
Chapter 2

Propositional Logi


2.1 Syntax

Consider a �nite, non-empty signature � of propositional variables, the \alpha-

bet" of propositional logi
. In addition to the alphabet \propositional 
onne
-

tives" are further building blo
ks 
omposing the senten
es (formulas) of the

language and auxiliary symbols su
h as parentheses enable disambiguation.

De�nition 2.1.1 (Propositional Formula). The set PROP(�) of propositional

formulas over a signature � is indu
tively de�ned by:

PROP(�) Comment

? 
onne
tive ? denotes \false"

> 
onne
tive > denotes \true"

P for any propositional variable P 2 �

(:�) 
onne
tive : denotes \negation"

(� ^  ) 
onne
tive ^ denotes \
onjun
tion"

(� _  ) 
onne
tive _ denotes \disjun
tion"

(�!  ) 
onne
tive ! denotes \impli
ation"

(�$  ) 
onne
tive $ denotes \equivalen
e"

where �;  2 PROP(�).

The above de�nition is an abbreviation for setting PROP(�) to be the

language of a 
ontext free grammar PROP(�) = L((N;T; P; S)) (see De�ni-

tion 1.3.9) where N = f�;  g, T = � [ f(; )g [ f?;>;:;^;_;!;$g with start

symbol rules S ) � j  , �) ? j > j (:�) j (�^ ) j (�_ ) j (�!  ) j (�$  ),

 ) ? j > j (:�) j (� ^  ) j (� _  ) j (� !  ) j (� $  ), and � ) P ,  ) P

for every P 2 �.

As a notational 
onvention we assume that : binds strongest and we omit

outermost parenthesis. So :P _ Q is a
tually a shorthand for ((:P ) _ Q). For

all other logi
al 
onne
tives we will expli
itly put parenthesis when needed.

From the semanti
s we will see that ^ and _ are asso
iative and 
ommutative.

Therefore instead of ((P ^Q) ^ R) we simply write P ^Q ^ R.
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De�nition 2.1.2 (Atom, Literal,Clause). A propositional formula P is 
alled

an atom. It is also 
alled a (positive) literal and its negation :P is 
alled a

(negative) literal. If L is a literal, then :L = P if L = :P and :L = :P if

L = P , j:P j = P and jP j = P . Literals are denoted by letters L;K. The literals

P and :P are 
alled 
omplementary. A disjun
tion of literals L

1

_ : : : _ L

n

is


alled a 
lause.

Automated reasoning is very mu
h formula manipulation. In order to pre-


isely represent the manipulation of a formula, we introdu
e positions.

De�nition 2.1.3 (Position). A position is a word over N. The set of positions

of a formula � is indu
tively de�ned by

pos(�) := f�g if � 2 f>;?g or � 2 �

pos(:�) := f�g [ f1p j p 2 pos(�)g

pos(� Æ  ) := f�g [ f1p j p 2 pos(�)g [ f2p j p 2 pos( )g

where Æ 2 f^;_;!;$g.

The pre�x order � on positions is de�ned by p � q if there is some p

0

su
h

that pp

0

= q. Note that the pre�x order is partial, e.g., the positions 12 and 21

are not 
omparable, they are \parallel", see below. By < we denote the stri
t

part of �, i.e., p < q if p � q but not q � p. By k we denote in
omparable

positions, i.e., p k q if neither p � q, nor q � p. A position p is above q if p � q,

p is stri
tly above q if p < q, and p and q are parallel if p k q.

The size of a formula � is given by the 
ardinality of pos(�): j�j := j pos(�)j.

The subformula of � at position p 2 pos(�) is re
ursively de�ned by �j

�

:= �,

:�j

1p

:= �j

p

, and (�

1

Æ �

2

)j

ip

:= �

i

j

p

where i 2 f1; 2g, Æ 2 f^;_;!;$g.

Finally, the repla
ement of a subformula at position p 2 pos(�) by a formula

 is re
ursively de�ned by �[ ℄

�

:=  and (�

1

Æ �

2

)[ ℄

1p

:= (�

1

[ ℄

p

Æ �

2

),

(�

1

Æ �

2

)[ ℄

2p

:= (�

1

Æ �

2

[ ℄

p

), where Æ 2 f^;_;!;$g.

Example 2.1.4. The set of positions for the formula � = (P ^ Q) ! (P _Q)

is pos(�) = f�; 1; 11; 12; 2; 21; 22g. The subformula at position 22 is Q, �j

22

= Q

and repla
ing this formula by P $ Q results in �[P $ Q℄

22

= (P ^ Q) !

(P _ (P $ Q)).

A further prerequisite for eÆ
ient formula manipulation is the notion of

the polarity of the subformula �j

p

of � at position p. The polarity 
onsiders the

number of \negations" starting from � at � down to p. It is 1 for an even number

along the path, �1 for an odd number and 0 if there is at least one equivalen
e


onne
tive along the path.

De�nition 2.1.5 (Polarity). The polarity of the subformula �j

p

of � at position

p 2 pos(�) is indu
tively de�ned by

pol(�; �) := 1

pol(:�; 1p) := � pol(�; p)

pol(�

1

Æ �

2

; ip) := pol(�

i

; p) if Æ 2 f^;_g

pol(�

1

! �

2

; 1p) := � pol(�

1

; p)

pol(�

1

! �

2

; 2p) := pol(�

2

; p)

pol(�

1

$ �

2

; ip) := 0
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Example 2.1.6. We reuse the formula � = (A^B) ! (A_B) of Example 2.1.4.

Then pol(�; 1) = pol(�; 11) = �1 and pol(�; 2) = pol(�; 22) = 1. For the

formula �

0

= (A ^ B)$ (A _ B) we get pol(�

0

; �) = 1 and pol(�

0

; p) = 0 for all

other p 2 pos(�

0

), p 6= �.

2.2 Semanti
s

In 
lassi
al logi
 there are two truth values \true" and \false" whi
h we shall

denote, respe
tively, by 1 and 0. There are many-valued logi
s [36℄ having more

than two truth values and in fa
t, as we will see later on, for the de�nition of

some propositional logi
 
al
uli, we will need an impli
it third truth value 
alled

\unde�ned".

De�nition 2.2.1 ((Partial) Valuation). A �-valuation is a map

A : �! f0; 1g:

where f0; 1g is the set of truth values. A partial �-valuation is a map A

0

: �

0

!

f0; 1g where �

0

� �.

De�nition 2.2.2 (Semanti
s). A �-valuation A is indu
tively extended from

propositional variables to propositional formulas �;  2 PROP(�) by

A(?) := 0

A(>) := 1

A(:�) := 1�A(�)

A(� ^  ) := min(fA(�);A( )g)

A(� _  ) := max(fA(�);A( )g)

A(�!  ) := max(f(1�A(�));A( )g)

A(�$  ) := if A(�) = A( ) then 1 else 0

If A(�) = 1 for some �-valuation A of a formula � then � is satis�able and we

write A j= �. In this 
ase A is a model of �. If A(�) = 1 for all �-valuations A

of a formula � then � is valid and we write j= �. If there is no �-valuation A

for a formula � where A(�) = 1 we say � is unsatis�able. A formula � entails

 , written � j=  , if for all �-valuations A whenever A j= � then A j=  .

A

ordingly, a formula � is satis�able, valid, unsatis�able, respe
tively, with

respe
t to a partial valuation A

0

with domain �

0

, if for any valuation A with

A(P ) = A

0

(P ) for all P 2 �

0

the formula � is satis�able, valid, unsatis�able,

respe
tively, with respe
t to a A.

I 
all the fa
t that some formula � is satis�able, unsatis�able, or valid, the

status of �. Note that if � is valid it is also satis�able, but not the other way

round.

Valuations 
an be ni
ely represented by sets or sequen
es of literals that do

not 
ontain 
omplementary literals nor dupli
ates. If A is a (partial) valuation

of domain � then it 
an be represented by the set fP j P 2 � and A(P ) =

1g [ f:P j P 2 � and A(P ) = 0g. For example, for the valuation A = fP;:Qg
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the truth value of P _ Q is A(P _ Q) = 1, for P _ R it is A(P _ R) = 1, for

:P ^ R it is A(:P ^ R) = 0, and the status of :P _ R 
annot be established

by A. In parti
ular, A is a partial valuation for � = fP;Q;Rg.

Example 2.2.3. The formula � _ :� is valid, independently of �. A

ording

to De�nition 2.2.2 we need to prove that for all �-valuations A of � we have

A(� _ :�) = 1. So let A be an arbitrary valuation. There are two 
ases to


onsider. If A(�) = 1 then A(� _ :�) = 1 be
ause the valuation fun
tion takes

the maximum if distributed over _. If A(�) = 0 then A(:�) = 1 and again by

the before argument A(� _ :�) = 1. This �nishes the proof that j= � _ :�.

Proposition 2.2.4 (Dedu
tion Theorem). � j=  i� j= �!  

Proof. ()) Suppose that � entails  and let A be an arbitrary �-valuation.

We need to show A j= � !  . If A(�) = 1, then A( ) = 1, be
ause � entails

 , and therefore A j= � !  . For otherwise, if A(�) = 0, then A(� !  ) =

max(f(1�A(�));A( )g) = max(f(1;A( )g) = 1, independently of the value of

A( ). In both 
ases A j= �!  .

(() By 
ontraposition. Suppose that � does not entail  . Then there exists a

�-valuation A su
h that A j= �, A(�) = 1 but A 6j=  , A( ) = 0. By de�nition,

A(� !  ) = max(f(1 � A(�));A( )g) = max(f(1 � 1); 0g) = 0, hen
e � !  

does not hold in A.

Proposition 2.2.5. The equivalen
es of Figure 2.1 are valid for all formulas

�;  ; �.

From Figure 2.1 we 
on
lude that the propositional language introdu
ed

in De�nition 2.1.1 is redundant in the sense that 
ertain 
onne
tives 
an be

expressed by others. For example, the equivalen
e Eliminate ! expresses im-

pli
ation by means of disjun
tion and negation. So for any propositional for-

mula � there exists an equivalent formula �

0

su
h that �

0

does not 
ontain the

impli
ation 
onne
tive. In order to prove this proposition we need the below

repla
ement lemma.

T

Note that the formulas � ^  and  ^ � are equivalent. Nevertheless,

re
alling the problem state de�nition for Sudokus in Se
tion 1.1 the

two states (N ; f(2; 3) = 1 ^ f(2; 4) = 4;>) and (N ; f(2; 4) = 4 ^

f(2; 3) = 1;>) are signi�
antly di�erent. For example, it 
an be that the �rst

state 
an lead to a solution by the rules of the algorithm where the latter


annot, be
ause the latter impli
itly means that the square (2; 4) has already

been 
he
ked for all values smaller than 4. This reveals the important point that

arguing by logi
al equivalen
e in the 
ontext of a rule set manipulating formulas


an lead to wrong results.

Lemma 2.2.6 (Formula Repla
ement). Let � be a propositional formula 
on-

taining a subformula  at position p, i.e., �j

p

=  . Furthermore, assume

j=  $ �. Then j= �$ �[�℄

p

.
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(I) (� ^ �)$ � Idempoten
y ^

(� _ �)$ � Idempoten
y _

(II) (� ^  )$ ( ^ �) Commutativity ^

(� _  )$ ( _ �) Commutativity _

(III) (� ^ ( ^ �))$ ((� ^  ) ^ �) Asso
iativity ^

(� _ ( _ �))$ ((� _  ) _ �) Asso
iativity _

(IV) (� ^ ( _ �))$ (� ^  ) _ (� ^ �) Distributivity ^_

(� _ ( ^ �))$ (� _  ) ^ (� _ �) Distributivity _^

(V) (� ^ (� _  ))$ � Absorption ^_

(� _ (� ^  ))$ � Absorption _^

(VI) :(� _  )$ (:� ^ : ) De Morgan :_

:(� ^  )$ (:� _ : ) De Morgan :^

(VII) (� ^ :�)$ ? Introdu
tion ?

(� _ :�)$ > Introdu
tion >

:> $ ? Propagate :>

:? $ > Propagate :?

(� ^ >)$ � Absorption >^

(� _ ?)$ � Absorption ?_

(::�) $ � Absorption ::

(�! ?)$ :� Eliminate ! ?

(? ! �)$ > Eliminate ? !

(�! >)$ > Eliminate ! >

(> ! �)$ � Eliminate > !

(�$ ?)$ :� Eliminate ? $

(�$ >)$ � Eliminate > $

(� _ >)$ > Propagate >

(� ^ ?)$ ? Propagate ?

(VIII) (�!  )$ (:� _  ) Eliminate !

(IX) (�$  )$ (�!  ) ^ ( ! �) Eliminate1 $

(�$  )$ (� ^  ) _ (:� ^ : ) Eliminate2 $

Figure 2.1: Valid Propositional Equivalen
es
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Proof. By indu
tion on jpj and stru
tural indu
tion on �. For the base step let

p = � and A be an arbitrary valuation.

A(�) = A( ) (by de�nition of repla
ement)

= A(�) (be
ause A j=  $ �)

= A(�[�℄

�

) (by de�nition of repla
ement)

For the indu
tion step the lemma holds for all positions p and has to be

shown for all positions ip. By stru
tural indu
tion on �, I show the 
ases where

� = :�

1

and � = �

1

! �

2

in detail. All other 
ases are analogous.

If � = :�

1

then showing the lemma amounts to proving j= :�

1

$ :�

1

[�℄

1p

.

Let A be an arbitrary valuation.

A(:�

1

) = 1�A(�

1

) (expanding semanti
s)

= 1�A(�

1

[�℄

p

) (by indu
tion hypothesis)

= A(:�[�℄

1p

) (applying semanti
s)

If � = �

1

! �

2

then showing the lemma amounts to proving the two 
ases

j= (�

1

! �

2

) $ (�

1

! �

2

)[�℄

1p

and j= (�

1

! �

2

) $ (�

1

! �

2

)[�℄

2p

. Both


ases are similar so I show only the �rst 
ase. Let A be an arbitrary valuation.

A(�

1

! �

2

) = max(f(1�A(�

1

));A(�

2

)g) (expanding semanti
s)

= max(f(1�A(�

1

[�℄

p

));A(�

2

)g) (by indu
tion hypothesis)

= A((�

1

! �

2

)[�℄

1p

) (applying semanti
s)

Lemma 2.2.7 (Polarity Dependent Repla
ement). Consider a formula �, po-

sition p 2 pos(�), pol(�; p) = 1 and (partial) valuation A with A(�) = 1. If for

some formula  , A( ) = 1 then A(�[ ℄

p

) = 1. Symmetri
ally, if pol(�; p) = �1

and A( ) = 0 then A(�[ ℄

p

) = 1.

Proof. By indu
tion on the length of p.

Note that the 
ase for the above lemma where pol(�; p) = 0 is a
tually

Lemma 2.2.6.

C

The equivalen
es of Figure 2.1 show that the propositional language

introdu
ed in De�nition 2.1.1 is redundant in the sense that 
ertain


onne
tives 
an be expressed by others. For example, the equivalen
e

Eliminate! expresses impli
ation by means of disjun
tion and negation. So for

any propositional formula � there exists an equivalent formula �

0

su
h that �

0

does not 
ontain the impli
ation 
onne
tive. In order to prove this proposition

the above repla
ement lemma is key.
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2.3 Abstra
t Properties of Cal
uli

A proof pro
edure 
an be sound, 
omplete, strongly 
omplete, refutationally


omplete or terminating. Terminating means that it terminates on any input

formula. Now depending on whether the 
al
ulus investigates validity (unsat-

is�ability) or satis�ability the aforementioned notions have (slightly) di�erent

meanings.

Validity Satis�ability

Sound If the 
al
ulus derives a

proof of validity for the

formula, it is valid.

If the 
al
ulus derives sat-

is�ability of the formula, it

has a model.

Complete If the formula is valid, a

proof of validity is deriv-

able by the 
al
ulus.

If the formula has a model,

the 
al
ulus derives satis-

�ability.

Strongly

Complete

For any proof of the for-

mula, there is a derivation

in the 
al
ulus produ
ing

this proof.

For any model of the for-

mula, there is a derivation

in the 
al
ulus produ
ing

this model.

