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interpretation of equality ≈A is a congruence, Exercise ??. Further on in this
chapter I will also show that the other way round can hold as well: given a
suitable congruence on some set, the equivalence classes of the congruence can
then serve as the domain of a Σ-algebra providing a suitable interpretation for
equality.

3.3 Substitutions

For a concrete propositional logic interpretation, it is sufficient select a valuation,
i.e., truth values for the propositional variables, see Section 2.2. In first-order
logic this becomes more versatile. The truth values for propositional variables
correspond to n-ary relations on the domain with respect to valuations for the
first-order variables, see Section 3.2. So in addition to the 0-relations for propo-
sitional variables, n-ary relations need to be considered under an assignment
β for the first-order variables. When calculi for propositional logic considered
partial interpretations, e.g., Tableau (Section 2.4) or CDCL (Section 2.9)), they
are presented by sets of propositional literals taken from the processed clause
set. For first-order logic this corresponds to taking first-order literals from the
clause set and then instantiating the variables in these literals with terms in
order to detect conflicts or for propagation. For example, a first-order clause
¬P (x) ∨ T (x) with universally quantified x propagates the literal T (f(y)) un-
der the partial interpretation P (f(y)) where x is instantiated with f(y). This
instantiation is the syntactic counterpart of an assignment and represented by
substitutions represented below.

Definition 3.3.1 (Substitution (well-sorted)). A well-sorted substitution is a
mapping σ : X → T (Σ,X ) so that

1. σ(x) ̸= x for only finitely many variables x and

2. sort(x) = sort(σ(x)) for every variable x ∈ X .
The application σ(x) of a substitution σ to a variable x is often written in

postfix notation as xσ. The variable set dom(σ) := {x ∈ X | xσ ̸= x} is called
the domain of σ. The term set codom(σ) := {xσ | x ∈ dom(σ)} is called the
codomain of σ. From the above definition it follows that dom(σ) is finite for
any substitution σ. The composition of two substitutions σ and τ is written as
a juxtaposition στ , i.e., tστ = (tσ)τ . A substitution σ is more general than a
substitution τ if there is a substitution δ such that σδ = τ and we write σ ≤ τ .
A substitution σ is called idempotent if σσ = σ. A substitution σ is idempotent
iff dom(σ) ∩ vars(codom(σ)) = ∅.

Substitutions are often written as sets of pairs {x1 7→ t1, . . . , xn 7→ tn} if
dom(σ) = {x1, . . . , xn} and xiσ = ti for every i ∈ {1, . . . , n}. The modification
of a substitution σ at a variable x is defined as follows:

σ[x 7→ t](y) =

{
t if y = x
σ(y) otherwise
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A substitution σ is identified with its extension to formulas and defined as
follows:

1. ⊥σ = ⊥,

2. ⊤σ = ⊤,

3. (f(t1, . . . , tn))σ = f(t1σ, . . . , tnσ),

4. (P (t1, . . . , tn))σ = P (t1σ, . . . , tnσ),

5. (s ≈ t)σ = (sσ ≈ tσ),

6. (¬ϕ)σ = ¬(ϕσ),

7. (ϕ ◦ ψ)σ = ϕσ ◦ ψσ where ◦ ∈ {∨,∧},

8. (Qx.ϕ)σ = Qz.(ϕσ[x 7→ z]) where Q ∈ {∀,∃}, z and x are of the same sort
and z is a fresh variable.

The result tσ (ϕσ) of applying a substitution σ to a term t (formula ϕ)
is called an instance of t (ϕ). The substitution σ is called ground if it maps
every domain variable to a ground term, i.e., the codomain of σ consists of
ground terms only. If the application of a substitution σ to a term t (formula
ϕ) produces a ground term tσ (a variable-free formula, vars(ϕσ) = ∅), then tσ
(ϕσ) is called ground instance of t (ϕ) and σ is called grounding for t (ϕ). The
set of ground instances of a clause set N is given by grd(Σ, N) = {Cσ | C ∈
N, σ is grounding for C} is the set of ground instances of N . A substitution σ
is called a variable renaming if codom(σ) ⊆ X and for any x, y ∈ X , if x ̸= y
then xσ ̸= yσ, i.e., σ is a bijection X into X .

