learned a restart is performed immediately. Unit clauses always propagate, so
their literals are collected during a run at the start of the trail. This applies as
well to literals propagating solely because of unit clauses, i.e., at level 0.

2.11 Superposition and CDCL

At the time of this writing it is often believed that the superposition (resolution)
calculus is not a good choice on SAT problems in practice. Most of the successful
SAT solvers implemented in 2015 are based on CDCL. In this section I will
develop some relationships between superposition and CDCL. Actually, CDCL
can be considered as a superposition calculus with respect to a generalized model
operator.

The goal of the original model operator, Definition 2.7.6, is to create minimal
models with respect to positive literals, i.e., if NI |= N for some N , then there is
noM ′ ⊂ NI such thatM ′ |= N . However, if the goal generating minimal models
is dropped, then there is more freedom to construct models while preserving
the general properties of the superposition calculus, in particular, the notion of
redundancy. The gained freedom can be used to be more flexible when generating
a partial model with respect to a given set of clauses. For example, consider the
two clauses in the clause set

N = {P ∨Q, ¬P ∨R}

2.11. SUPERPOSITION AND CDCL 95

Algorithm 5: CDCL(S)

Input : An initial state (ϵ;N ; ∅; 0;⊤).
Output: A final state S = (M ;N ;U ; k;⊤) or S = (M ;N ;U ; k;⊥)

1 while (any rule applicable) do
2 ifrule (Conflict(S)) then
3 while (Skip(S) ∥ Resolve(S)) do
4 update VSIDS scores on resolved literals;

5 update VSIDS scores on learned clause;
6 Backtrack(S);
7 if (potential VSIDS score overflow) then
8 scale VSIDS scores;
9 if (forget heuristic) then

10 Forget(S) clauses ;
11 Restart(S);

12 else
13 if (restart heuristic) then
14 Restart(S);

15 else
16 ifrule (!Propagate(S)) then
17 Decide(S) literal with max. VSIDS score;

18 return(S);

with precedence R ≺ Q ≺ P . The superposition model operator generates
NI = {P} which is not a model for N . However, this model can be extended
to a model for N by adding R to it. The superposition model operator does
not include R because it is not maximal in the second clause. Starting with a
decision on P , the CDCL calculus derives the model P,R via propagation. In
the sequel, I show that a generalized superposition model operator can in fact
generate this model as well.

In addition to an ordering ≺ I assume a decision heuristic H that selects
whether a literal should be productive, i.e., included in the model, or not.

Definition 2.11.1 (Heuristic-Based Partial Model Construction). Given a
clause set N , a set of propositional variables M ⊆ Σ, a total ordering ≺, and a
variable heuristic H : Σ→ {0, 1}, the (partial) model NH

M for N with P,Q ∈M

96 CHAPTER 2. PROPOSITIONAL LOGIC

is inductively constructed as follows:

NH
P :=

⋃
Q≺P δ

H
Q

δHP :=


{P} if there is a clause (D ∨ P) ∈ N, such that NH

P |= ¬D
and either P is strictly maximal or
H(P) = 1 and there is no clause (D′ ∨ ¬P) ∈ N,D′ ≺ P
such that NH

P |= ¬D′

∅ otherwise

NH
M :=

⋃
P∈M δHP

In case a clause (D ∨ P) ∈ N is the reason for δHP = {P} acoording to the
above Definition 2.11.1, we say that (D ∨ P) produced P in δHP , NH

M , and the
clause (D ∨ P) is productive, analogous to Definition 2.7.6.

T

Please note that NI is defined inductively over the clause ordering ≺
whereas NH

M is defined inductively over the atom ordering ≺. For each
atom P , the heuristic model construction NH

M considers all clauses
with maximal P , ¬P at once. The set M of propositional variables may and
will often equate Σ.

The heuristic-based model operator NH
M enjoys many properties of the stan-

dard model operator NI and generalizes it.

Lemma 2.11.2. If H(P) = 0 for all P ∈ Σ then NI = NH
Σ for any N .

Proof. The proof is by contradiction. Assume NI ̸= NH
Σ , i.e., there is a minimal

P ∈ Σ such that P occurs only in one set out of NI and NH
Σ .

Case 1: P ∈ NI but P ̸∈ NH
Σ .

Then there is a productive clause D = D′ ∨ P ∈ N such that P is strictly
maximal in this clause and ND |= ¬D′. Since P is strictly maximal in D the
clause D′ only contains literals strictly smaller than P . Since both interpreta-
tions agree on all literals smaller than P from ND |= ¬D′ it follows NH

P |= ¬D′

and therefore δHP = {P} contradicting P ̸∈ NH
Σ .