There are some assumptions underlying these informal de�nitions. First, the


al
ulus a
tually produ
es a proof in 
ase of investigating validity, and in 
ase of

investigating satis�ability it produ
es a model. This in fa
t requires the notion of

a proof and a model. Then soundness means in both 
ases that the 
al
ulus has

no bugs. The results it produ
es are 
orre
t. Completeness means that if there

is a proof (model) for a formula, the 
al
ulus 
ould eventually �nd it. Strong


ompleteness requires in addition that any proof (model) 
an be found by the


al
ulus. A variant of 
omplete 
al
ulus is a refutationally 
omplete 
al
ulus:

a 
al
ulus is refutationally 
omplete, if for any unsatis�able formula it derives

a proof of 
ontradi
tion. Many automated theorem pro
edures like resolution

(see Se
tion 2.7), or tableaux (see Se
tion 2.5) are a
tually only refutationally


omplete.

2.4 Truth Tables

The �rst 
al
ulus I 
onsider are truth tables. For example, 
onsider proving

validity of the formula � = (A ^ B) ! A. A

ording to De�nition 2.2.2 this is

the 
ase when a
tually for all valuations A over � = fA;Bg we have A(�) = 1.

The extension of A to formulas is de�ned indu
tively over the 
onne
tives, so if

the result of A on the arguments of a 
onne
tive is known, it 
an be straightfor-

wardly 
omputed for the overall formula. That's the idea behind truth tables.

We simply make all valuations A on � expli
it and then extend it 
onne
tive by


onne
tive bottom-up to the overall formula. Stated di�erently, in order to es-

tablish the truth value for a formula � we establish it subformula by subformula
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of � a

ording to �. If p; q 2 pos(�) and p � q then we �rst 
ompute the truth

value for �j

q

. The truth table for (P ^Q)! P is then depi
ted in Figure 2.2

P Q P ^Q (P ^Q)! P

0 0 0 1

0 1 0 1

1 0 0 1

1 1 1 1

Figure 2.2: Truth Table for (P ^Q)! P

De�nition 2.4.1 (Truth Table). Let � be a propositional formula over variables

P

1

; : : : ; P

n

, p

i

2 pos(�), 1 � i � k and p

k

= �. Then a truth table for � is a

table with n+ k 
olumns and 2

n

+ 1 rows of the form

P

1

: : : P

n

�j

p

1

: : : �j

p

k

0 : : : 0 A

1

(�j

p

1

) : : : A

1

(�j

p

k

)

.

.

.

1 : : : 1 A

2

n

(�j

p

1

) : : : A

2

n

(�j

p

k

)

su
h that the A

i

are exa
tly the 2

n

di�erent valuations for P

1

; : : : ; P

n

and either

p

i

k p

i+j

or p

i

� p

i+j

, for all i; j � 0, i+ j � k and whenever �j

p

i

has a proper

subformula  that is not an atom, there is exa
tly one j < i with �j

p

j

=  .

Now given a truth table for some formula �, � is satis�able, if there is at

least one 1 in the � 
olumn. It is valid, if there is no 0 in the � 
olumn. It is

unsatis�able, if there is no 1 in the � 
olumn. So truth tables are a simple and

\easy" way to establish the status of a formula. They need not to be 
ompletely


omputed in order to establish the status of a formula. For example, as soon as

the 
olumn of � in a truth table 
ontains a 1 and a 0, then � is satis�able but

neither valid nor unsatis�able.

The formula (P _ Q) $ (P _ R) is satis�able but not valid. Figure 2.3


ontains a truth table for the formula.

P Q R P _Q P _ R (P _Q)$ (P _R)

0 0 0 0 0 1

0 1 0 1 0 0

1 0 0 1 1 1

1 1 0 1 1 1

0 0 1 0 1 0

0 1 1 1 1 1

1 0 1 1 1 1

1 1 1 1 1 1

Figure 2.3: Truth Table for (P _Q)$ (P _ R)
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Of 
ourse, there are 
ases where a truth table for some formula � 
an have

less 
olumns than the number of variables o

urring in � plus the number of

subformulas in �. For example, for the formula � = (P _ Q) ^ (R ! (P _

Q)) only one 
olumn with formula (P _ Q) is needed for both subformulas �j

1

and �j

22

. In general, a single 
olumn is needed for ea
h di�erent subformula.

Dete
ting subformula equivalen
e is bene�
ial. For the above example, this was

simply synta
ti
, i.e., the two subformulas �j

1

and �j

22

. But what about a

slight variation of the formula �

0

= (P _Q)^ (R ! (Q_P ))? Stri
tly speaking,

now the two subformulas �

0

j

1

and �

0

j

22

are di�erent, but sin
e disjun
tion is


ommutative, they are equivalent. One or two 
olumns in the truth table for the

two subformulas? Again, saving a 
olumn is bene�
ial but in general, dete
ting

equivalen
e of two subformulas may be
ome as diÆ
ult as 
he
king whether the

overall formula is valid. A 
ompromise, often performed in pra
ti
e, are normal

forms that guarantee that 
ertain o

urren
es of equivalent subformulas 
an be

found in polynomial time. For the running example, we 
an simply assume some

ordering on the propositional variables and assume that for a disjun
tion of two

propositional variables, the smaller variable always 
omes �rst. So if P < Q

then the normal form of P _Q and Q _ P is in fa
t P _Q.

C

In pra
ti
e, nobody uses truth tables as a reasoning pro
edure. Worst


ase, 
omputing a truth table for 
he
king the status of a formula �

requires O(2

n

) steps, where n is the number of di�erent propositional

variables in �. But this is a
tually not the reason why the pro
edure is impra
-

ti
al, be
ause the worst 
ase behavior of all other pro
edures for propositional

logi
 known today is also of exponential 
omplexity. So why are truth tables

not a good pro
edure? The answer is: be
ause they do not adapt to the inher-

ent stru
ture of a formula. The reasoning me
hanism of a truth table for two

formulas � and  sharing the same propositional variables is exa
tly the same:

we enumerate all valuations. However, if � is, e.g., of the form � = P ^ �

0

and

we are interested in the satis�ability of �, then � 
an only be
ome true for a

valuation A with A(P ) = 1. Hen
e, 2

n�1

rows of �'s truth table are super
u-

ous. All pro
edures I will introdu
e in the sequel, automati
ally dete
t this (and

further) spe
i�
 stru
tures of a formula and use it to speed up the reasoning

pro
ess.

2.5 Propositional Tableaux

Like resolution, semanti
 tableaux were developed in the sixties, independently

by Lis [25℄ and Smullyan [34℄ on the basis of work by Gentzen in the 30s [18℄

and of Beth [8℄ in the 50s. For an at that time state of the art overview 
onsider

Fitting's book [16℄.

In 
ontrast to the 
al
uli introdu
ed in subsequent se
tions, semanti
 tableau

does not rely on a normal form of input formulas but a
tually applies to any

propositional formula. The formulas are divided into �- and �-formulas, where

intuitively an � formula represents a (hidden) 
onjun
tion and a � formula a
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Figure 2.4: �- and �-Formulas

(hidden) disjun
tion.

De�nition 2.5.1 (�-, �-Formulas). A formula � is 
alled an �-formula if � is

a formula ::�

1

, �

1

^ �

2

, �

1

$ �

2

, :(�

1

_ �

2

), or :(�

1

! �

2

). A formula � is


alled an �-formula if � is a formula �

1

_�

2

, �

1

! �

2

, :(�

1

^�

2

), or :(�

1

$ �

2

).

A 
ommon property of �-, �-formulas is that they 
an be de
omposed into

dire
t des
endants representing (modulo negation) subformulas of the respe
tive

formulas. Then an �-formula is valid i� all its des
endants are valid and a �-

formula is valid i� one of its des
endants is valid. Therefore, the literature uses

both the notions semanti
 tableaux and analyti
 tableaux.

De�nition 2.5.2 (Dire
t Des
endant). Given an �- or �-formula �, Figure 2.4

shows its dire
t des
endants.

Dupli
ating � for the �-des
endants of ::� is a tri
k for 
onformity. Any

propositional formula is either an �-formula or a �-formula or a literal.

Proposition 2.5.3. For any valuation A: (i) if � is an �-formula then A(�) = 1

i� A(�

1

) = 1 and A(�

2

) = 1 for its des
endants �

1

, �

2

. (ii) if � is a �-formula

then A(�) = 1 i� A(�

1

) = 1 or A(�

2

) = 1 for its des
endants �

1

, �

2

.

The tableaux 
al
ulus operates on states that are sets of sequen
es of for-

mulas. Semanti
ally, the set represents a disjun
tion of sequen
es that are in-

terpreted as 
onjun
tions of the respe
tive formulas. A sequen
e of formulas

(�

1

; : : : ; �

n

) is 
alled 
losed if there are two formulas �

i

and �

j

in the sequen
e

where �

i

= :�

j

or :�

i

= �

j

. A state is 
losed if all its formula sequen
es are


losed. A state a
tually represents a tree and this tree is 
alled a tableau in

the literature. So if a state is 
losed, the respe
tive tree, the tableau is 
losed

too. The tableaux 
al
ulus is a 
al
ulus showing unsatis�ability. Su
h 
al
uli are


alled refutational 
al
uli. Later on soundness and 
ompleteness of the 
al
ulus
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:[(P ^ :(Q _ :R))! (Q ^ R)℄

P ^ :(Q _ :R)

:(Q ^ R)

P

:(Q _ :R)

:Q

::R

R

:Q :R

Figure 2.5: A Tableau for (P ^ :(Q _ :R))! (Q ^R)

imply that a formula � is valid i� the rules of tableaux produ
e a 
losed state

starting with N = f(:�)g.

A formula � o

urring in some sequen
e is 
alled open if in 
ase � is an

�-formula not both dire
t des
endants are already part of the sequen
e and if

it is a �-formula none of its des
endants is part of the sequen
e.

�-Expansion N℄f(�

1

; : : : ;  ; : : : ; �

n

)g )

T

N℄f(�

1

; : : : ;  ; : : : ; �

n

;  

1

;  

2

)g

provided  is an open �-formula,  

1

,  

2

its dire
t des
endants and the sequen
e

is not 
losed.

�-Expansion N℄f(�

1

; : : : ;  ; : : : ; �

n

)g )

T

N℄f(�

1

; : : : ;  ; : : : ; �

n

;  

1

)g℄

f(�

1

; : : : ;  ; : : : ; �

n

;  

2

)g

provided  is an open �-formula,  

1

,  

2

its dire
t des
endants and the sequen
e

is not 
losed.

Consider the question of validity of the formula (P ^:(Q_:R)) ! (Q^R).

Applying the tableau rules generates the following derivation:

f(:[(P ^ :(Q _ :R))! (Q ^ R)℄)g

�-Expansion)

�

T

f(:[(P ^ :(Q _ :R))! (Q ^ R)℄;

P ^ :(Q _ :R);:(Q ^ R); P;:(Q _ :R);:Q;::R;R)g

�-Expansion)

T

f(:[(P ^ :(Q _ :R))! (Q ^ R)℄;

P ^ :(Q _ :R);:(Q ^ R); P;:(Q _ :R);:Q;::R;R;:Q);

(:[(P ^ :(Q _ :R))! (Q ^ R)℄;

P ^ :(Q _ :R);:(Q ^ R); P;:(Q _ :R);:Q;::R;R;:R)g

The state after �-expansion is �nal, i.e., no more rule 
an be applied. The

�rst sequen
e is not 
losed, whereas the se
ond sequen
e is be
ause it 
ontains R

and :R. A tree representation, where 
ommon formulas of sequen
es are shared,


an be seen in Figure 2.5.
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Theorem 2.5.4 (Propositional Tableaux is Sound). If for a formula � the

tableaux 
al
ulus 
omputes f(:�)g )

�

T

N and N is 
losed, then � is valid.

Proof. It is suÆ
ient to show the following: (i) if N is 
losed then the disjun
tion

of the 
onjun
tion of all sequen
e formulas is unsatis�able (ii) the two tableaux

rules preserve satis�ability.

Part (i) is obvious: if N is 
losed all its sequen
es are 
losed. A sequen
e is


losed if it 
ontains a formula and its negation. The 
onjun
tion of two su
h

formulas is unsatis�able.

Part (ii) is shown by indu
tion on the length of the derivation and then by

a 
ase analysis for the two rules. �-Expansion: for any valuation A if A( ) = 1

then A( 

1

) = A( 

2

) = 1. �-Expansion: for any valuation A if A( ) = 1 then

A( 

1

) = 1 or A( 

2

) = 1 (see Proposition 2.5.3).

Theorem 2.5.5 (Propositional Tableaux Terminates). Starting from a start

state f(�)g for some formula �, )

+

T

is well-founded.

Proof. Take the two-folded multi-set extension of the lexi
ographi
 extension

of > on the naturals to triples (n; k; l). The measure � is �rst de�ned on for-

mulas by �(�) := (n; k; l) where n is the number of equivalen
e symbols in �,

k is the sum of all disjun
tion, 
onjun
tion, impli
ation symbols in � and l is

j�j. On sequen
es (�

1

; : : : ; �

n

) the measure is de�ned to deliver a multiset by

�((�

1

; : : : ; �

n

)) := ft

1

; : : : ; t

n

g where t

i

= �(�

i

) if � is open in the sequen
e

and t

i

= (0; 0; 0) otherwise. Finally, � is extended to states by 
omputing the

multiset �(N) := f�(s) j s 2 Ng.

Note, that �-, as well as �-expansion stri
tly extend sequen
es. On
e a for-

mula is 
losed in a sequen
e by applying an expansion rule, it remains 
losed

forever in the sequen
e.

An �-expansion on a formula  

1

^ 

2

on the sequen
e (�

1

; : : : ;  

1

^ 

2

; : : : ; �

n

)

results in (�

1

; : : : ;  

1

^ 

2

; : : : ; �

n

;  

1

;  

2

). It needs to be shown �((�

1

; : : : ;  

1

^

 

2

; : : : ; �

n

)) >

mul

�((�

1

; : : : ;  

1

^  

2

; : : : ; �

n

;  

1

;  

2

)). In the se
ond sequen
e

�( 

1

^  

2

) = (0; 0; 0) be
ause the formula is 
losed. For the triple (n; k; l)

assigned by � to  

1

^  

2

in the �rst sequen
e, it holds (n; k; l) >

lex

�( 

1

),

(n; k; l) >

lex

�( 

2

) and (n; k; l) >

lex

(0; 0; 0), the former be
ause the  

i

are

subformulas and the latter be
ause l 6= 0. This proves the 
ase.

A �-expansion on a formula  

1

_ 

2

on the sequen
e (�

1

; : : : ;  

1

_ 

2

; : : : ; �

n

)

results in (�

1

; : : : ;  

1

_ 

2

; : : : ; �

n

;  

1

), (�

1

; : : : ;  

1

_ 

2

; : : : ; �

n

;  

2

). It needs to

be shown �((�

1

; : : : ;  

1

_ 

2

; : : : ; �

n

)) >

mul

�((�

1

; : : : ;  

1

_ 

2

; : : : ; �

n

;  

1

)) and

�((�

1

; : : : ;  

1

_ 

2

; : : : ; �

n

)) >

mul

�((�

1

; : : : ;  

1

_ 

2

; : : : ; �

n

;  

2

)). In the derived

sequen
es �( 

1

_  

2

) = (0; 0; 0) be
ause the formula is 
losed. For the triple

(n; k; l) assigned by � to  

1

_  

2

in the starting sequen
e, it holds (n; k; l) >

lex

�( 

1

), (n; k; l) >

lex

�( 

2

) and (n; k; l) >

lex

(0; 0; 0), the former be
ause the  

i

are subformulas and the latter be
ause l 6= 0. This proves the 
ase.

Theorem 2.5.6 (Propositional Tableaux is Complete). If � is valid, tableaux


omputes a 
losed state out of f(:�)g.



2.6. NORMAL FORMS 39

Proof. If � is valid then :� is unsatis�able. Now assume after termination the

resulting state and hen
e at least one sequen
e is not 
losed. For this sequen
e


onsider a valuation A 
onsisting of the literals in the sequen
e. By assumption

there are no opposite literals, so A is well-de�ned. I prove by 
ontradi
tion that

A is a model for the sequen
e. Assume it is not. Then there is a minimal formula

in the sequen
e, with respe
t to the ordering on triples 
onsidered in the proof

of Theorem 2.5.5, that is not satis�ed by A. By de�nition of A the formula


annot be a literal. So it is an �-formula or a �-formula. In all 
ases at least one

des
endant formula is 
ontained in the sequen
e, is smaller than the original

formula, false in A (Proposition 2.5.3) and hen
e 
ontradi
ts the assumption.

Therefore, A satis�es the sequen
e 
ontradi
ting that :� is unsatis�able.

Corollary 2.5.7 (Propositional Tableaux generates Models). Let � be a for-

mula, f(�)g )

�

T

N and s 2 N be a sequen
e that is not 
losed and neither

�-expansion nor �-expansion are appli
able to s. Then the literals in s form a

(partial) valuation that is a model for �.