The following lemma establishes the relationship between substitutions and
assignments.

Lemma 3.3.2 (Substitutions and Assignments). Let β be an assignment of
some interpretation A of a term t and σ a substitution. Then

β(tσ) = β[x1 7→ β(x1σ), . . . , xn 7→ β(xnσ)](t)

where dom(σ) = {x1, . . . , xn}.

Proof. By structural induction on t. If t = a is a constant, then β(aσ) = aA =
β[x1 7→ β(x1σ), . . . , xn 7→ β(xnσ)](a). The case t = x is a variable and x /∈
dom(σ) is identical to the case that t is a constant. So t = xi is a variable
and xi ∈ dom(σ), where xiσ = s. If s is a variable, then β(tσ) = β(xiσ) =
β(s) = β[xi 7→ β(s)](xi) = β[x1 7→ β(x1σ), . . . , xn 7→ β(xnσ)](t). The case
s is a constant is analogous to the case t is a constant. So let xiσ = s =
f(s1, . . . , sm). β(xiσ) = β(f(s1, . . . , sm)) = fA(β(s1), . . . , β(sm)) = β[xi 7→
f(s1, . . . , sm)](xi) = β[x1 7→ β(x1σ), . . . , xn 7→ β(xnσ)](t).
For the inductive case let t = f(t1, . . . , tm). Then β(tσ) = fA(β(t1σ), . . . , β(tmσ)) =
fA(β[x1 7→ β(x1σ), . . . , xn 7→ β(xnσ)](t1), . . . , β[x1 7→ β(x1σ), . . . , xn 7→
β(xnσ)](tm)) = β[x1 7→ β(x1σ), . . . , xn 7→ β(xnσ)](t).
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Corollary 3.3.3. Let ϕ be a quantifier free formula, σ a substitution, A be a Σ-
algebra, and β an assignment. Then A, β |= ϕσ iff A, β[x1 7→ β(x1σ), . . . , xn 7→
β(xnσ)] |= ϕ, where dom(σ) = {x1, . . . , xn}.

3.4 Equality

The equality predicate is build into the first-order language in Section 3.1 and
not part of the signature. It is a first class citizen. This is the case although
it can be actually axiomatized in the language. The motivation is that firstly,
many real world problems naturally contain equations. They are a means to
define functions. Then predicates over terms model properties of the functions.
Secondly, without special treatment in a calculus, it is almost impossible to
automatically prove non-trivial properties of a formula containing equations.

In this section I firstly show that any formula can be transformed into a
formula where all atoms are equations. Secondly, that any formula containing
equations can be transformed into a formula where the equality predicate is
replaced by a fresh predicate together with some axioms. In the first case the
respective clause sets are equivalent, in the second case the transformation is
satisfiability preserving. For the replacement of any predicate R by equations
over a fresh function fR we assume an additional fresh sort Bool with a fresh
constant true.

InjEq χ[R(t1,1, . . . , t1,n)]p1 . . . [R(tm,1, . . . , tm,n)]pm ⇒IE χ[fR(t1,1, . . . , t1,n) ≈
true]p1 . . . [fR(tm,1, . . . , tm,n) ≈ true]pm

provided R is a predicate occurring in χ, {p1, . . . , pm} are all positions of atoms
with predicate R in χ and fR is new with appropriate sorting

Theorem 3.4.1. Let χ ⇒∗
IE χ′ then χ is satisfiable (valid) iff χ′ is satisfiable

(valid).

Proof. (Sketch) The basic proof idea is to establish the relation (tA1 , . . . , t
A
n ) ∈

RA iff fAR (tA1 , . . . , t
A
n ) = trueA. Furthermore, the sort of true is fresh to χ and

the equations fR(t1, . . . , tn) ≈ true do not interfere with any term ti because
the fR are all fresh and only occur on top level of the equations.

When removing equality from a formula it needs to be axiomatized. For
simplicity, I assume here that the considered formula χ is one-sorted, i.e., there
is only one sort occurring for functions, relations in χ. The extension to formulas
with many sorts is straightforward and discussed below.