Case 2: P ̸∈ NI but P ∈ NH
Σ .

Then there is a minimal productive clause D = D′ ∨ P ∈ N such that P
is strictly maximal in this clause and NH

P |= ¬D′ because H(P) = 0. The
atom P is strictly maximal in D, so the clause D′ only contains literals strictly
smaller than P . Since both interpretations agree on all literals smaller than P
from NH

P |= ¬D′ it follows ND |= ¬D′ and therefore δD = {P} contradicting
P ̸∈ NI .

So the new model operator NH
M is a generalization of NI . Next, I will show

that with the help of NH
M a close relationship between the model assumptions

generated by the CDCL calculus and the superposition model operator can be
established. This result can then further be used to apply the abstract superposi-
tion redundancy criteria to CDCL. But before going into the relationship I first

2.11. SUPERPOSITION AND CDCL 97

show that the generalized superposition partial model operator NH
Σ supports

the standard superposition completeness result, analogous to Theorem 2.7.11.
Recall that the same notion of redundancy, Definition 2.7.4, is used.

Theorem 2.11.3. If N is saturated up to redundancy and ⊥ /∈ N then N is
satisfiable and NH

Σ |= N .

Proof. The proof is by contradiction. So I assume: (i) any clause C derived by
Superposition Left or Factoring from N is redundant, i.e., N≺C |= C, (ii) ⊥ /∈ N
and (iii) NH

Σ ̸|= N . Then there is a minimal, with respect to ≺, clause C1∨L ∈ N
such that NH

Σ ̸|= C1 ∨ L and L is a maximal literal in C1 ∨ L. This clause must
exist because ⊥ /∈ N .

The clause C1 ∨L is not redundant. For otherwise, NH
atom(L) ∪ δ

H
P |= C1 ∨L

and hence NH
Σ |= C1 ∨ L, a contradiction.

I distinguish the case whether L is a positive or a negative literal. Firstly,
assume L is positive, i.e., L = P for some propositional variable P . Now if P is
strictly maximal in C1 ∨P then actually δHP = {P} and hence NH

Σ |= C1 ∨P , a
contradiction. So P is not strictly maximal. But then actually C1 ∨ P has the
form C ′

1∨P ∨P and Factoring derives C ′
1∨P where (C ′

1∨P) ≺ (C ′
1∨P ∨P). The

clause C ′
1∨P is not redundant, strictly smaller than C1∨L, we have C ′

1∨P ∈ N
and NH

Σ ̸|= C ′
1 ∨ P , a contradiction against the choice that C1 ∨ L is minimal.

Secondly, assume L is negative, i.e., L = ¬P for some propositional variable
P . Then, since NH

Σ ̸|= C1 ∨ ¬P we know P ∈ NH
Σ , i.e., δHP = {P}. There

are two cases to distinguish. Firstly, there is a clause C2 ∨ P ∈ N where P is
strictly maximal, NH

P |= ¬C2, and by definition (C2 ∨ P) ≺ (C1 ∨ ¬P). Since
C1 ≺ ¬P and C1 ∨ ¬P is not a tautology, it holds C1 ≺ P . So a Superposition
Left inference derives C1 ∨ C2 where (C1 ∨ C2) ≺ (C1 ∨ ¬P). The derived
clause C1 ∨ C2 cannot be redundant, because for otherwise either NH

P |= C2 or
NH
P |= C1. So C1 ∨ C2 ∈ N and NH

Σ ̸|= C1 ∨ C2, a contradiction against the
choice that C1 ∨L is minimal. Secondly, there is no clause C2 ∨P ∈ N where P
is strictly maximal but H(P) = 1. But a further condition for this case is that
there is no clause (C1 ∨ ¬P) ∈ N , ¬P strictly maximal in C1 ∨ ¬P , because
the clause is condensed, such that NH

P ̸|= C1 contradicting the above choice of
C1 ∨ ¬P .

Recalling Section 2.7, Superposition is based on an ordering ≺. It relies
on a model assumption NI , Definition 2.7.6, or its generalization NH

Σ , Defini-
tion 2.11.1. Given a set N of clauses, either NI (NH

Σ) is a model for N , N
contains the empty clause, or there is a superposition inference on the minimal
false clause with respect to≺, see the proof of Theorem 2.7.11 or Theorem 2.11.3,
respectively.

CDCL is based on a variable selection heuristic. It computes a model as-
sumption via decision variables and propagation. Either this assumption is a
model of N , N contains the empty clause, or there is a backjump clause that is
learned.