Proof. A 
onsequen
e of the proof of Theorem 2.5.6

Consider the example tableau shown in Figure 2.5. The open �rst bran
h


orresponds to the valuation A = fP;R;:Qg whi
h is a model of the formula

:[(P ^ :(Q _ :R))! (Q ^ R)℄.

L

n

L
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n

L

1

L

n

L

0
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K
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K
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. . .

K

n

L

n

L

0
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1
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L

0
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0

1

K

0

n

K

0

1

Figure 2.6: Semanti
 tableau.

2.6 Normal Forms

In order to 
he
k the status of a formula � via truth tables, the truth table


ontains a 
olumn for the subformulas of � and all valuations for its variables.
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Any shape of � is �ne in order to generate the respe
tive truth table. The

superposition 
al
ulus (Se
tion 2.8) and the CDCL (Con
i
t Driven Clause

Learning) 
al
ulus (Se
tion 2.10) both operate on a normal form, i.e., the shape

of � is restri
ted. Both 
al
uli a

ept only 
onjun
tions of disjun
tions of literals,

a parti
ular normal form. It is 
alled Clause Normal Form or simply CNF. The

purpose of this se
tion is to show that an arbitrary formula � 
an be e�e
tively

transformed into an equivalent formula in CNF.

2.6.1 Conjun
tive and Disjun
tive Normal Forms

De�nition 2.6.1 (CNF, DNF). A formula is in 
onjun
tive normal form (CNF)

or 
lause normal form if it is a 
onjun
tion of disjun
tions of literals, or in other

words, a 
onjun
tion of 
lauses.

A formula is in disjun
tive normal form (DNF), if it is a disjun
tion of


onjun
tions of literals.

So a CNF has the form

V

i

W

j

L

j

and a DNF the form

W

i

V

j

L

j

where L

j

are

literals. In the sequel the logi
al notation with _ is overloaded with a multiset

notation. Both the disjun
tion L

1

_ : : : _ L

n

and the multiset fL

1

; : : : ; L

n

g are


lauses. For 
lauses the letters C, D, possibly indexed are used. Furthermore, a


onjun
tion of 
lauses is 
onsidered as a set of 
lauses. Then, for a set of 
lauses,

the empty set denotes >. For a 
lause, the empty multiset denotes ; and at the

same time ?.

T

Although CNF and DNF are de�ned in almost any text book on au-

tomated reasoning, the de�nitions in the literature di�er with respe
t

to the \border" 
ases: (i) are 
omplementary literals permitted in a


lause? (ii) are dupli
ated literals permitted in a 
lause? (iii) are empty dis-

jun
tions/
onjun
tions permitted? The above De�nition 2.6.1 answers all three

questions with \yes". A 
lause 
ontaining 
omplementary literals is valid, as in

P _Q_:P . Dupli
ate literals may o

ur, as in P _Q_P . The empty disjun
tion

is ? and the empty 
onjun
tion >, i.e., the empty disjun
tion is always false

while the empty 
onjun
tion is always true.

Che
king the validity of CNF formulas or the unsatis�ability of DNF formu-

las is easy: (i) a formula in CNF is valid, if and only if ea
h of its disjun
tions


ontains a pair of 
omplementary literals P and :P , (ii) 
onversely, a formula

in DNF is unsatis�able, if and only if ea
h of its 
onjun
tions 
ontains a pair of


omplementary literals P and :P (see Exer
ise ??).

C

On the other hand, 
he
king the unsatis�ability of CNF formulas or

the validity of DNF formulas is 
oNP-
omplete. For any propositional

formula � there is an equivalent formula in CNF and DNF and I will

prove this below by a
tually providing an e�e
tive pro
edure for the transforma-

tion. However, also be
ause of the above 
omment on validity and satis�ability


he
king for CNF and DNF formulas, respe
tively, the transformation is 
ostly.

In general, a CNF or DNF of a formula � is exponentially larger than � as
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long as the normal forms need to be logi
ally equivalent. If this is not needed,

then by the introdu
tion of fresh propositional variables, CNF or DNF normal

forms for � 
an be 
omputed in linear time in the size of �. More 
on
retely,

given a formula � instead of 
he
king validity the unsatis�ability of :� 
an be


onsidered. Then the linear time CNF normal form algorithm (see Se
tion ??)

is satis�ability preserving, i.e., the linear time CNF of :� is unsatis�able i� :�

is.

Proposition 2.6.2. For every formula there is an equivalent formula in CNF

and also an equivalent formula in DNF.

Proof. See the rewrite systems)

BCNF

, and)

ACNF

below and the lemmata on

their properties.

2.6.2 Basi
 CNF/DNF Transformation

The below algorithm b
nf is a basi
 algorithm for transforming any propositional

formula into CNF, or DNF if the rule PushDisj is repla
ed by PushConj.

Algorithm 2: b
nf(�)

Input : A propositional formula �.

Output: A propositional formula  equivalent to � in CNF.

1 whilerule (ElimEquiv(�)) do ;

2 whilerule (ElimImp(�)) do ;

3 whilerule (ElimTB1(�),: : :,ElimTB6(�)) do ;

4 whilerule (PushNeg1(�),: : :,PushNeg3(�)) do ;

5 whilerule (PushDisj(�)) do ;

6 return �;

In the sequel I study only the CNF version of the algorithm. All properties

hold in an analogous way for the DNF version. To start an informal analysis of

the algorithm, 
onsider the following example CNF transformation.

Example 2.6.3. Consider the formula :((P _ Q) $ (P ! (Q ^ >))) and the

appli
ation of )

BCNF

depi
ted in Figure 2.8. Already for this simple formula

the CNF transformation via )

BCNF

be
omes quite messy. Note that the CNF

result in Figure 2.8 is still highly redundant. If I remove all disjun
tions that

are trivially true, be
ause they 
ontain a propositional literal and its negation,

the result be
omes

(P _ :Q) ^ (:Q _ :P ) ^ (:Q _ :Q)

now elimination of dupli
ate literals beauti�es the third 
lause and the overall

formula into

(P _ :Q) ^ (:Q _ :P ) ^ :Q.

Now let's inspe
t this formula a little 
loser. Any valuation satisfying the formula

must set A(Q) = 0, be
ause of the third 
lause. But then the �rst two 
lauses are

already satis�ed. The formula :Q subsumes the formulas P _:Q and :Q_:P
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ElimEquiv �[(�$  )℄

p

)

BCNF

�[(�!  ) ^ ( ! �)℄

p

ElimImp �[(�!  )℄

p

)

BCNF
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p

PushNeg1 �[:(� _  )℄

p

)

BCNF

�[(:� ^ : )℄

p
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p

)

BCNF
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p
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^ �
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) _  ℄

p

)

BCNF

�[(�

1

_  ) ^ (�

2

_  )℄

p

PushConj �[(�

1

_ �

2

) ^  ℄

p

)

BDNF

�[(�

1

^  ) _ (�

2

^  )℄

p

ElimTB1

�[(� ^ >)℄

p

)

BCNF

�[�℄

p
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�[(� ^ ?)℄

p

)

BCNF

�[?℄

p
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�[(� _ >)℄

p

)
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�[>℄

p

ElimTB4

�[(� _ ?)℄
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Figure 2.7: Basi
 CNF/DNF Transformation Rules

in this sense. The notion of subsumption will be dis
ussed in detail for 
lauses

in Se
tion 2.7.

So it is eventually equivalent to

:Q.

The 
orre
tness of the result is obvious by looking at the original formula and

doing a 
ase analysis. For any valuation A with A(Q) = 1 the two parts of the

equivalen
e be
ome true, independently of P , so the overall formula is false.

For A(Q) = 0, for any value of P , the truth values of the two sides of the

equivalen
e are di�erent, so the equivalen
e be
omes false and hen
e the overall

formula true.

After proving )

BCNF


orre
t and terminating, in the su

eeding se
tion I

will present an algorithm)

ACNF

that a
tually generates :Q out of :((P _Q)$

(P ! (Q ^>))) and does this without generating the mess of formulas )

BCNF

does. Please re
all that the above rules apply modulo 
ommutativity of _, ^,

e.g., the rule ElimTB1 is both appli
able to the formulas � ^ > and > ^ �.

I

Figure 2.1 
ontains more potential for simpli�
ation. For example, the

idempoten
y equivalen
es (� ^ �) $ �, (� _ �) $ � 
an be turned

into simpli�
ation rules by applying them left to right. However, the

way they are stated they 
an only be applied in 
ase of identi
al subformulas.

The formula (P _Q)^ (Q_P ) does this way not redu
e to (Q_ P ). A solution

is to 
onsider identity modulo 
ommutativity. But then identity modulo 
om-

mutativity and asso
iativity (AC) as in ((P _ Q) _ R) ^ (Q _ (R _ P ) is still

not dete
ted. On the other hand, in pra
ti
e, 
he
king identity modulo AC is

often too expensive. An elegant way out of this situation is to implement AC
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:((P _Q)$ (P ! (Q ^ >)))

)

Step 1

BCNF

:([(P _Q)! (P ! (Q ^ >))℄ ^ [(P ! (Q ^ >))! (P _Q)℄)

)

Step 2

BCNF

:([:(P _Q) _ (P ! (Q ^ >))℄ ^ [(P ! (Q ^ >))! (P _Q)℄)

)

Step 2

BCNF

:([:(P _Q) _ (P ! (Q ^ >))℄ ^ [:(P ! (Q ^ >)) _ (P _Q)℄)

)

Step 2

BCNF

:([:(P _Q) _ (P ! (Q ^ >))℄ ^ [:(:P _ (Q ^ >)) _ (P _Q)℄)

)

Step 2

BCNF

:([:(P _Q) _ (:P _ (Q ^>))℄ ^ [:(:P _ (Q^ >)) _ (P _Q)℄)

)

Step 3

BCNF

:([:(P _Q) _ (:P _Q)℄ ^ [:(:P _Q) _ (P _Q)℄)

)

Step 4

BCNF

:([(:P ^ :Q) _ (:P _Q)℄ ^ [:(:P _Q) _ (P _Q)℄)

)

Step 4

BCNF

:([(:P ^ :Q) _ (:P _Q)℄ ^ [(::P ^ :Q) _ (P _Q)℄)

)

Step 4

BCNF

:([(:P ^ :Q) _ (:P _Q)℄ ^ [(::P ^ :Q) _ (P _Q)℄)

)

�;Step 4

BCNF

[(::P _::Q)^ (::P ^:Q)℄_ [(:::P _::Q)^ (:P ^:Q)℄

)

�;Step 4

BCNF

[(P _Q) ^ (P ^ :Q)℄ _ [(:P _Q) ^ (:P ^ :Q)℄

)

�;Step 5

BCNF

(P _Q_:P _Q)^ (P _Q_:P )^ (P _Q_:Q)^ (P _:P _

Q) ^ (P _ :P ) ^ (P _ :Q) ^ (:Q _ :P _Q) ^ (:Q _ :P ) ^ (:Q _ :Q)

Figure 2.8: Example Basi
 CNF Transformation


onne
tives like _ or ^ with 
exible arity, to normalize nested o

urren
es of

the 
onne
tives, and �nally to sort the arguments using some total ordering.

Applying this to ((P _ Q) _ R) ^ (Q _ (R _ P ) with ordering R > P > Q the

result is (Q _ P _ R) ^ (Q _ P _ R). Now 
omplete AC simpli�
ation is ba
k

at the 
ost of 
he
king for identi
al subformulas. Note that in an appropriate

implementation, the normalization and ordering pro
ess is only done on
e at

the start and then normalization and argument ordering is kept as an invariant.

2.6.3 Advan
ed CNF Transformation

The simple algorithm for CNF transformation Algorithm 2 
an be improved in

various ways: (i) more aggressive formula simpli�
ation, (ii) renaming, (iii) po-

larity dependant transformations. The before studied Example 2.6.3 serves al-

ready as a ni
e motivation for (i) and (iii). Firstly, removing > from the formula

:((P _ Q) $ (P ! (Q ^ >))) �rst and not in the middle of the algorithm ob-

viously shortens the overall pro
ess. Se
ondly, if the equivalen
e is repla
ed

polarity dependant, i.e., using the equivalen
e (�$  )$ (� ^  ) _ (:� ^ : )

and not the one used in rule ElimEquiv applied before, a lot of redundan
y gen-

erated by )

BCNF

is prevented. In general, if  [�

1

$ �

2

℄

p

and pol( ; p) = �1

then for CNF transformation do  [(�

1

^�

2

)_ (:�

1

^:�

2

)℄

p

and if pol( ; p) = 1

do  [(�

1

! �

2

) ^ (�

2

! �

1

)℄

p

Item (ii) 
an be motivated by a formula

P

1

$ (P

2

$ (P

3

$ (: : : (P

n�1

$ P

n

) : : :)))

where Algorithm 2 generates a CNF with 2

n


lauses out of this formula. The

way out of this problem is the introdu
tion of additional fresh propositional
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variables that rename subformulas. The pri
e to pay is that a renamed formula

is not equivalent to the original formula due to the extra propositional variables,

but satis�ability preserving. A renamed formula for the above formula is

(P

1

$ (P

2

$ Q

1

)) ^ (Q

1

$ (P

3

$ Q

2

)) ^ : : :

where the Q

i

are additional, fresh propositional variables. The number of 
lauses

of the CNF of this formula is 4(n�1) where ea
h 
onjun
t (Q

i

$ (P

j

$ Q

i+1

))


ontributes four 
lauses.

Proposition 2.6.4. Let P be a propositional variable not o

urring in  [�℄

p

.

1. If pol( ; p) = 1, then  [�℄

p

is satis�able if and only if  [P ℄

p

^ (P ! �) is

satis�able.

2. If pol( ; p) = �1, then  [�℄

p

is satis�able if and only if  [P ℄

p

^ (� ! P )

is satis�able.

3. If pol( ; p) = 0, then  [�℄

p

is satis�able if and only if  [P ℄

p

^ (P $ �) is

satis�able.

Proof. Exer
ise.

So depending on the formula  , the position p where the variable P is in-

trodu
ed de�nition of P is given by

def( ; p; P ) :=

8

<

:

(P !  j

p

) if pol( ; p) = 1

( j

p

! P ) if pol( ; p) = �1

(P $  j

p

) if pol( ; p) = 0

For renaming there are several 
hoi
es whi
h subformula to 
hoose. Ob-

viously, sin
e a formula has only linearly many subformulas, renaming every

subformula works [35, 29℄. Basi
ally this is what I show below. In the following

se
tion a renaming variant is introdu
ed that produ
es smallest CNFs.

SimpleRenaming � )

SimpRen

�[P

1

℄

p

1

[P

2

℄

p

2

: : : [P

n

℄

p

n

^ def(�; p

1

; P

1

) ^

: : : ^ def(�[P

1

℄

p

1

[P

2

℄

p

2

: : : [P

n�1

℄

p

n�1

; p

n

; P

n

)

provided fp

1

; : : : ; p

n

g � pos(�) and for all i; i+ j either p

i

k p

i+j

or p

i

> p

i+j

and the P

i

are di�erent and new to �

A
tually, the rule SimpleRenaming does not provide an e�e
tive way to


ompute the set fp

1

; : : : ; p

n

g of positions in � to be renamed. Where are several


hoi
es. Following Plaisted and Greenbaum [29℄, the set 
ontains all positions

from � that do not point to a propositional variable or a negation symbol. In

addition, renaming position � does not make sense be
ause it would generate the

formula P ^ (P ! �) whi
h results in more 
lauses than just �. Choosing the

set of Plaisted and Greenbaum prevents the explosion in the number of 
lauses

during CNF transformation. But not all renamings are needed to this end.
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!

[1=�℄

:

[�1=1℄

_

[1=11℄

:

[1=111℄

P

[�1=1111℄

^

[1=112℄

Q

[1=1121℄

R

[1=1122℄

_

[1=2℄

P

[1=21℄

$

[1=22℄

:

[0=221℄

Q

[0=2211℄

:

[0=222℄

R

[0=2221℄

Figure 2.9: Tree representation of [:(:P _ (Q^R))℄! [P _ (:Q$ :R)℄ where

ea
h node is annotated with its [polarity/position℄.