RemEq χ[l1 ≈ r1]p1 . . . [lm ≈ rm]pm ⇒RE χ[E(l1, r1)]p1 . . . [E(lm, rm)]pm∧
def(χ,E)

provided {p1, . . . , pm} are all positions of equations li ≈ ri in χ and E is a new
binary predicate
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The formula def(χ,E) is the axiomatization of equality for χ and it consists
of a conjunction of the equivalence relation axioms for E

∀x.E(x, x)
∀x, y.(E(x, y)→ E(y, x))
∀x, y, z.((E(x, y) ∧ E(x, z))→ E(x, z))

plus the congruence axioms for E for every n-ary function symbol f
∀x1, y1, . . . , xn, yn.((E(x1, y1) ∧ . . . ∧ E(xn, yn))
→ E(f(x1, . . . , xn), f(y1, . . . , yn)))

plus the congruence axioms for E for every m-ary predicate symbol P
∀x1, y1, . . . , xm, ym.((E(x1, y1) ∧ . . . ∧ E(xm, ym) ∧ P (x1, . . . , xm))
→ P (y1, . . . , ym)

Theorem 3.4.2. Let χ⇒RE χ
′ then χ is satisfiable iff χ′ is satisfiable.

Proof. (⇒) Let A be an algebra with A |= χ. Now extend A to an interpretation
A′ for χ′ by assigning EA′

:=≈A and A′ := A otherwise. Obviously, A′ |= χ′

because ≈ satisfies the equivalence and congruence axioms and in χ′ and (a, b) ∈
EA′

iff a ≈ b.

(⇐) Assume A′ is a model for χ′. Now define a relation ∼ by a :∼ b for a, b ∈ UA′

if (a, b) ∈ EA′
. The equivalence axioms for E are part of χ′ so we can define

equivalence classes [a] := {b mod a ∼ b} for all a, b ∈ UA′
. Obviously, the

definition of equlivalence classes respects the sort restrictions. Next we define
the domain of A to be UA := {[a] | a ∈ UA′}. We interpret functions in A by
the usual homomorphism fA([a1], . . . , [an]) := [fA

′
(a1, . . . , an)] and relations by

RA([a1], . . . , [an]) := RA′
(a1, . . . , an). Both definitions are well-defined because

of the congruence axioms for any f,R in χ′. Then we get [a] ≈ [b] in A iff
[a] = [b] in sigval′ iff a ∼ b in sigval′. Now, A |= χ can be shown buy strucural
induction on χ where I only show the two relevant cases for terms and atoms
for A, β and A′, β′, respectively. As an invariant through the case of quantifiers,
I assume β(x) = [b] iff β′(x) = b for any variable x.
Firstly, f(t1, . . . , tn)

A,β = [a] iff f(t1, . . . , tn)
A′,β′

= a by structural induction.
Secondly, A, β |= R(t1, . . . , tn) by definition if (t1, . . . , tn)

A,β ∈ RA which is the
case if (t1, . . . , tn)

A′,β′ ∈ RA′
.

Corollary 3.4.3. Let χ ⇒RE χ′ where χ′ = χ[E(l1, r1)]p1 . . . [E(lm, rm)]pm ∧
def(χ,E). Then |= χ iff |= def(χ,E)→ χ[E(l1, r1)]p1 . . . [E(lm, rm)]pm .

Proof. It holds |= χ iff ¬χ is unsatisfiable iff (¬χ)[E(l1, r1)]1p1 . . . [E(lm, rm)]1pm∧
def(χ,E) is unsatisfiable, by Theorem 3.4.2 and the definition of ⇒RE, iff
|= def(χ,E)→ χ[E(l1, r1)]p1 . . . [E(lm, rm)]pm .