98 CHAPTER 2. PROPOSITIONAL LOGIC

For a CDCL state (M,N,U, k,D) generated by an application of the rule
Conflict, where M = L1, . . . , Ln any following Resolve step actually corre-
sponds to a superposition step between a minimal false clause and its produc-
tive counterpart, with respect to the precedence atom(L1) ≺ atom(L2) ≺ . . . ≺
atom(Ln). Furthermore, the decision heuristicH is defined byH(atom(Lm)) = 1
if there is a positive decision literal Lkm occurring in M and H(atom(Lm)) = 0
otherwise. Then the learned CDCL clause is in fact generated by a superposition
inference with respect to the model operator NH

Σ . The following propositions
present this relationship between Superposition and CDCL in full detail.

Theorem 2.11.4. Let (M,N,U, k, C ∨K) be a CDCL state generated by rule
Conflict and a reasonable strategy where M = L1, . . . , Ln. Let H(atom(Lm)) =
1 for any positive decision literal Lim occurring in M and H(atom(Lm)) = 0
otherwise. Furthermore, I assume that if CDCL can propagate both P and ¬P
in some state, then it propagates P . The superposition precedence is atom(L1) ≺
atom(L2) ≺ . . . ≺ atom(Ln). Let K be maximal in C ∨ K and C ∨ K be the
minimal false clause with respect to ≺. Then

1. Ln is a propagated literal and K = comp(Ln).

2. The clause generated by C ∨ K and the clause propagating Ln is the
result of a Superposition Left inference between the clauses and it is not
redundant.

3. NH
{L1,...,Ln} = {P | P ∈M}

Proof. 1. Assume K ̸= comp(Ln). Since C ∨K was derived by rule Conflict it
is false with respect to M . Since K is maximal in C ∨K it is the complement
of some Li from M with i < n contradicting a reasonable strategy. So K =
comp(Ln). Assume Ln is a decision literal. But then at trail L1, . . . , Ln−1 the
clause C ∨ K propagates K with respect to L1 . . . Ln−1, so with a reasonable
strategy, the literal Ln cannot be a decision literal but its complement was
propagated by the clause C ∨K.

2. Let D∨Ln be the clause propagating Ln. Both C and D only contain lit-
erals with variables from atom(L1), . . . , atom(Ln−1). Since in CDCL duplicate
literals are (silently) removed, the literal Ln is strictly maximal in D ∨ Ln and
K = comp(Ln) is strictly maximal in C ∨K. So resolving on Ln is a superpo-
sition inference with respect to the atom ordering atom(L1) ≺ atom(L2) . . . ≺
atom(Ln). Now assume C ∨D is redundant, i.e., there are clauses D1, . . . , Dn

from N ∪U with Di ≺ C ∨D and D1, . . . , Dn |= C ∨D. Since C and D are false
in L1 . . . Ln−1, the resolvent C ∨ D is false in L1 . . . Ln−1 as well and there is
at least one Di that is also false in L1 . . . Ln−1. A contradiction against the as-
sumption that L1 . . . Ln−1 does not falsify any clause in N ∪U , i.e., rule Conflict
was not applied eagerly contradicting a reasonable strategy.

3. Firstly, note that if CDCL can propagate both P and ¬P then either way
the next applicable reasonable rule is Conflict, so propagating P in favor of ¬P

2.11. SUPERPOSITION AND CDCL 99

is not a restriction on the propagation order. I prove the equality of the atom
sets by induction on n.
“⊇” For n = 1 and L1 = [¬]P propagated inM , there are two cases: (i) L1 = P ,
so P ∈ N and δHP = {P}; (ii) L1 = ¬P , so ¬P ∈ N and P ̸∈ N , therefore
δHP = ∅. If L1 = [¬]P is a decision literal then ¬P ̸∈ N and P ̸∈ N . Again there
are two cases: (i) L1 = P , so H(P) = 1 and hence δHP = {P}; (ii) L1 = ¬P , so
H(P) = 0 and hence δHP = ∅.