A smaller set of positions from �, let's 
all it the set of obvious positions, is

still preventing the explosion and given by the rules: (i) if �j

p

is an equivalen
e

and there is a position q < p su
h that �j

q

is either an equivalen
e or disjun
tive

in � then p is an obvious position (ii) if �j

pq

is a 
onjun
tive formula in �, �j

p

is a disjun
tive formula in � and for all positions r with p < r < pq the formula

�j

r

is not a 
onjun
tive formula then pq is an obvious position. A formula �j

p

is 
onjun
tive in � if �j

p

is a 
onjun
tion and pol(�; p) 2 f0; 1g or �j

p

is a

disjun
tion or impli
ation and pol(�; p) 2 f0;�1g. Analogously, a formula �j

p

is disjun
tive in � if �j

p

is a disjun
tion or impli
ation and pol(�; p) 2 f0; 1g or

�j

p

is a 
onjun
tion and pol(�; p) 2 f0;�1g.

Consider as an example the formula

[:(:P _ (Q ^ R))℄! [P _ (:Q$ :R)℄

. Its tree representation as well as the polarity and position of ea
h node is

shown in Figure 2.9.

The before mentioned polarity dependent transformations for equivalen
es

are realized by the following two rules:

ElimEquiv1 �[(�$  )℄

p

)

ACNF

�[(�!  ) ^ ( ! �)℄

p

provided pol(�; p) 2 f0; 1g

ElimEquiv2 �[(�$  )℄

p

)

ACNF

�[(� ^  ) _ (:� ^ : )℄

p

provided pol(�; p) = �1
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Algorithm 3: a
nf(�)

Input : A formula �.

Output: A formula  in CNF satis�ability preserving to �.

1 whilerule (ElimTB1(�),: : :,ElimTB6(�)) do ;

2 SimpleRenaming(�) on obvious positions;

3 whilerule (ElimEquiv1(�),ElimEquiv2(�)) do ;

4 whilerule (ElimImp(�)) do ;

5 whilerule (PushNeg1(�),: : :,PushNeg3(�)) do ;

6 whilerule (PushDisj(�)) do ;

7 return �;

:((P _Q)$ (P ! (Q ^ >)))

)

Step 1

ACNF

:((P _Q)$ (P ! Q))

)

Step 3

ACNF

:(((P _Q) ^ (P ! Q)) _ (:(P _Q) ^ :(P ! Q)))

)

�;Step 4

ACNF

:(((P _Q) ^ (:P _Q)) _ (:(P _Q) ^ :(:P _Q)))

)

�;Step 5

ACNF

((:P ^ :Q) _ (P ^ :Q)) ^ ((P _Q) _ (:P _Q))

)

�;Step 6

ACNF

(:P _P )^(:P _:Q)^(:Q_P )^(:Q_:Q)^(P _Q_:P _Q)

Figure 2.10: Example Advan
ed CNF Transformation

Proposition 2.6.5 (Models of Renamed Formulas). Let � be a formula and

�

0

a renamed CNF of � 
omputed by a
nf. Then any (partial) model A of �

0

is

also a model for �.

Proof. By an indu
tive argument it is suÆ
ient to 
onsider one renaming appli-


ation, i.e., �

0

= �[P ℄

p

^def(�; p; P ). There are three 
ases depending on the po-

larity. (i) if pol(�; p) = 1 then �

0

= �[P ℄

p

^P ! �j

p

. If A(P ) = 1 thenA(�j

p

) = 1

and hen
e A(�) = 1. The interesting 
ase is A(P ) = 0 and A(�j

p

) = 1. But

then be
ause pol(�; p) = 1 also A(�) = 1 by Lemma 2.2.7. (ii) if pol(�; p) = �1

the 
ase is symmetri
 to the previous one. Finally, (iii) if pol(�; p) = 0 for any

A satisfying �

0

it holds A(�j

p

) = A(P ) and hen
e A(�) = 1.

2.6.4 Computing Small CNFs

In the previous 
hapter obvious positions are a suggestion for smaller CNFs

with respe
t to the renaming positions suggested by Plaisted and Greenbaum.

In this se
tion I develop a set of renaming positions that is in fa
t minimal with

respe
t to the resulting CNF. A subformula is renamed if the eventual number

of generated 
lauses by b
nf de
reases after renaming [10, 28℄. If formulas are


he
ked top-down for this 
ondition, and pro�table formulas in the above sense

are renamed, the resulting CNF is optimal in the number of 
lauses [10℄. The

below fun
tion a
 
omputes the number of 
lauses generated by the algorithm

b
nf, as long as the formula does not 
ontain > or ?.
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CA state of the art CNF algorithm �rst tries to simplify a formula be-

fore doing the a
tual CNF transformation. Eliminating > or ? using

the ElimTB is a standard part of any su
h simpli�
ation pro
edure. Further

simpli�
ations are dis
ussed in Se
tion 2.13.

 a
( ) b
( )

�

1

^ �

2

a
(�

1

) + a
(�

2

) b
(�

1

) b
(�

2

)

�

1

_ �

2

a
(�

1

) a
(�

2

) b
(�

1

) + b
(�

2

)

�

1

! �

2

b
(�

1

) a
(�

2

) a
(�

1

) + b
(�

2

)

�

1

$ �

2

a
(�

1

) b
(�

2

) + b
(�

1

) a
(�

2

) a
(�

1

) a
(�

2

) + b
(�

1

) b
(�

2

)

:�

1

b
(�

1

) a
(�

1

)

P 1 1

Let � be a formula that does not 
ontain ?, or >, then a
(�) 
omputes ex-

a
tly the number of 
lauses generated by b
nf(�). The proof is left as an exer
ise,

but as an example 
onsider the 
ase where � = L

1

: : : L

n

is a disjun
tion of liter-

als. In this 
ase b
nf does not 
hange � at all ad produ
es exa
tly the 
lause �.

Expanding the de�nition of a
(�) produ
es a
(�) = a
(L

1

) a
(L

2

) : : : a
(L

n

) = 1

be
ause if some L

i

is a propositional variable, then a
(L

i

) = 1. If some L

j

is

negative, i.e., L

j

= :P then a
(L

j

) = a
(:P ) = b
(P ) = 1.

A renaming yields fewer 
lauses, if the di�eren
e between the number of


lauses generated without and with a renaming is positive. Consider the renam-

ing of a subformula at position p within a formula  with fresh variable P . The


ondition to be 
he
ked is

a
( ) � a
( [P ℄

p

) + a
(def( ; p; P )):

The inequality above is not stri
t. If some formula � =  j

p

is repla
ed inside

 where a
( ) = a
( [P ℄

p

) + a
(def( ; p; P )) then this equation turns into a

stri
t inequality as soon as we do another repla
ement inside �. In this 
ase

a
(def( ; p; P )) will stri
tly de
rease. Therefore, when sear
hing for a minimal

CNF it is mandatory to 
onsider the above inequality non-stri
t.

Example 2.6.6. For a formula P

1

$ P

2

renaming does not pay o�. If P

2

is

repla
ed by some fresh variable Q the result is P

1

$ Q ^ Q $ P

2

where the

original formula generates 2 
lauses and the formula after repla
ement generates

4 
lauses.

The break even point for nested equivalen
es is the formula P

1

$ (P

2

$

(P

3

$ P

4

)) where repla
ement at position 22 using the fresh variable Q results

in P

1

$ (P

2

$ Q) ^ Q $ (P

3

$ P

4

). Both formulas eventually generate

8 
lauses. So this is an example for the above inequality to be non-stri
t.

The obvious problem with this 
ondition is that the fun
tion a
 
annot be

eÆ
iently 
omputed in general, for it grows exponentially in the size of the in-

put formula. Moreover, a straightforward, naive top-down implementation of a


following the above table results in an algorithm with exponential time 
om-

plexity, due to the dupli
ation of re
ursive 
alls. The exponential 
omplexity
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an be avoided using a dynami
 programming idea: simply store intermediate

results for subformulas. Nevertheless, be
ause a
 grows exponentially, 
omput-

ing a
 requires arbitrary pre
ision integer arithmeti
. It turns out that this 
an

hardly be a�orded in pra
ti
e. The rest of this se
tion is therefore 
on
erned

with a solution to this problem, i.e., I show that it is not ne
essary to 
ompute

a
 at all for de
iding the above inequation.

Obviously, the formulas  and  [P ℄

p

di�er only at position p, the other parts

of the formulas remain identi
al. We make use of this fa
t by an abstra
tion of

those parts of  that do not in
uen
e the 
hanged position. To this end we

introdu
e the notion of a 
oeÆ
ient as shown in Table 2.1.

p  j

q

a

 

p

b

 

p

q:i �

1

^ �

2

a

 

q

b

 

q

Q

j 6=i

b
(�

j

)

q:i �

1

_ �

2

a

 

q

Q

j 6=i

a
(�

j

) b

 

q

q:1 �

1

! �

2

b

 

q

a

 

q

a
(�

2

)

q:2 �

1

! �

2

a

 

q

b
(�

1

) b

 

q

q:1 �

1

$ �

2

a

 

q

b
(�

2

) + b

 

q

a
(�

2

) a

 

q

a
(�

2

) + b

 

q

b
(�

2

)

q:2 �

1

$ �

2

a

 

q

b
(�

1

) + b

 

q

a
(�

1

) a

 

q

a
(�

1

) + b

 

q

b
(�

1

)

q:1 :�

1

b

 

q

a

 

q

�  1 0

Table 2.1: Cal
ulating the CoeÆ
ients

The 
oeÆ
ients determine how often a parti
ular subformula and its negation

are dupli
ated in the 
ourse of a basi
 CNF translation. The 
oeÆ
ient a

 

p

is the

fa
tor of a
( j

p

) in the re
ursive 
omputation whereas the fa
tor b

 

p

is the fa
tor

of b
( j

p

). The �rst 
olumn of Table 2.1 shows the form of p, the se
ond 
olumn

the form of  dire
tly above position p ( itself if p = �). The next two 
olumns

demonstrate the 
orresponding re
ursive bottom-up 
al
ulations for a

 

p

and b

 

p

,

respe
tively. Applied to our starting example formula  = �

1

_ 8x�

2

where we

renamed position 2:1, i.e., the subformula �

2

, the 
oeÆ
ients are a

 

2:1

= a
(�

1

)

(Table 2.1, eighth, se
ond and last row, �rst 
olumn) and b

 

2:1

= 0 (eighth, se
ond

and last row, se
ond 
olumn). Note that a

 

p

(b

 

p

) is always 0 if pol( ; p) = �1

(pol( ; p) = 1).

Using the notion of a 
oeÆ
ient, the previously stated 
ondition 
an be

reformulated as

a

 

p

a
(�) + b

 

p

b
(�) � a

 

p

+ b

 

p

+ a
(def( ; p; P ))

where we still assume that � =  j

p

and P is a fresh propositional variable.

Note that, sin
e � is repla
ed by P in  at position p, the 
oeÆ
ients a

 

p

, b

 

p

are

multiplied by 1 in the renamed version, be
ause a
(P ) = b
(P ) = 1. Depending

on the polarity of  j

p

the inequality is equivalent to one of the three inequalities:
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a

 

p

a
(�)� a

 

p

+ a
(�) if pol( ; p) = 1

b

 

p

b
(�)� b

 

p

+ b
(�) if pol( ; p) = �1

a

 

p

a
(�) + b

 

p

b
(�)� a

 

p

+ b

 

p

+ a
(�) + b
(�) if pol( ; p) = 0

By simple arithmeti
al transformations, we 
an group all o

urren
es of fa
tors

a

 

p

, b

 

p

and all o

urren
es of a
(�) and b
(�), respe
tively:

(a

 

p

� 1)(a
(�)� 1)� 1 if pol( ; p) = 1

(b

 

p

� 1)(b
(�)� 1)� 1 if pol( ; p) = �1

(a

 

p

� 1)(a
(�) � 1) + (b

 

p

� 1)(b
(�)� 1)� 2 if pol( ; p) = 0

Let us abbreviate the produ
t (a

 

p

�1)(a
(�)�1) with p

a

and (b

 

p

�1)(b
(�)�1)

with p

b

. Sin
e neither p

a

nor p

b


an be
ome negative, in any of the 
ases where

they appear, the �rst inequality holds if p

a

� 1, the se
ond inequality holds if

p

b

� 1 and the third inequality holds if (i) p

a

� 2 or (ii) p

b

� 2 or (iii) p

a

� 1

and p

b

� 1. In order to 
he
k these 
onditions, it suÆ
es to test whether the


oeÆ
ients a

 

p

, b

 

p

and the number of 
lauses a
(�), b
(�) are stri
tly greater

than 1, 2 or 3, respe
tively. This 
an always be 
he
ked in linear time with

respe
t to the size of  . The 
ondition a
(�) > 1 holds i� there exists a position

p su
h that �[�

1

$ �

2

℄

p

or �[�

1

^ �

2

℄

p

and pol(�; p) = 1 or �[�

1

Æ �

2

℄

p

with

pol(�; p) = �1 and Æ 2 f_;!g. The 
omputations for the boolean 
onditions

a
(�) > 2 and a
(�) > 3 are depi
ted in Table 2.2. The 
omputation of the


onditions for b
 works a

ordingly, see Table 2.3.

As for the fa
tors, Table 2.4 shows how to 
ompute a

 

p

> 1 and, following

Table 2.1, this 
an be extended to the other 
ases for the a fa
tor and the


orresponding 
onditions for the b fa
tor.

Hen
e we turned a test that required the 
omputation of exponentially grow-

ing fun
tions into a boolean 
ondition that does not require any arithmeti



al
ulation at all.

Theorem 2.6.7 (Formula Renaming). Formula Renaming preserves satis�a-

bility and 
an be 
omputed in polynomial time.

In order to further redu
e the number of eventually generated 
lauses it may

still be useful to rename a formula, even if the above 
onsiderations do not apply.

For example, renaming the formula P

1

_ (Q

1

^Q

2

) at position 2 results in three


lauses, whereas a standard CNF translation of the original formula yields two


lauses. This 
al
ulation also applies if this situation is repeated, as in

[P

1

_ (Q

1

^Q

2

)℄ ^ [P

2

_ (Q

1

^Q

2

)℄ ^ : : : [P

n

_ (Q

1

^Q

2

)℄

where our renaming 
riterion does not apply. But now a simultaneous renaming

of all o

urren
es (Q

1

^ Q

2

) may pay o�. It results in n + 2 
lauses whereas

the standard CNF translation yields 2n 
lauses. Hen
e, it is useful to sear
h for

multiple o

urren
es of the same subformula. The problem here is to �nd an

appropriate \equality" or \instan
e" relation between subformulas. In our ex-

ample synta
ti
 equality was suÆ
ient to dete
t all su
h o

urren
es. In general,

a mat
hing pro
ess { probably with respe
t to the 
ommutativity, asso
iativity
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 a
( ) > 1

�

1

^ �

2

true

�

1

_ �

2

a
(�

1

) > 1 or a
(�

2

) > 1

�

1

! �

2

b
(�

1

) > 1 or a
(�

2

) > 1

�

1

$ �

2

true

:�

b
(�) > 1

 a
( ) > 2

�

1

^ �

2

a
(�

1

) > 1 or a
(�

2

) > 1

�

1

_ �

2

a
(�

i

) > 2 or [a
(�

1

) > 1 and a
(�

2

) > 1℄

�

1

! �

2

b
(�

1

) > 2 or a
(�

2

) > 2 or [b
(�

1

) > 1 and a
(�

2

) > 1℄

�

1

$ �

2

at least one out of �

1

; �

2

is not a literal

:�

b
(�) > 2

 a
( ) > 3

�

1

^ �

2

a
(�

i

) > 2

�

1

_ �

2

a
(�

i

) > 3 or [a
(�

i

) > 2 and a
(�

j

) > 1; i 6= j℄

�

1

! �

2

b
(�

1

) > 2 or a
(�

2

) > 2 or [b
(�

1

) > 1 and a
(�

2

) > 1℄

�

1

$ �

2

a
(�

i

) > 3 or b
(�

i

) > 3 or �

2

is not a literal

:�

b
(�) > 3

Table 2.2: The Boolean Conditions for a


of some logi
al operators or even logi
al impli
ation { may be needed to obtain a

suitable renaming result. So we run here into a tradeo� between 
ompa
t CNFs

and 
omputational 
omplexity to a
hieve these CNFs.

For the formulation of the optimized CNF algorithm I rely on the equiv-

alen
es from 
ategories (I), (V) and (VII) from Figure 2.1. They are used to

transform the formula. The equivalen
es are always applied from left to right.