Now in case χ has many different sorts then for each sort S one new fresh
predicate ES is needed for the translation. For each of these predicates equiv-
alence relation and congruence axioms need to be generated where for every
function f only one axiom using ES is needed, where S is the range sort of S.
Similar for the domain sorts of f and accordingly for predicates.
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3.5 Herbrand’s Theorem

There are substantial differences between propositional logic and its general-
ization first-order logic. There are only finitely many formulas in propositional
logic that can be semantically distinguished for some finite signature. Given
a finite propositional signature Σ there are “only” 2|Σ| different valuations. In
first-order logic there are infinitely many different interpretations for formulas
over some finite first-order signature Σ. As we will see, this moves the satisfia-
bility problem for some set of clauses from NP (propositional) to undecidable
(first-order), see Section 3.15. In this section I present two results that are the
basis for most first-order calculi. Firstly, I show that when considering satisfi-
ability of a clause set, it is not necessary to consider arbitrary interpretations.
Instead, one specific interpretation, called Herbrand interpretation, is sufficient
for establishing satisfiability. Secondly, interpretations for first-order clause sets,
including Herbrand interpretations, typically consider an infinite domain. This
implies infinitely many different assignments defining the semantics for a clause
set. Still, if some clause set is unsatisfiable, then finitely many assignments are
sufficient to prove unsatisfiability. This property is called Compactness of first-
order logic. Putting the two results together, it is sufficient to consider finitely
many assignments from the Herbrand interpretation in order to prove unsatisfi-
ability of a set of clauses: the basis for all modern automated reasoning calculi
for first-order logic.

Definition 3.5.1 (Herbrand Interpretation). A Herbrand Interpretation (over
Σ) is a Σ-algebra H such that

1. SH := TS(Σ) for every sort S ∈ S

2. fH : (s1, . . . , sn) 7→ f(s1, . . . , sn) where f ∈ Ω, arity(f) = n, si ∈ SH
i and

f : S1 × . . .× Sn → S is the sort declaration for f

3. PH ⊆ (SH
1 × . . .×SH

m) where P ∈ Π, arity(P ) = m and P ⊆ S1× . . .×Sm
is the sort declaration for P

Lemma 3.5.2 (Herbrand Interpretations are Well-Defined). Every Herbrand
Interpretation is a Σ-algebra.

Proof. (i) the carriers are non-empty because every signature contains a con-
stant declaration for each sort. If SH ∩ TH ̸= ∅, then there must be two decla-
rations for the same function symbol in Σ which is forbidden. Furthermore, ∼
is well-sorted.

(ii) functions are total by definition.

(iii) relations are assigned.

In other words, values for ground terms are fixed to be the ground terms
itself and functions are fixed to be the term constructors. Predicate symbols
may be freely interpreted as relations over ground terms.
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Proposition 3.5.3 (Representing Herbrand Interpretations). A Herbrand in-
terpretation A can be uniquely determined by a set of ground atoms I

(s1, . . . , sn) ∈ PA iff P (s1, . . . , sn) ∈ I

Thus Herbrand interpretations (over Σ) can be identified with sets of Σ-
ground atoms. A Herbrand interpretation I is called a Herbrand model of ϕ,
where I assume ϕ does not contain equations, if I |= ϕ.

C

Historically, Herbrand interpretations have been defined for first-order
logic without equality. These are exactly the definitions above. Later
on, I’ll extend these notions such that they also cover the case of

equations.

Example 3.5.4. Consider the signature Σ = ({S}, {a, b}, {P,Q}), where a, b
are constants, arity(P ) = 1, arity(Q) = 2, and all constants, predicates are
defined over the sort S. Then the following are examples of Herbrand interpre-
tations over Σ, where for all interpretations SA = {a, b}.

I1 : = ∅
I2 : = {P (a), Q(a, a), Q(b, b)}
I3 : = {P (a), P (b), Q(a, a), Q(b, b), Q(a, b), Q(b, a)}

Now consider the extension Σ′ of Σ by one unary function symbol g : S → S.
Then the following are examples of Herbrand interpretations over Σ′, where for
all interpretations SA = {a, b, g(a), g(b), g(g(a)), . . .}.

I ′1 : = ∅
I ′2 : = {P (a), Q(a, g(a)), Q(b, b)}
I ′3 : = {P (a), P (g(a)), P (g(g(a))), . . . , Q(a, a), Q(b, b), Q(b, g(b)), Q(b, g(g(b))), . . .}

Theorem 3.5.5 (Herbrand’s Theorem). Let N be a finite set of Σ-clauses
without equality. Then N is satisfiable iff N has a Herbrand model over Σ iff
grd(Σ, N) has a Herbrand model over Σ.