For the step (n − 1) → n, I do the same case analysis as for the base case
n = 1. If Ln = [¬]P is propagated in M , there are two cases: (i) Ln = P , so
D∨P ∈ N and L1 . . . Ln−1 |= ¬D. By induction hypothesisNH

{L1,...,Ln−1} |= ¬D,

Li ≺ P , so δHP = {P}; (ii) Ln = ¬P , so D ∨¬P ∈ N , H(P) = 0 and there is no
clauseD′∨P ∈ N propagating P , hence δHP = ∅. If Ln = [¬]P is a decision literal
in M then due to the reasonable strategy, there is no clause propagating Ln on
the basis of the trail L1 . . . Ln−1. Again two cases: (i) Ln = P , so H(P) = 1 and
there is no clause C1∨¬P such that L1, . . . , Ln−1 |= ¬C1, hence δ

H
P = {P}; (ii) if

Ln = ¬P , H(P) = 0, and there is no clause C1∨P such that L1 . . . Ln−1 |= ¬C1,
so δHP = ∅.
“⊆” By construction. □

Example 2.9.9 shows that requiring C ∨ K to be minimal, is necessary for
its non-redundancy. However, even if C ∨K is chosen non-minimal and hence
potentially redundant, the resolvent C ∨D is always non-redundant because of
the reasonable strategy. Therefore, choosing a minimal clause potentially reduces
the number of Resolve steps but starting with a non-minimal clause will results
in eventually learning a non-redundant clause.

Proposition 2.11.5 (Resolve and Skip). Clauses generated by rule Resolve are
superposition inferences in the sense of Proposition 2.11.4 and always false with
respect to NH

Σ .

Proof. for the reasonable CDCL run we assume that if both P and ¬P can
be propagated in some state, then P is propagated (this can only be the final
propagation before Conflict)

Proposition 2.11.4 is actually a nice explanation for the efficiency of the
CDCL procedure: a learned clause is never redundant. Recall that redundancy
here means that the learned clause C is not entailed by smaller clauses in N ∪U .
Furthermore, the ordering underlying Proposition 2.11.4 is based on the trail,
i.e., it changes during a CDCL run. For superposition it is well known that
changing the ordering is not compatible with the notion of redundancy, i.e.,
superposition is incomplete when the ordering may be changed infinitely often
and the superposition redundancy notion is applied.

Example 2.11.6. Consider the superposition left inference between the clauses
P ∨Q and R ∨ ¬Q with ordering P ≺ R ≺ Q resulting in P ∨R. Changing the
ordering to Q ≺ P ≺ R the inference P ∨ R becomes redundant. So flipping
infinitely often between P ≺ R ≺ Q and Q ≺ P ≺ R is already sufficient to
prevent any saturation progress.

100 CHAPTER 2. PROPOSITIONAL LOGIC

Although Example 2.11.6 shows that changing the ordering is not compatible
with redundancy and superposition completeness, Proposition 2.11.4 proves that
any CDCL learned clause is not redundant in the superposition sense and the
CDCL procedure changes the ordering and is complete. This relationship shows
the power of reasoning with respect to a (partial) model assumption. The model
assumption actually prevents the generation of redundant clauses. Nevertheless,
also in the CDCL framework completeness would be lost if redundant clauses
are eagerly removed in general. Either the ordering is not changed and the
superposition redundancy notion can be eagerly applied or only a weaker notion
of redundancy is possible while keeping completeness.

The crucial point is that for the superposition calculus the ordering is also
the bases for termination and completeness. If the completeness proof can be
decoupled from the ordering, then the ordering might be changed infinitely often
and other notions of redundancy become available. However, these new notions
of redundancy need to be compatible with the completeness and termination
proof.

2.12 Implementing Superposition

CDCL can be interpreted as a superposition calculus where the underlying or-
dering is changed, Theorem 2.11.4. On the other hand, an implementation of the
superposition calculus where the ordering is dynamically changed, is no longer
complete in the sense of Theorem 2.7.11, see Example 2.11.6.

An implementation of superposition with a fixed ordering but in the style
of CDCL model development does not work either. Although the superposition
partial model NH

{L1,...,Ln}, Theorem 2.11.4, constructed with respect to the atom

ordering atom(L1) ≺ atom(L2) ≺ . . . ≺ atom(Ln) coincides with the trail
(M,N,U, k, C∨K), after learning the clause generated out of the conflict clause
C ∨ K this is no longer the case, in general. A CDCL run will then typically
generate a different trail, hence a different superposition ordering will correspond
to this trail. Still, superposition can be implemented on the basis of the partial
model operator, Algorithm 6.

For the result C ∨ D of the Superposition Left inference between C ∨ ¬P
and D ∨ P in Algorithm 6 I assume duplicate literals to be silently removed.
This is justified by the reduction rule Condensation. Actually, in an implemen-
tation of propositional superposition the reduction rule Condensation replaces
Factoring. The clause C ∨D is not redundant but potentially simplifies or re-
duces clauses in N . For simplification any instance of the abstract redundancy
criterion, Definition 2.7.4, may be used. I will further discuss instances of the
abstract redundancy notion in Section 2.13. The model operator NI can be
replaced by the model operator NH

Σ in Algorithm 6.