So \applying" su
h an equivalen
e means turning it into a rule. For example,

the equivalen
e (� _ (� ^  ))$ � from 
ategory (V) generates the rule

�[� _ (� ^  )℄

p

)

OCNF

�[�℄

p

Applying this rule with respe
t to 
ommutativity of _ means, for example, that

both the formulas (�_ (�^ )) and ((�^ )_�) 
an be transformed by the rule

to � where in both 
ases p = �. Rules are always applied modulo asso
iativity

and 
ommutativity of ^, _.
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 b
( ) > 1

�

1

^ �

2

b
(�

1

) > 1 or b
(�

2

) > 1

�

1

_ �

2

true

�

1

! �

2

true

�

1

$ �

2

true

:�

a
(�) > 1

 b
( ) > 2

�

1

_ �

2

b
(�

1

) > 1 or b
(�

2

) > 1

�

1

^ �

2

b
(�

i

) > 2 or b
(�

1

) > 1 and b
(�

2

) > 1

:�

a
(�) > 2

 b
( ) > 3

�

1

_ �

2

b
(�

i

) > 2

�

1

^ �

2

b
(�

i

) > 3 or [b
(�

i

) > 2 and b
(�

j

) > 1; i 6= j℄

:�

a
(�) > 3

Table 2.3: The Boolean Conditions for b


The pro
edure is depi
ted in Algorithm 4. Although 
omputing a
 for Step 2

is not pra
ti
al in general, be
ause the fun
tion is exponentially growing, the

test a
( [�℄

p

) > a
( [P ℄

p

^def( ; p; P )) 
an be 
omputed in 
onstant time after

a linear time pro
essing phase.

Applying Algorithm 4 to the formula :((P _ Q) $ (P ! (Q ^ >))) of

Example 2.6.3 results in the transformation depi
ted in Figure 2.11. Looking

at the result it is already very 
lose to :Q, as it 
ontains the 
lause (:Q _

:Q). Removing dupli
ate literals in 
lauses and removing 
lauses 
ontaining


omplementary literals from the result yields

(:P _ :Q) ^ (:Q _ P ) ^ :Q

whi
h is even 
loser to just :Q. The �rst two 
lauses 
an a
tually be removed

be
ause they are subsumed by :Q, i.e., 
onsidered as multisets, :Q is a subset

of these 
lauses. Subsumption will be introdu
ed in the next se
tion. Logi
ally,

they 
an be removed be
ause :Q has to be true for any satisfying assignment

of the formula and then the �rst two 
lauses are satis�ed anyway.
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Algorithm 4: o
nf(�)

Input : A formula �.

Output: A formula  in CNF satis�ability preserving to �.

1 whilerule (ElimRedI(�),ElimRedV(�),ElimRedVII(�)) do ;

2 SimpleRenaming(�) on bene�
ial positions;

3 whilerule (ElimEquiv1(�),ElimEquiv2(�)) do ;

4 whilerule (ElimImp(�)) do ;

5 whilerule (PushNeg1(�),: : :,PushNeg3(�)) do ;

6 whilerule (PushDisj(�)) do ;

7 return �;

:((P _Q)$ (P ! (Q ^ >)))

)

Step 1

OCNF

:([(P _Q)$ (P ! Q)℄)

)

Step 3

OCNF

:([(P _Q) ^ (P ! Q)℄ _ [:(P _Q) ^ :(P ! Q)℄)

)

Step 2

OCNF

:([(P _Q) ^ (:P _Q)℄ _ [:(P _Q) ^ :(:P _Q)℄)

)

�;Step 3

OCNF

(:[(P _Q) ^ (:P _Q)℄ ^ :[:(P _Q) ^ :(:P _Q)℄)

)

�;Step 3

OCNF

[:(P _Q) _ :(:P _Q)℄ ^ [(P _Q) _ (:P _Q)℄

)

�;Step 3

OCNF

[(:P ^ :Q) _ (P ^ :Q)℄ ^ [(P _Q) _ (:P _Q)℄

)

�;Step 4

OCNF

[(:P _P )^(:P_:Q)^(:Q_P )^(:Q_:Q)℄^[P_Q_:P_Q℄

Figure 2.11: Example Optimized CNF Transformation
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p  j

p

a

 

p

> 1

q:i �

1

^ �

2

a

 

p

> 1

q:i �

1

_ �

2

a

 

p

> 1 or a
(�

i

) > 1 for some i

Table 2.4: The Boolean Conditions for a

2.7 Propositional Resolution

A 
al
ulus is a set of inferen
e and redu
tion rules for a given logi
 (here

PROP(�)). We only 
onsider 
al
uli operating on a set of 
lauses N . Infer-

en
e rules add new 
lauses to N whereas redu
tion rules remove 
lauses from

N or repla
e 
lauses by \simpler" ones.

We are only interested in unsatis�ability, i.e., the 
onsidered 
al
uli test

whether a 
lause set N is unsatis�able. This is in parti
ular motivated by the

renaming step of CNF transformation, see Se
tion 2.6.3. So, in order to 
he
k

validity of a formula � we 
he
k unsatis�ability of the 
lauses generated from

:�.

For 
lauses we swit
h between the notation as a disjun
tion, e.g., P _Q_P _

:R, and the notation as a multiset, e.g., fP;Q; P;:Rg. This makes no di�eren
e

as we 
onsider _ in the 
ontext of 
lauses always modulo AC. Note that ?, the

empty disjun
tion, 
orresponds to ;, the empty multiset. Clauses are typi
ally

denoted by letters C, D, possibly with subs
ript.

The resolution 
al
ulus 
onsists of the inferen
e rules Resolution and Fa
-

toring. So, if we 
onsider 
lause sets N as states, ℄ is disjoint union, we get the

inferen
e rules

Resolution

(N℄fC

1

_P;C

2

_:Pg) )

RES

(N[fC

1

_P;C

2

_:Pg[fC

1

_C

2

g)

Fa
toring (N ℄ fC _ L _ Lg) )

RES

(N [ fC _ L _ Lg [ fC _ Lg)

Theorem 2.7.1. The resolution 
al
ulus is sound and 
omplete:

N is unsatis�able i� N )

�

RES

f?g

Proof. (() Soundness means for all rules that N j= N

0

where N

0

is the 
lause

set obtained from N after applying Resolution or Fa
toring. For Resolution it

is suÆ
ient to show that C

1

_ P;C

2

_ :P j= C

1

_ C

2

. This is obvious by a 
ase

analysis of valuations satisfying C

1

_P;C

2

_:P : of P is true in su
h a valuation

so must be C

2

, hen
e C

1

_ C

2

. If P is false in some valuation then C

1

must

be true and so C

1

_ C

2

. Soundness for Fa
toring is obvious this way be
ause it

simply removes a dupli
ate literal in the respe
tive 
lause.

()) The traditional method of proving resolution 
ompleteness are semanti


trees. A semanti
 tree is a binary tree where the edges a labeled with literals
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su
h that: (i) edges of 
hildren of the same parent are labeled with L and :L,

and (ii) any node has either no or two 
hildren, and (iii) for any path from the

root to a leave, ea
h propositional variable o

urs at most on
e. Therefore, ea
h

path 
orresponds to a partial valuation. Now for an unsatis�able 
lause set N

there is a semanti
 tree su
h that for ea
h leaf of the tree there is a 
lause in N

that is false with respe
t to the partial valuation at that leaf. Let this tree be

minimal in the sense that there is no smaller tree with less nodes having this

property. Now 
onsider two sister leaves of the same parent of this tree, where

the edges are labeled with L and :L, respe
tively. Let C

1

and C

2

be the two

false 
lauses at the respe
tive leaves. Obviously, C

1

= C

0

1

_L and C

2

= C

0

2

_:L

as for otherwise the tree would not be minimal. If C

1

(or C

2

) 
ontains further

o

urren
es of L (or C

2

of :L), then the rule Fa
toring is applied to eventually

remove all additional o

urren
es. Therefore, I 
an assume L 62 C

0

1

and :L 62 C

0

2

.

A resolution step between these two 
lauses on L yields C

0

1

_ C

0

2

whi
h is false

at the parent of the two leaves, be
ause the resolvent neither 
ontains L nor

:L. Furthermore, the resulting tree from 
utting the two leaves is minimal

for N [ fC

0

1

_ C

0

2

g and stri
tly smaller. By an indu
tive argument this proves


ompleteness.

Example 2.7.2 (Resolution Completeness). Consider the 
lause set

P _Q; :P _Q; P _ :Q; :P _ :Q _ S; :P _ :Q _ :S

and the 
orresponding semanti
 tree as shown in Figure 2.12.

[:P;

:Q;

:S℄

S

[:P;

:Q;

S℄

:S

Q

[:P;

Q;

:S℄

S

[:P;

Q;

S℄

:S

:Q

P

[ P;

:Q;

:S℄

S

[ P;

:Q;

S℄

:S

Q

[ P;

Q;

:S℄

S

[P;

Q;

S℄

:S

:Q

:P

Figure 2.12: Semanti
 tree representation of fP _ Q; :P _ Q; P _ :Q; :P _

:Q _ S; :P _ :Q _ :Sg where ea
h leaf is labeled with the literals that falsify

the partial valuation at that leaf.

The redu
tion rules are
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Subsumption (N ℄ fC

1

; C

2

g) )

RES

(N [ fC

1

g)

provided C

1

� C

2

Tautology

Deletion

(N ℄ fC _ P _ :Pg) )

RES

(N)

Condensation

(N ℄ fC

1

_ L _ Lg) )

RES

(N [ fC

1

_ Lg)

Note the di�erent nature of inferen
e rules and redu
tion rules. Resolution

and Fa
torization only add 
lauses to the set whereas Subsumption, Tautology

Deletion and Condensation delete 
lauses or repla
e 
lauses by \simpler" ones.

In the next se
tion, Se
tion 2.8, I will show that \simpler" means.

C

At �rst, it looks strange to have the same rule both as a redu
tion

rules and as an inferen
e rule, i.e., Fa
torization and Condensation.

On the propositional level there is obviously no di�eren
e and it is

possible to get rid of one of the two. In Se
tion 3.13 the resolution 
al
ulus is

extended to �rst-order logi
. In �rst-order logi
 Fa
torization and Condensation

are a
tually di�erent. They are separated here to eventually obtain the same

set of resolution 
al
ulus rules for propositional and �rst-order logi
.

Proposition 2.7.3. The redu
tion rules Subsumption, Tautology Deletion and

Condensation are sound.

Proof. This is obvious for Tautology Deletion and Condensation. For Subsump-

tion we have to show that C

1

j= C

2

, be
ause this guarantees that if N[fC

1

g has

a model, N ℄ fC

1

; C

2

g has a model too. So assume A(C

1

) = 1 for an arbitrary

A. Then there is some literal L 2 C

1

with A(L) = 1. Sin
e C

1

� C

2

, also L 2 C

2

and therefore A(C

2

) = 1.

Theorem 2.7.4 (Resolution Termination). If redundan
y rules are preferred

over inferen
e rules and no inferen
e rule is applied twi
e to the same 
lause(s),

then )

+

RES

is well-founded.

Proof. For some given 
lause set N the redundan
y rules Subsumption, Tautol-

ogy Deletion and Condensation always terminate be
ause they all redu
e the

number of literals o

urring in N . Furthermore, a 
lause set N where the re-

dundan
y rules have been exhaustively applied does not 
ontain any tautology,

no 
lause with dupli
ate literals and, in parti
ular, no dupli
ate 
lauses. The

number of su
h 
lauses 
an be overestimated by 3

n

where n is the number of

propositional variables in N . Hen
e, there are at most 2

3

n

di�erent, �nite 
lause

sets with respe
t to 
lause sets where the redundan
y rules have been applied.

Obviously, for ea
h of su
h 
lause sets there are only �nitely many di�erent

Resolution and Fa
toring steps.
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C Of 
ourse, what needs to be shown is that the strategy employed in

Theorem 2.7.4 is still 
omplete. This is not 
ompletely trivial and

gets very nasty using semanti
 trees as the proof method of 
hoi
e. So let's wait

until superposition is established where this result be
omes a parti
ular 
ase of

superposition 
ompleteness.

2.8 Propositional Superposition

Superposition was originally developed for �rst-order logi
 [5℄. Here I introdu
e

its proje
tion to propositional logi
. Compared to the resolution 
al
ulus su-

perposition adds (i) ordering and sele
tion restri
tions on inferen
es, (ii) an

abstra
t redundan
y notion, (iii) the notion of a partial model for inferen
e

guidan
e, and (iv) a saturation 
on
ept.

De�nition 2.8.1 (Clause Ordering). Let � be a total stri
t ordering on �.

Then � 
an be lifted to a total ordering on literals by ���

L

and P �

L

:P and

:P �

L

Q, :P �

L

:Q for all P � Q. The ordering �

L


an be lifted to a total

ordering on 
lauses �

C

by 
onsidering the multiset extension of �

L

for 
lauses.

Proposition 2.8.2 (Properties of the Clause Ordering). (i) The orderings on

literals and 
lauses are total and well-founded.

(ii) Let C and D be 
lauses with P = jmax(C)j, Q = jmax(D)j, where max(C)

denotes the maximal literal in C.

1. If Q �

L

P then D �

C

C.

2. If P = Q, P o

urs negatively in C but only positively in D, then D �

C

C.

Eventually, I overload � with �

L

and �

C

. So if � is applied to literals it

denotes �

L

, if it is applied to 
lauses, it denotes �

C

. Note that � is a total

ordering on literals and 
lauses as well. Eventually we will restri
t inferen
es to

maximal literals with respe
t to �. For a 
lause set N , I de�ne N

�C

= fD 2

N j D � Cg.

De�nition 2.8.3 (Abstra
t Redundan
y). A 
lause C is redundant with respe
t

to a 
lause set N if N

�C

j= C.

Tautologies are redundant. Subsumed 
lauses are redundant if � is stri
t.

Dupli
ate 
lauses are anyway eliminated quietly be
ause the 
al
ulus operates

on sets of 
lauses.

C

Note that for �nite N , and any C 2 N redundan
y N

�C

j= C 
an

be de
ided but is as hard as testing unsatis�ability for a 
lause set

N . So the goal is to invent redundan
y notions that 
an be eÆ
iently

de
ided and that are useful.

De�nition 2.8.4 (Sele
tion Fun
tion). The sele
tion fun
tion sel maps 
lauses

to one of its negative literals or ?. If sel(C) = :P then :P is 
alled sele
ted in

C. If sel(C) = ? then no literal in C is sele
ted.
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The sele
tion fun
tion is, in addition to the ordering, a further means to

restri
t superposition inferen
es. If a negative literal is sele
ted on a 
lause, any

superposition inferen
e must be on the sele
ted literal.

De�nition 2.8.5 (Partial Model Constru
tion). Given a 
lause set N and an

ordering � we 
an 
onstru
t a (partial) model N

I

for N indu
tively as follows:

N

C

:=

S

D�C

Æ

D

Æ

D

:=

8

>

<

>

:

fPg if D = D

0

_ P; P stri
tly maximal, no literal

sele
ted in D and N

D

6j= D

; otherwise

N

I

:=

S

C2N

Æ

C

Clauses C with Æ

C

6= ; are 
alled produ
tive.

Proposition 2.8.6. Some properties of the partial model 
onstru
tion.

1. For every D with (C _ :P ) � D we have Æ

D

6= fPg.

2. If Æ

C

= fPg then N

C

[ Æ

C

j= C.

3. If N

C

j= D and D � C then for all C

0

with C � C

0

we have N

C

0

j= D

and in parti
ular N

I

j= D.

4. There is no 
lause C with P _ P � C su
h that Æ

C

= fPg.

T

Please properly distinguish: N is a set of 
lauses interpreted as the


onjun
tion of all 
lauses. N

�C

is of set of 
lauses from N stri
tly

smaller than C with respe
t to �. N

I

, N

C

are sets of atoms, often


alled Herbrand Interpretations. N

I

is the overall (partial) model for N , whereas

N

C

is generated from all 
lauses from N stri
tly smaller than C. Validity is

de�ned by N

I

j= P if P 2 N

I

and N

I

j= :P if P 62 N

I

, a

ordingly for N

C

.

Given some 
lause setN the partial modelN

I


an be extended to a valuation

A by de�ning A(N

I

) := N

I

[ f:P j P 62 N

I

g. So we 
an also de�ne for some

Herbrand interpretation N

I

(N

C

) that N

I

j= � i� A(N

I

)(�) = 1.