Proof. Firstly, I prove that if N has a model, then it has a Herbrand model
over Σ. So let A be a model for N . Since N is finite let’s consider exactly the
subsignature of N . Then PH = {(t1, . . . , tn) | (tA1 , . . . , tAn ) ∈ PA, ti ∈ T (Σ)}.
Finally, I need to prove that H is a model for N . Assume not. Then there is a
clause C ∈ N and an assignment βH such thatH(βH)(C) = 0 where βH(xi) = ti
for all xi ∈ vars(C) with ti ∈ Tsort(xi)(Σ). Let σ = {x1 7→ t1, . . . , xm 7→ tm}.
Now consider an assignment βA where βA(xi) = tAi . Since A |= N also A(βA) |=
C, in particular, there is a literal L ∈ C with A(βA)(L) = 1. If it is an atom
P (l1, . . . , ln) with (A(βA)(l1), . . . ,A(βA)(ln)) ∈ PA, but then (l1σ, . . . , lnσ) ∈
PH by definition of H and Lemma 3.3.2. Hence (H(βH)(l1), . . . ,H(βH)(ln)) ∈
PH, a contradiction. The case where L is negative is dual.
Secondly, due to Lemma 3.5.2 the existence of a Herbrand model implies satis-
fiability.
It remains to be shown that N has a Herbrand model over Σ iff grd(Σ, N) has a
Herbrand model. Firstly, assume N has a Herbrand model H over Σ. Then H is
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also a model for grd(Σ, N). Assume not. Then there is a clause Cσ ∈ grd(Σ, N),
C ∈ N , such thatH ̸|= Cσ. But thenH(βH[x1 7→ (x1σ), . . . , xn 7→ (xnσ)])(C) =
0, dom(σ) = {x1, . . . , xn}, contradicting H is a model for N . Secondly, assume
H is a model for grd(Σ, N). Then H is also a model for N . Assume not, then
there is a clause C ∈ N and ad assignment βH[x1 7→ (x1σ), . . . , xn 7→ (xnσ)],
vars(C) = {x1, . . . , xn}, such thatH(βH[x1 7→ (x1σ), . . . , xn 7→ (xnσ)])(C) = 0.
But then H ̸|= Cσ, contradicting H is a model for grd(Σ, N).

Example 3.5.6 (Example of a grd(Σ, N)). Consider Σ′ from Example 3.5.4
and the clause set N = {Q(x, x) ∨ ¬P (x),¬P (x) ∨ P (g(x))}. Then the set of
ground instances grd(Σ′, N) = {

Q(a, a) ∨ ¬P (a)
Q(b, b) ∨ ¬P (b)
Q(g(a), g(a)) ∨ ¬P (g(a))
. . .
¬P (a) ∨ P (g(a))
¬P (b) ∨ P (g(b))
¬P (g(a)) ∨ P (g(g(a)))
. . .}
is satisfiable. For example by the Herbrand models
I1 : = ∅
I2 : = {P (b), Q(b, b), P (g(b)), Q(g(b), g(b)), . . .}

Definition 3.5.7 (Herbrand Interpretation with Equality). A Herbrand Inter-
pretation (over Σ) is a Σ-algebra H such that

1. a well-sorted equivalence relation ∼ on T (Σ), i.e., if s ∼ t then s, t ∈ TS(Σ)
for some S where [s] denotes the equivalence class containing s

2. SH := TS(Σ)/ ∼ for every sort S ∈ S

3. fH : ([s1], . . . , [sn]) 7→ [f(s1, . . . , sn)] where f ∈ Ω, arity(f) = n, si ∈
TSi

(Σ) and f : S1 × . . .× Sn → S is the sort declaration for f

4. PH ⊆ (SH
1 × . . .×SH

m) where P ∈ Π, arity(P ) = m and P ⊆ S1× . . .×Sm
is the sort declaration for P

Lemma 3.5.8 (Herbrand Interpretations are Well-Defined). Every Herbrand
Interpretation is a Σ-algebra.

Proof. (i) the carriers are non-empty because every signature contains a con-
stant declaration for each sort. If SH ∩ TH ̸= ∅, then there must be two decla-
rations for the same function symbol in Σ which is forbidden. Furthermore, ∼
is well-sorted.

(ii) functions are total by definition.

(iii) relations are assigned.