Superposition Left (N ℄ fC

1

_ P;C

2

_:Pg) )

SUP

(N [ fC

1

_ P;C

2

_

:Pg [ fC

1

_ C

2

g)

where (i) P is stri
tly maximal in C

1

_ P (ii) no literal in C

1

_ P is sele
ted

(iii) :P is maximal and no literal sele
ted in C

2

_ :P , or :P is sele
ted in

C

2

_ :P

Fa
toring (N℄fC_P _Pg) )

SUP

(N[fC_P _Pg[fC_Pg)

where (i) P is maximal in C _ P _ P (ii) no literal is sele
ted in C _ P _ P

Note that the superposition fa
toring rule di�ers from the resolution fa
tor-

ing rule in that it only applies to positive literals.
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De�nition 2.8.7 (Saturation). A set N of 
lauses is 
alled saturated up to

redundan
y, if any inferen
e from non-redundant 
lauses inN yields a redundant


lause with respe
t to N .

Examples for spe
i�
 redundan
y rules that 
an be eÆ
iently de
ided are

Subsumption (N ℄ fC

1

; C

2

g) )

SUP

(N [ fC

1

g)

provided C

1

� C

2

Tautology Dele-

tion

(N ℄ fC _ P _ :Pg) )

SUP

(N)

Condensation

(N ℄ fC

1

_ L _ Lg) )

SUP

(N [ fC

1

_ Lg)

Subsumption

Resolution

(N ℄ fC

1

_ L;C

2

_ :Lg) )

SUP

(N [ fC

1

_ L;C

2

g)

where C

1

� C

2

Proposition 2.8.8. All 
lauses removed by Subsumption, Tautology Deletion,

Condensation and Subsumption Resolution are redundant with respe
t to the

kept or added 
lauses.

Theorem 2.8.9. If N is saturated up to redundan
y and ? =2 N then N is

satis�able and N

I

j= N .

Proof. The proof is by 
ontradi
tion. So I assume: (i) for any 
lause D derived

by Superposition Left or Fa
toring from N that D is redundant, i.e., N

�D

j= D,

(ii) ? =2 N and (iii) N

I

6j= N . Then there is a minimal, with respe
t to �, 
lause

C_L 2 N su
h that N

I

6j= C_L and L is a sele
ted literal in C_L or no literal

in C _ L is sele
ted and L is maximal. This 
lause must exist be
ause ? =2 N .

The 
lause C _ L is not redundant. For otherwise, N

�C_L

j= C _ L and

hen
e N

I

j= C _ L, be
ause N

I

j= N

�C_L

, a 
ontradi
tion.

I distinguish the 
ase L is a positive and no literal sele
ted in C _L or L is a

negative literal. Firstly, assume L is positive, i.e., L = P for some propositional

variable P . Now if P is stri
tly maximal in C _ P then a
tually Æ

C_P

= fPg

and hen
e N

I

j= C _P , a 
ontradi
tion. So P is not stri
tly maximal. But then

a
tually C _ P has the form C

0

1

_ P _ P and Fa
toring derives C

0

1

_ P where

(C

0

1

_ P ) � (C

0

1

_ P _ P ). Now C

0

1

_ P is not redundant, stri
tly smaller than

C_L, we have C

0

1

_P 2 N and N

I

6j= C

0

1

_P , a 
ontradi
tion against the 
hoi
e

that C _ L is minimal.

Se
ondly, let us assume L is negative, i.e., L = :P for some propositional

variable P . Then, sin
e N

I

6j= C _ :P we know P 2 N

I

. So there is a 
lause

D _ P 2 N where Æ

D_P

= fPg and P is stri
tly maximal in D _ P and

(D _ P ) � (C _ :P ). So Superposition Left derives C _ D where (C _ D) �

(C _:P ). The derived 
lause C_D 
annot be redundant, be
ause for otherwise

either N

�D_P

j= D_P or N

�C_:P

j= C_:P . So C_D 2 N and N

I

6j= C_D,

a 
ontradi
tion against the 
hoi
e that C _ L is the minimal false 
lause.
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Propagate (M ;N) )

DPLL

(ML;N)

provided C _ L 2 N , M j= :C, and L is unde�ned in M

De
ide

(M ;N) )

DPLL

(ML

>

;N)

provided L is unde�ned in M

Ba
ktra
k

(M

1

L

>

M

2

;N) )

DPLL

(M

1

:L;N)

provided there is a D 2 N and M j= :D and no K

>

in M

2

Figure 2.13: The DPLL Cal
ulus

So the proof a
tually tells us that at any point in time we need only to


onsider either a superposition left inferen
e between a minimal false 
lause and

a produ
tive 
lause or a fa
toring inferen
e on a minimal false 
lause.

2.9 Davis Putnam Logemann Loveland Pro
e-

dure (DPLL)

A DPLL problem state is a pair (M ;N) whereM a sequen
e of partly annotated

literals, and N is a set of 
lauses. In parti
ular, the following states 
an be

distinguished:

(�;N) is the start state for some 
lause set N

(M ;N) is a �nal state, if M j= N

(M ;N) is a �nal state, ifM j= :N and there is no literal L

>

in M

(M ;N) is an intermediate state if M neither is a model for

N nor does it falsify a 
lause in N

The sequen
e M will, by 
onstru
tion, neither 
ontain dupli
ate nor 
om-

plementary literals. So it will always serve as a partial valuation for the 
lause

set N .

Here are the rules

Lemma 2.9.1. Let (M ;N) be a state rea
hed by the DPLL algorithm from

the initial state (�;N). If M = M

1

L

>

1

M

2

L

>

2

: : : L

>

m

M

m+1

and all M

i

have no

de
ision literals then for all 0 � i � m it holds: N;M

1

; : : : ; L

>

i

j=M

i+1

Proof. Proof by 
omplete indu
tion on the number n of rule appli
ations.

Indu
tion basis: n = 0. No rule has been applied so that M = � and M does

not 
ontain any de
ision literal. Therefore the statement holds.

Indu
tion hypothesis: If (M ;N) is rea
hed via n or less rule appli
ations

where M =M

1

L

>

1

M

2

L

>

2

: : : L

>

m

M

m+1

and all M

i

have no de
ision literals then

for all 1 � i � m it holds: N;M

1

; : : : ; L

>

i

j=M

i+1

.

Indu
tion step: n! n+1. Assume (M

0

;N) is rea
hed via n rule appli
ations.

Then by the use of the indu
tion hypothesis it holds for all 1 � i < m that
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N;M

1

; : : : ; L

>

i

j= M

i+1

so that it remains to be shown that N;M

1

; : : : ; L

>

m

j=

M

m+1

1. Rule Propagate (M

0

;N))

DPLL

(M

0

L;N): IfM

0

=M

1

L

>

1

M

2

L

>

2

: : : L

>

m

M

m+1

and all M

i

have no de
ision literals then by de�nition there is a


lause C _ L 2 N with M

0

j= :C, i.e. C _ L;M

0

j= L and

N;M

1

L

>

1

M

2

L

>

2

: : : L

>

m

M

m+1

j= L. Using the indu
tion hypothesis it fol-

lows N;M

1

L

>

1

M

2

L

>

2

: : : L

>

m

j=M

m+1

; L.

2. Rule De
ide (M

0

;N))

DPLL

(M

0

L

>

;N): The statement holds be
ause of

M

0

; L

>

j= > and the indu
tion hypothesis.

3. Rule Ba
ktra
k (M

0

1

L

>

M

0

2

;N) )

DPLL

(M

0

1

:L;N): By de�nition M

0

2

has

no de
ision literals and there is a 
lause D 2 N with M

0

1

L

>

M

0

2

j=

:D. With the indu
tion hypothesis M

0

1

L

>

j= M

0

2

holds. It follows

that M

0

1

L

>

j= :D whi
h is equivalent to M

0

1

L

>

; D j= ? and

M

0

1

; D j= :L

>

. Sin
e D 2 N it holds that N;M

0

1

j= :L. Let M

0

1

=

M

1

L

>

1

M

2

L

>

2

: : : L

>

m

M

m+1

where all M

i

have no de
ision literals then by

indu
tion hypothesis N;M

1

L

>

1

M

2

L

>

2

: : : L

>

m

j=M

m+1

;:L.

Proposition 2.9.2. For a state (M ;N) that is rea
hed from the initial state

(�;N) where M 
ontains k de
ision literals L

1

: : : L

k

with k � 0 and for ea
h

valuation A with A j= N;L

1

; : : : ; L

k

it holds that A(K) = 1 for all K 2M .

Proof. LetM =M

1

L

>

1

: : : L

>

k

M

k+1

where allM

i

have no de
ision literals. With

Lemma 2.9.1 for all i it holds that N;M

1

L

>

1

: : : L

>

i�1

j=M

i

, i.e., for all i, literals

K 2 M

i

and ea
h valuation A with A j= N;L

1

; : : : ; L

k

it holds that A(K) =

1.

Lemma 2.9.3. If M 
ontains only propagated literals and M = L

1

: : : L

n

and

there is a D 2 N with M j= :D where D = K

1

: : :K

m

then N is unsatis�able.

Proof. Sin
e M j= :D it holds that :K

i

2 M for all 1 � i � m. With Propo-

sition 2.9.2 for ea
h valuation A with A j= N it holds that A(L

j

) = 1 for all

1 � j � n. Thus in parti
ular it holds that A(:K

i

) = 1 for all 1 � i � m.

Therefore D is always false under any valuation A and N is always unsatis�-

able.

Proposition 2.9.4 (DPLL Soundness). The rules Propagate, De
ide, and

Ba
ktra
k are sound, i.e. whenever the algorithm terminates in state (M ;N)

starting from the initial state (�;N) then it holds: M j= N i� N is satis�able

Proof. ()) if M j= N then obviously N is satis�able.

(() Proof by 
ontradi
tion. Assume N is satis�able and the algorithm termi-

nates in state (M ;N) starting from the initial state (�;N). Furthermore, assume

M j= N does not hold, i.e. either there is at least one literal that is not de�ned

in M or there is a 
lause D 2 N with M j= :D.
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For the �rst 
ase the rule De
ide is appli
able. This 
ontradi
ts that the

algorithm terminated.

For the se
ond 
ase either M only 
ontains propagated literals then N is

unsatis�able with Lemma 2.9.3. This is a 
ontradi
tion to the assumption that

N is satis�able. If M does not only 
ontain propagated literals there must be at

least one de
ision literal in M . Then the rule Ba
ktra
k is appli
able but this


ontradi
ts that the algorithm terminated.

Therefore M j= N and the rules Propagate, De
ide, and Ba
ktra
k are sound.

Proposition 2.9.5 (DPLL Strong Completeness). The rules Propagate, De-


ide, and Ba
ktra
k are strongly 
omplete: for any valuation M with M j= N ,

there is a sequen
e of rule appli
ation generating (M;N) as a �nal state.

Proof. Let M = L

1

L

2

: : : L

k

. Sin
e it is a valuation there are no dupli
ates in

M and k appli
ations of rule De
ide yield (L

>

1

L

>

2

: : : L

>

k

; N) out of (�;N). This

is a �nal state be
ause ba
ktra
k is not appli
able sin
e M j= N and Propagate

and De
ide are no further appli
able sin
e M is a valuation.

Proposition 2.9.6 (DPLL Termination). The rules Propagate, De
ide, and

Ba
ktra
k terminate on any input state (�;N).

Proof. Let n be the number of propositional variables in N . As usual, termina-

tion is shown by assigning a well-founded measure and proving that it de
reases

with ea
h rule appli
ation. The domain for the measure � are n-tuples over

f1; 2; 3g.

�((L

1

: : : L

k

;N)) = (m

1

; : : : ;m

k

; 3; : : : ; 3)

where m

i

= 2 if L

i

is annotated with > and m

i

= 1 otherwise. So �((�;N)) =

(3; : : : ; 3). The well-founded ordering is the lexi
ographi
 extension of < to n-

tuples. What remains to be shown is that ea
h rule appli
ation de
reases �. I

do this by a 
ase analysis over the rules.

Propagate:

�((L

1

: : : L

k

;N)) = (m

1

; : : : ;m

k

; 3; 3; : : : ; 3)

> (m

1

; : : : ;m

k

; 1; 3; : : : ; 3)

= �((L

1

: : : L

k

L;N))

De
ide:

�((L

1

: : : L

k

;N)) = (m

1

; : : : ;m

k

; 3; 3; : : : ; 3)

> (m

1

; : : : ;m

k

; 2; 3; : : : ; 3)

= �((L

1

: : : L

k

L

>

;N))

Ba
ktra
k:

�((L

1

: : : L

j

L

>

L

j+1

: : : L

k

;N)) = (m

1

; : : : ;m

j

; 2;m

j+1

; : : : ;m

k

; 3; : : : ; 3)

> (m

1

; : : : ;m

j

; 1; 3; : : : ; 3)

= �((L

1

: : : L

j

:L;N))
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2.10 Con
i
t Driven Clause Learning (CDCL)

A CDCL problem state is a �ve-tuple (M ;N ;U ; k;C) where M a sequen
e of

annotated literals, N and U are sets of 
lauses, k 2 N, and C is a non-empty


lause or > or ?. In parti
ular, the following states 
an be distinguished:

(�;N ; ;; 0;>) is the start state for some 
lause set N

(M ;N ;U ; k;>) is a �nal state, if M j= N and all literals from N are

de�ned in M

(M ;N ;U ; k;?) is a �nal state, where N has no model

(M ;N ;U ; k;>) is an intermediate model sear
h state if M 6j= N

(M ;N ;U ; k;D) is a ba
ktra
king state if D 62 f>;?g

A literal L is of level k with respe
t to a problem state (M ;N ;U ; j;C) if

L or :L o

urs in M and the �rst de
ision literal left from L (:L) in M is

annotated with k or if there is no de
ision literal k = 0. A 
lause D is of level

k with respe
t to a problem state (M ;N ;U ; j;C) if k is the maximal level of a

literal in D. Re
all C is a non-empty 
lause or > or ?. The rules are

Propagate (M ;N ;U ; k;>) )

CDCL

(ML

C_L

;N ;U ; k;>)

provided C _ L 2 (N [ U), M j= :C, and L is unde�ned in M

De
ide

(M ;N ;U ; k;>) )

CDCL

(ML

k+1

;N ;U ; k + 1;>)

provided L is unde�ned in M

Con
i
t

(M ;N ;U ; k;>) )

CDCL

(M ;N ;U ; k;D)

provided D 2 (N [ U) and M j= :D

Skip (ML

C_L

;N ;U ; k;D) )

CDCL

(M ;N ;U ; k;D)

provided D 62 f>;?g and :L does not o

ur in D

Resolve

(ML

C_L

;N ;U ; k;D _ :L) )

CDCL

(M ;N ;U ; k;D _ C)

provided D 
ontains a literal of level k or k = 0

For rule Resolve we assume that dupli
ate literals in D _ C are always re-

moved.

Ba
ktra
k

(M

1

K

i+1

M

2

;N ;U ; k;D _ L) )

CDCL

(M

1

L

D_L

;N ;U [ fD _

Lg; i;>)

provided L is of maximal level k in D _ L and D is of level i, where i < k.

Restart

(M ;N ;U ; k;>) )

CDCL

(�;N ;U ; 0;>)

provided M 6j= N
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Forget (M ;N ;U [ fCg; k;>) )

CDCL

(M ;N ;U ; k;>)

provided M 6j= N

Re
all that ? denotes the empty 
lause, hen
e failure of sear
hing for a

model. The level of the empty 
lause ? is 0. The 
lause D _ L added in rule

Ba
ktra
k to U is 
alled a learned 
lause. The CDCL algorithm stops with a

model M if neither Propagate nor De
ide nor Con
i
t are appli
able to a state

(M ;N ;U ; k;>), hen
e M j= N and all literals of N are de�ned in M . The only

possibility to generate a state (M ;N ;U ; k;?) is by the rule Resolve. So in 
ase

of dete
ting unsatis�ability the CDCL algorithm a
tually generates a resolution

proof as a 
erti�
ate. I will dis
uss this aspe
t in more detail in Se
tion 2.12.

In the spe
ial 
ase of a unit 
lause L, the rule Propagate a
tually annotates the

literal L with itself.

Obviously, the CDCL rule set does not terminate in general for a number of

reasons. For example, starting with (�;N ; ;; 0;>) a simple 
ombination Propa-

gate, De
ide and eventually Restart yields the start state again. Even after a

su

essful appli
ation of Ba
ktra
k, exhaustive appli
ation of Forget followed

by Restart again produ
es the start state. So why these rules? A
tually, any

modern SAT solver is based on this rule set and the underlying me
hanisms. I

will motivate the rules later on and how they are a
tually used in an eÆ
ient

way.

Example 2.10.1 (CDCL Strategy I). Consider the 
lause setN = fP_Q;:P_

Q;:Qg whi
h is unsatis�able. The below is a CDCL derivation proving this fa
t.

The 
hosen strategy for CDCL rule sele
tion produ
es a lengthy proof.

(�;N ; ;; 0;>)

)

De
ide

CDCL

(P

1

;N ; ;; 1;>)

)

De
ide

CDCL

(P

1

:Q

2

;N ; ;; 2;>)

)

Con
i
t

CDCL

(P

1

:Q

2

;N ; ;; 2;:P _Q)

)

Ba
ktra
k

CDCL

(P

1

Q

:P_Q

;N ; f:P _Qg; 1;>)

)

Con
i
t

CDCL

(P

1

Q

:P_Q

;N ; f:P _Qg; 1;:Q)

)

Ba
ktra
k

CDCL

(:Q

:Q

;N ; f:P _Q;:Qg; 0;>)

)

De
ide

CDCL

(:Q

:Q

P

1

;N ; f:P _Q;:Qg; 1;>)

)

Con
i
t

CDCL

(:Q

:Q

P

1

;N ; f:P _Q;:Qg; 1;:P _Q)

)

Ba
ktra
k

CDCL

(:Q

:Q

:P

:P_Q

;N ; f:P _Q;:Qg; 0;>)

)

Con
i
t

CDCL

(:Q

:Q

:P

:P_Q

;N ; f:P _Q;:Qg; 0;P _Q)

)

Resolve

CDCL

(:Q

:Q

;N ; f:P _Q;:Qg; 0;Q)

)

Resolve

CDCL

(�;N ; f:P _Q;:Qg; 0;?)

Example 2.10.2 (CDCL Strategy II). Consider again the 
lause set N =

fP _Q;:P _Q;:Qg from Example 2.10.1. For the following CDCL derivation

the rules Propagate and Con
i
t are preferred over the other rules.
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(�;N ; ;; 0;>)

)

Propagate

CDCL

(:Q

:Q

;N ; ;; 0;>)

)

Propagate

CDCL

(:Q

:Q

P

Q_P

;N ; ;; 0;>)

)

Con
i
t

CDCL

(:Q

:Q

P

Q_P

;N ; ;; 0;:P _Q)

)

Resolve

CDCL

(:Q

:Q

;N ; ;; 0;Q)

)

Resolve

CDCL

(�;N ; ;; 0;?)

I

In an implementation the rule Con
i
t is preferred over the rule Prop-

agate and both over all other rules. Exa
tly this strategy has been

used in Example 2.10.2 and is 
alled reasonable below. A further in-

gredient is a dynami
 heuristi
 whi
h literal is a
tually used by the rule De
ide.

This heuristi
 typi
ally depends on the usage of literals by the rule Resolve, i.e.,

literals used in Resolve \get a bonus".

De�nition 2.10.3 (Reasonable CDCL Strategy). A CDCL strategy is reason-

able if Con
i
t is always preferred over rule Propagate is always preferred over

all other rules.

Proposition 2.10.4 (CDCL Basi
 Properties). Consider a CDCL state

(M ;N ;U ; k;C) derived by a reasonable strategy from start state (�;N; ;; 0;>)

without using the rules Restart and Forget. Then the following properties hold:

1. M is 
onsistent.

2. All learned 
lauses are entailed by N .

3. If C 62 f>;?g then M j= :C.

4. If C = > and M 
ontains only propagated literals then for ea
h valuation

A with A j= N it holds that A j=M .

5. If C = >, M 
ontains only propagated literals and M j= :D for some

D 2 (N [ U) then N is unsatis�able.

6. If C = ? then CDCL terminates and N is unsatis�able.

7. Ea
h in�nite derivation

(�;N ; ;; 0;>))

CDCL

(M

1

;N ;U

1

; k

1

;D

1

))

CDCL

: : :


ontains an in�nite number of Ba
ktra
k appli
ations.

8. CDCL never learns the same 
lause twi
e if Con
i
t sele
ts the smallest


lause out of N [ U .

Proof. 1.M is 
onsistent if it does does not 
ontain L and :L at the same time.

The rules Propagate, De
ide only add unde�ned literals to M . By an indu
tive
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argument this holds also for Ba
ktra
k as it just removes literals from M and


ips one literal already 
ontained in M .

2. A learned 
lause is a always a resolvent of 
lauses from N [ U and even-

tually added to U where U is initially empty. By soundness of resolution (The-

orem 2.7.1) and an indu
tive argument it is entailed by N .

3. A 
lause C 62 f>;?g 
an only o

ur after Con
i
t where M j= :C.

The rule Skip does not 
hange C and only deletes propagated literals from M

that are not 
ontained in C. By an indu
tive argument, if the rule Resolve is

applied to a state (M

0

L

D

0

_L

;N ;U ; k;D _ :L) where C = D _ :L resulting in

(M

0

;N ;U ; k;D_D

0

) thenM

0

j= :D be
auseM

0

j= :C andM

0

j= :D

0

be
ause

L was propagated with respe
t to M

0

and D

0

_ L.

4. Proof by indu
tion on the number n of propagated literals in M . Let

M = L

1

; : : : ; L

n

; L

n+1

. There are two rules that 
ould have added L

n+1

. (i) rule

Propagate: in this 
ase there is a 
lause C = D _ L

n+1

where L

n+1

was unde-

�ned in M and M j= :D. By indu
tion hypothesis for ea
h valuation A with

A j= N it holds that A(L

i

) = 1 for all i 2 f1; : : : ; ng. Sin
e all literals in D

appear negated in M with the indu
tion hypothesis it holds that all those liter-

als must have the truth value 1 in any valuation A. Therefore, for the 
lause C

to be true L

n+1

must be true as well in any valuation. It follows that for ea
h

valuation A it holds that A(L

i

) = 1 for all i 2 f1; : : : ; n + 1g. (ii) rule Ba
k-

tra
k: the state (M

1

K

i+1

M

2

;N ;U ; k;D_L

k

n+1

) whereM j= :(D_L

k

n+1

) (with

Proposition 2.10.4-3) andM

1

= L

1

: : : L

n

with only propagated literals be
omes

(M

1

L

D_L

n+1

n+1

;N ;U ; i;>). With the indu
tion hypothesis for ea
h valuation A

with A j= N it holds that A(L

i

) = 1 for all 1 � i � n i.e. in parti
ular it holds

that for ea
h literal L in D A(L) = 0 sin
e ea
h literal in D appears negated in

M

1

. Thus, for ea
h ea
h valuation A with A j= N A(L

n+1

) = 1 holds.

5. Sin
e M j= :D it holds that :K

i

2 M for all 1 � i � m. With Propo-

sition 2.10.4-4 for ea
h valuation A with A j= N it holds that A(L

j

) = 1 for

all 1 � j � n. Thus in parti
ular it holds that A(:K

i

) = 1 for all 1 � i � m.

ThereforeD is always false under any valuation A and N is always unsatis�able.

6. By the de�nition of the rules the state (M ;N ;U ; k;?) 
an only be rea
hed

if the rule Con
i
t has been applied to set some 
on
i
t 
lause C of a state

(M

0

;N ;U ; k;>) as the last 
omponent and Resolve is used in the last rule

appli
ation to derive?. Before the last 
all of Resolve the state had the following

form (ML

?_L

;N ;U ; k;:L) otherwise? 
ould not be derived.M 
annot 
ontain

any de
ision literal be
ause L is a propagated literal and due to the strategy

the rule Propagate is applied before the rule De
ide. With Proposition 2.10.4-5

it follows that N is unsatis�able.

7. Proof by 
ontradi
tion. Assume Ba
ktra
k is applied only �nitely often

in the in�nite tra
e. Then there exists an i 2 N

+

with R

j

6= Ba
ktra
k for all

j > i. Propagate and De
ide 
an only be applied as long as there are unde�ned

literals in M . Sin
e there is only a �nite number of propositional variables they


an only be applied �nitely often.
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By de�nition the appli
ation of the rules Skip, Resolve and Ba
ktra
k is

pre
eded by an appli
ation of the rule Con
i
t sin
e the initial state has a

> as the last 
omponent and Con
i
t is the only rule that repla
es the last


omponent by a 
lause. For the rule Con
i
t to be applied in�nitely often the

last 
omponent has to 
hange to >. By de�nition that 
an only be performed

by the rules Resolve and Ba
ktra
k (a 
ontradi
tion to the assumption). For

Resolve assume the following rule appli
ation (ML

C_L

;N ;U ; k;D_:L))

CDCL

(M ;N ;U ; k;D _ C). For D _ C = > there must be a literal K with K;:K 2

(D _ C). With Proposition 2.10.4-3 M j= :(D _ C) holds whi
h is equivalent

to M j= ?,a 
ontradi
tion be
ause of Proposition 2.10.4-1. Therefore Con
i
t

is applied �nitely often.

Skip and Resolve are also applied �nitely often sin
e Con
i
t is applied

�nitely often and they 
annot be applied in�nitely often inter
hangeably. Oth-

erwise the �rst 
omponent M has to be of in�nite length, a 
ontradi
tion.

8. By Proposition 2.12.4.

Lemma 2.10.5. Assume the algorithm CDCL with all rules is applied us-

ing the strategy eager appli
ation of Con
i
t and Propagate where Con
i
t is

applied before Propagate. The CDCL algorithm has only 2 termination states:

(M ;N ;U ; k;>) where M j= N and (M ;N ;U ; k;?) where N is unsatis�able.

Proof. Let the CDCL algorithm terminate in a state (M ;N ;U ; k;�) starting

from the initial state (�;N ; ;; 0;>).

1. Let � = ?. No rule 
an be applied and (M ;N ;U ; k;?) is indeed a termina-

tion state. With Proposition 2.10.4-6 it also holds that N is unsatis�able.

2. Let � = > and M j= N . Then the algorithm found a total valuation M

for N and no literal in N is unde�ned in M (otherwise we 
ould apply

De
ide, 
ontradi
ting that the algorithm terminated). Sin
eM j= N there


an also be no 
on
i
t 
lause D. Hen
e, no further rule 
an be applied and

the state (M ;N ;U ; k;>) where M j= N is a termination state.

3. Let � = > andM j= N does not hold. Sin
eM j= N does not hold there is

either a 
lauseD 2 N withM j= :D or there is no su
h 
lauseD but there

is a literal in N that is unde�ned in M . For the �rst 
ase the rule Con
i
t

is appli
able and for the se
ond 
ase the rule De
ide is appli
able. Thus,

for both 
ases it holds that (M ;N ;U ; k;>) is not a termination state, a


ontradi
tion.

4. Let � be a 
lause C = D_L. With Proposition 2.10.4-3 the 
lause C must

be a 
on
i
ting 
lause where M j= :C.

If the rightmost literal in M is a propagated literal then the rules Skip or

Resolve are appli
able if their 
onditions are satis�ed. This would 
ontra-

di
t that the algorithm terminated. The 
ase that the 
onditions are not

satis�ed is handled in a similar way as the de
ided literal 
ase.
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If the rightmost literal is a de
ision literal L then L is 
ontained in C. This

is due to the fa
t that with the assumed strategy before de
iding literal L

(via the rule De
ide) neither Propagate nor Con
i
t were appli
able. Thus,

L is of maximal level k and the remaining part of C 
an only be of a level

i with i < k. The same holds for the 
ase that the rightmost literal is a

propagated literal butD does not 
ontain a literal of level k and Skip is also

not appli
able. Then D must again be of a level i with i < k and L must be

the literal of level k in C (otherwise, due to the strategy, the rule Con
i
t

would have been 
alled before the rule Propagate and the rightmost literal

in M 
ould not be the propagated literal L). Therefore, in both 
ases the

rule Ba
ktra
k is appli
able, 
ontradi
ting that the algorithm terminated.

Proposition 2.10.6 (CDCL Soundness). Assume the algorithm CDCL with

all rules is applied using the strategy eager appli
ation of Con
i
t and Propagate

where Con
i
t is applied before Propagate. The rules of the CDCL algorithm are

sound, i.e. whenever the algorithm terminates in state (M ;N ;U ; k;�) starting

from the initial state (�;N ; ;; 0;>) then it holds thatM j= N i� N is satis�able.

Proof. ()) if M j= N and M is 
onsistent with Proposition 2.10.4-1 then N is

satis�able.

(() Proof by 
ontradi
tion. Assume N is satis�able and the algorithm ter-

minates in state (M ;N ;U ; k;�) starting from the initial state (�;N ; ;; 0;>).

Furthermore, assumeM j= N does not hold. With Lemma 2.10.5 there are only

2 termination states, i.e. � 
an only be > or ?.

Case � = > then by Lemma 2.10.5 M j= N . This is a 
ontradi
tion to the

assumption that M j= N does not hold.

Case � = ? then by Lemma 2.10.5 N is unsatis�able. This is a 
ontradi
tion

to N being satis�able.

Therefore all rules of the CDCL algorithm are sound.

Proposition 2.10.7 (CDCL Completeness). The CDCL rule set is 
omplete:

for any valuation M with M j= N there is a sequen
e of rule appli
ation gener-

ating (M ;N ;U ; k;>) as a �nal state.

Proof. Let M = L

1

L

2

: : : L

k

. Sin
e M is a valuation there are no dupli
ates

in M and k appli
ations of rule De
ide yield (L

1

1

L

2

2

: : : L

k

k

;N ; ;; k;>) out of

(�;N ; ;; 0;>). Sin
e M j= N this is a �nal state and all literals from N are

de�ned in M . The rules Propagate and De
ide 
annot be applied anymore and

there is no 
on
i
t be
ause M j= N . Therefore Con
i
t, Skip, Resolve and

Ba
ktra
k are not appli
able. The rule Forget is not appli
able sin
e U = ; and

there is no need to restart.
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C As an alternative proof of Proposition 2.10.7 the strategy of an alter-

nation of an exhaustive appli
ation of Propagate and one appli
ation

of De
ide produ
es (M ;N ; ;; i;>) as a �nal state where M j= N . As in the

proof of Proposition 2.10.7 letM = L

1

L

2

: : : L

k

. First apply Propagatem-times

exhaustively resulting in (L

1

: : : L

m

;N ; ;; 0;>) where m � k. With Proposi-

tion 2.10.4-4 the literals L

1

: : : L

m

must be true in any valuation A with A j= N .

Thus, if m = k then (L

1

: : : L

m

;N ; ;; 0;>) is a �nal state andM j= N . If m < k

then apply De
ide on
e on a literal fromM resulting in (L

1

: : : L

m

L

1

;N ; ;; 1;>).

Sin
e L

1

is 
ontained in M it must be true. This strategy 
an be applied equiv-

alently to all further literals in M resulting in the desired state.

Proposition 2.10.8 (CDCL Termination). Assume the algorithm CDCL with

all rules ex
ept Restart and Forget is applied using the strategy eager appli
ation

of Con
i
t and Propagate where Con
i
t is applied before Propagate. Then it

terminates in a state (M ;N ;U ; k;D) with D 2 f>;?g.

Proof. Proof by 
ontradi
tion. Assume there is an in�nite tra
e that starts in

a state (M

0

;N ;U

0

; k

0

;D

0

). With Proposition 2.10.4-?? and 2.10.4-8 there 
an

only be a �nite number of 
lauses that are learned during the in�nite run. By

de�nition of the rules only the rule Ba
ktra
k 
auses that a 
lause is learned so

that the rule Ba
ktra
k 
an only be applied �nitely often. But with Proposition

2.10.4-7 the rule Ba
ktra
k must be applied in�nitely often, a 
ontradi
tion.

Therefore there does not exist an in�nite tra
e, i.e. the algorithm always termi-

nates under the given assumptions.

The CDCL rule set does not in general terminate. This is due to the rules

Restart and Forget. If they are applied only �nitely often then the algorithm

terminates. At some point the last appli
ation of Restart and Forget was rea
hed

sin
e they are only applied �nitely often. From this point onwards Proposition

2.10.8 
an be applied and the algorithm eventually terminates.

Example 2.10.9 (CDCL Termination I). Consider the 
lause set N = fP _

Q;:P _ Q;:Qg. The CDCL algorithm does not terminate due to the rule

Restart.

(�;N ; ;; 0;>)

)

Propagate

CDCL

(:Q

:Q

;N ; ;; 0;>)

)

Propagate

CDCL

(:Q

:Q

P

Q_P

;N ; ;; 0;>)

)

Restart

CDCL

(�;N ; ;; 0;>)

)

Propagate

CDCL

(:Q

:Q

;N ; ;; 0;>)

)

Propagate

CDCL

(:Q

:Q

P

Q_P

;N ; ;; 0;>)

)

Restart

CDCL

(�;N ; ;; 0;>)

)

CDCL

: : :

Example 2.10.10 (CDCL Termination II). Consider the 
lause set N = f:P _

Q_:R;:P _Q_Rg. The CDCL algorithm does not terminate due to the rule

Forget.
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(�;N ; ;; 0;>)

)

De
ide

CDCL

(P

1

;N ; ;; 1;>)

)

De
ide

CDCL

(P

1

:Q

2

;N ; ;; 2;>)

)

Propagate

CDCL

(P

1

:Q

2

:R

:P_Q_:R

;N ; ;; 2;>)

)

Con
i
t

CDCL

(P

1

:Q

2

:R

:P_Q_:R

;N ; ;; 2;:P _Q _R)

)

Resolve

CDCL

(P

1

:Q

2

;N ; ;; 2;:P _Q)

)

Ba
ktra
k

CDCL

(P

1

;N ; f:P _Qg; 1;>)

)

Forget

CDCL

(P

1

;N ; ;; 1;>)

)

De
ide

CDCL

(P

1

:Q

2

;N ; ;; 2;>)

)

Propagate

CDCL

(P

1

:Q

2

:R

:P_Q_:R

;N ; ;; 2;>)

)

Con
i
t

CDCL

(P

1

:Q

2

:R

:P_Q_:R

;N ; ;; 2;:P _Q _R)

)

CDCL

: : :

C

As an alternative for the proof of Proposition 2.10.8 the termination


an be shown by assigning a well-founded measure � and proving that

it de
reases with ea
h rule appli
ation ex
ept for the rules Restart and

Forget. Let n be the number of propositional variables in N . The domain for

the measure � is N � f0; 1g� N.

�((M ;N ;U ; k;D)) =

�

(3

n

� 1� jU j; 1; n� jM j) ; D = >

(3

n

� 1� jU j; 0; jM j) ; else

The well-founded ordering is the lexi
ographi
 extension of < to triples.

What remains to be shown is that ea
h rule appli
ation ex
ept Restart and

Forget de
reases �. This is done via a 
ase analysis over the rules:

Propagate:

�((M ;N ;U ; k;>)) = (3

n

� 1� jU j; 1; n� jM j)

> (3

n

� 1� jU j; 1; n� jML

C_L

j)

= �((ML

C_L

;N ;U ; k;>))

De
ide:

�((M ;N ;U ; k;>)) = (3

n

� 1� jU j; 1; n� jM j)

> (3

n

� 1� jU j; 1; n� jML

k+1

j)

= �((ML

k+1

;N ;U ; k;>))

Con
i
t:

�((M ;N ;U ; k;>)) = (3

n

� 1� jU j; 1; n� jM j)

> (3

n

� 1� jU j; 0; jM j)

= �((M ;N ;U ; k;D))

Skip:

�((ML

C_L

;N ;U ; k;D)) = (3

n

� 1� jU j; 0; jML

C_L

j)

> (3

n

� 1� jU j; 0; jM j)

= �((M ;N ;U ; k;D))
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Resolve:

�((ML

C_L

;N ;U ; k;D _ :L)) = (3

n

� 1� jU j; 0; jML

C_L

j)

> (3

n

� 1� jU j; 0; jM j)

= �((M ;N ;U ; k;D _ C))

Ba
ktra
k: with Proposition 2.10.4-8 it holds that D _ L 62 U so that the

�rst 
omponent de
reases.

�((M

1

K

i+1

M

2

;N ;U ; k;D _ L)) = (3

n

� 1� jU j; 0; jM

1

K

i+1

M

2

j)

> (3

n

� 1� jU [ fD _ Lgj; 1; n� jM

1

L

D_L

j

= �((M

1

L

D_L

;N ;U [ fD _ Lg; i;>))

2.11 Implementing CDCL

For an e�e
tive CDCL implementation the underlying data stru
ture of the im-

plementation plays a 
ru
ial part. The te
hnique that proved to be very su

ess-

ful in modern SAT solvers and that is also used in a CDCL implementation is the

2-wat
hed literals data stru
ture. For 
hoosing the de
ision variables a spe
ial

heuristi
 plays an important role in the implementation as well. This heuris-

ti
 is 
alled VSIDS (Variable State Independent De
aying Sum) that works on

natural numbers. Furthermore, the de
ision for 
hoosing the most reasonable


lause to be learned after a dis
overed 
on
i
t is handled by the notion of UIPs

(Unique Impli
ation Points). In the following these main 
on
epts (2-wat
hed

literals, VSIDS and 1UIP s
heme) will be introdu
ed in a

ordan
e with the

CDCL rule set.

2.11.1 Lazy Data Stru
ture: 2-Wat
hed Literals (2WL)

For applying the rule Propagate, the number of literals in ea
h 
lause that are

not false need to be known. Maintaining this number is expensive, however,

sin
e it has to be updated whenever Ba
ktra
k is applied. Therefore, the better

approa
h is to use a more eÆ
ient representation 
alled 2-wat
hed literals. A

list as represented in Figure 2.14 has referen
es for ea
h variable P to 
lauses

where P o

urs positive and referen
es to 
lauses where P o

urs negative. A

variable is either unassigned, true or false. For ea
h 
lause within the 
lause list

2 wat
hed (unassigned) variables are maintained. The way of working with the

wat
hed literals is as follows:

1. Let an unassigned variable P be set to false (or true).

2. Visit all 
lauses in whi
h P (or :P ) is wat
hed.

3. In every 
lause where P (or :P ) is wat
hed �nd an unwat
hed and non-

falsi�ed variable to be wat
hed. If there is no other unassigned or true

variable then this 
lause is either a unit 
lause and the rule Propagate 
an

be applied or there is a 
on
i
t and the rule Ba
ktra
k is applied or the


lause set is already satis�ed.
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.

.

.

P

.

.

.

P R

. . .

Q

:P

. . .


lause


lauses with P


lauses with :P


lause

Figure 2.14: The wat
hed literals list with the variables P;Q;R and the wat
hed

literals P , R and :P , Q.

An advantage of the data stru
ture as shown in the example below is no

extra 
ost for variables that are not wat
hed (but assigned false).

As an example 
onsider the formula � = f:P _Q_ :R _ :S _ T;:P _Q_

:T;R_T; S_Tg. Figure 2.17 shows how to derive unit 
lauses and �nally satisfy

the formula within the wat
hed literals data stru
ture. The wat
hed literals are

the �rst two entries in a 
lause. The trail (see next se
tion on Ba
ktra
king)

represents the assigned literals for the 
urrent state.

2.11.2 Ba
ktra
king

Another main advantage of the 2-wat
hed literals data stru
ture is dis
overed

when 
onsidering ba
ktra
king. For this purpose a trail, a de
ision level and a


ontrol sta
k are maintained together with the wat
hed literals data stru
ture.

The trail is a sta
k of variables that stores the order in whi
h the variables

are assigned. The de
ision level 
ounts the number of 
alls of the rule De
ide.

The 
ontrol sta
k stores the trail height for ea
h de
ision level, i.e. on
e De
ide

is applied the 
ontrol sta
k in
reases by one entry and saves the height of the

previous trail sta
k.

If the rule Ba
ktra
k is applied the trail height entry from the 
ontrol sta
k is

taken and every variable from that trail height on will be unassigned, i.e. every

assignment value that was made sin
e the last appli
ation of the rule De
ide is

deleted. A detailed example is shown in Figure 2.18. Again, the advantage with

the wat
hed literals data stru
ture is that the wat
hed variables stay un
hanged

and will not be 
onsidered by this ba
ktra
king step.
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.

.

.

P

.

.

.

NULL

:P

Q

:T

:P

Q

:R :S T

(a) Initialized 2WL data stru
ture for the literal P and the 
urrent

trail is empty.

.

.

.

P

.

.

.

NULL

:T

Q

:P

:R

Q

:P :S T

(b) After de
iding P the wat
hed literals have 
hanged and the 
ur-

rent trail is: P .

.

.

.

P

.

.

.

NULL

:T

Q

:P

:R T :P :S

Q

(
) After de
iding :Q the unit 
lause f:P _Q_:Tg is a
hieved and

the 
urrent trail is: P;:Q.
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.

.

.

P

.

.

.

NULL

:T

Q

:P

:R :S :P T

Q

(d) After propagating :T; R and S the 
urrent trail is:

P;:Q;:T;R; S and the 
lause f:P _Q_:R_:S _ Tg evaluates to

false, a 
on
i
t.

.

.

.

P

.

.

.

NULL

:T

Q

:P

:R :S :P T

Q

(e) After ba
ktra
king S;R; T;Q the 
urrent trail is: P .

.

.

.

P

.

.

.

NULL

:T

Q

:P

:R T :P :S

Q

(f) After propagating Q and de
iding S the trail is: P;Q;S.
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.

.

.

P

.

.

.

NULL

:T

Q

:P

:R

Q

:P :S T

(g) After de
iding :T and propagating R the trail is: P;Q; S;:T;R.

Figure 2.17: The wat
hed literals list for the formula � = f:P _Q_:R_:S _

T;:P _Q_:T;R_T; S _Tg before and after de
iding / propagating variables

with a fo
us on the literal P .

0

de
ision

level

0


ontrol

sta
k

trail

(a) The initial entries.

1

de
ision

level

0


ontrol

sta
k

trail

0

P

(b) After de
iding P.

2

de
ision

level

0


ontrol

sta
k

trail

0

1

P

:Q

(
) After de
iding :Q.

2

de
ision

level

0


ontrol

sta
k

trail

0

1

P

:Q

:T

S

:R

(d) After propagating :T, S and :R.

1

de
ision

level

0


ontrol

sta
k

trail

0

P

(e) After ba
ktra
king.

Figure 2.18: The entries for de
ision level, 
ontrol sta
k and trail for the formula

� = fS _Q;P _Q;:P _ R _ :S;:P _ :R _ T;:P _Q _ :Tg.
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2.11.3 Dynami
 De
ision Heuristi
: VSIDS

Choosing the right unassigned variable to de
ide is important for eÆ
ien
y, but

the heuristi
 may be expensive itself. Therefore, the aim is to use a heuristi


that needs not to be re
omputed too often, that for example 
hooses variables

whi
h o

ur frequently and prefers variables from re
ent 
on
i
ts.

The VSIDS (Variable State Independent De
aying Sum) is su
h a heuristi
.

The strategy is as follows:

1. Initially assign ea
h variable a s
ore e.g. its number of o

urren
es in the

formula.

2. Adjust the s
ores during a CDCL run: whenever a 
on
i
t 
lause is re-

solved with another 
lause the resolved variable gets its s
ore in
reased by

a bonus d, initially d = 1 and d in
reases with every 
on
i
t: d = d

6

5

de.

3. Furthermore, whenever a 
lause is learned the s
ore of the variables of this


lause is additionally in
reased by adding d to its s
ore.

4. As soon as a variable s
ore s or d rea
hes a 
ertain limit k, e.g. k = 2

60

,

all variables get their s
ore res
aled by a 
onstant, e.g. s = ds � 2

60

e. At

this point d is also res
aled: d = dd � 2

�50

e.

5. At a de
ision point with probability

1

50


hoose a variable at random. In

the other 
ases 
hoose an unassigned variable with the highest s
ore.

The heuristi
 has very low overhead sin
e it is independent of variable as-

signments whi
h makes it a fast strategy. Furthermore, it favors variables that

satisfy the most possible number of 
lauses and prefers variables that are more

involved in 
on
i
ts.

2.11.4 Con
i
t Analysis and Learning: 1UIP s
heme

If a 
on
i
ting 
lause is found, the algorithm needs to derive a new 
lause from

the 
on
i
t and add it to the 
urrent set of 
lauses. But the problem is that this

may produ
e a large number of new 
lauses, therefore it be
omes ne
essary to


hoose a 
lause that is most reasonable.

This se
tion examines how to derive su
h a 
on
i
t 
lause on
e a 
on
i
t

is dete
ted. The key idea is to �nd an asserting 
lause that in
ludes the �rst

UIP (Unique Impli
ation Point). For this purpose the 
on
ept of impli
ation

graphs is required and hen
e de�ned �rst. An impli
ation graph G = (V;E) is

a dire
ted graph with a node set V and an edge set E. Ea
h node has the form

l=L, whi
h means that the variable L was set to a value (either true or false)

at the de
ision level l either via the rule Propagate or De
ide. If a variable L

of a node n was set via the rule Propagate with 
lause C = D _ L then there

must be an edge from every node of the variables in D to n. This means that

the variables from D imply L. In parti
ular, de
ision variable nodes have no

in
oming edges. A 
ut of an impli
ation graph is a partition of the graph into



76 CHAPTER 2. PROPOSITIONAL LOGIC

two nonempty sets su
h that the de
ision variable nodes will be in a di�erent

set than the 
on
i
t node. Every edge that 
rosses a spe
i�
 
ut will be part

of a 
on
i
t set, i.e. the number of 
uts denotes the number of 
on
i
t sets.

There is a total of 2

n�k

possible 
uts, where n = # variables and k = level of


on
i
t 
lause (= # de
ision variables). A UIP in the graph is a variable of the


on
i
t level l that lies on every path from the de
ision variable of level l and

the 
on
i
t. The �rst UIP (1UIP) is a UIP that lies 
losest to the 
on
i
t in

the impli
ation graph. The strategy for deriving the most useful 
on
i
t 
lause

is as follows:

1. Constru
t the impli
ation graph a

ording to a given set of 
lauses, a for-

mula �. As an example 
onsider Figure 2.19 that depi
ts an impli
ation

graph of the formula � = fS_Q;P _Q;:P _R_:S;:P _:R_T;:P _Q_

:Tg where the node 1=; denotes a 
on
i
t. The 
orresponding trail, 
on-

trol sta
k and de
ision level are shown in Figure 2.18. The 
orresponding

wat
hed literals list is shown in Figure 2.23.

2. Identify the 
on
i
t sets by means of the impli
ation graph, i.e. the 
uts

of the graph need to be 
onsidered. In Figure 2.19 there are three 
uts

depi
ted representing the following 
on
i
t sets: fP;:Qg; fP;:T; Sg and

fP;:R;Sg.

3. Choose the most useful 
lause from the set of all 
on
i
ts. It proved to be

most e�e
tive to 
hoose a 
lause that has exa
tly one variable that was

assigned at the same de
ision level in whi
h the 
on
i
t arose. This is why

the 
lause is also 
alled asserting 
lause. If there is more than one asserting


lause for a 
on
i
t as in Figure 2.19, then take the asserting 
lause that


ontains the 1UIP. In Figure 2.20 there is only one UIP whi
h is also the

1UIP that is :Q. Therefore, the most useful 
lause from the 
on
i
t set

is fP;:Qg.

4. Learn the 
lause: After determining the asserting 
lause C with the 1UIP

the a
tual 
on
i
t 
lause is obtained by negating all assignments of the

variables within 
lause C. This 
on
i
t 
lause will eventually be learned

by adding it to the set of 
lauses of the original formula �. In the example

from Figure 2.19 the 
lause :P _Q will be learned.

The 
ombination of 
on
i
t analysis and non-
hronologi
al ba
ktra
king en-

sures that the learned 
lause be
omes a unit 
lause and thereby preventing the

solver from making the same mistakes over again.

2.11.5 Restart and Forget

As mentioned in the se
tion on VSIDS (see 2.11.3) the runtime of the CDCL

implementation depends on the 
hoi
e of the de
ision variable. In 
ase no suit-

able variable is found within a 
ertain time limit it might be useful to apply

a restart, another important te
hnique applied in the CDCL implementation.

With the rule Restart all 
urrently assigned variables will be
ome unassigned
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2/:Q

1/P

2/:T

2/S

2/:R 2/;


ut 1 
ut 2 
ut 3

Figure 2.19: An impli
ation graph for the formula � with 
uts.

2/:Q

1UIP

1/P

2/:T

2/S

2/:R 2/;

Figure 2.20: The impli
ation graph denoted with the 1UIP.
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P

Q

R

S

T :P

Q

:T

S

Q

:P R :S

:P :R T

P

Q

NULL

(a) The initial state and the 
urrent trail is empty.

P

Q

R

S

T :T

Q

:P

S

Q

:S R :P

T :R :P

P

Q

NULL

(b) After de
iding P wat
hed literals are swapped, the trail is: P .

P

Q

R

S

T :T

Q

:P

S

Q

:S R :P

T :R :P

P

Q

NULL

(
) After de
iding :Q, no 
hange in the wat
hed literals, the trail is: P;:Q.
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P

Q

R

S

T :T

Q

:P

S

Q

:S R :P

T :R :P

P

Q

NULL

(d) After propagating :T; S and :R, no 
hange of wat
hed literals but a 
on
i
t o

urs

in :P _R _ S, the trail is: P;:Q;:T; S;:R.

P

Q

R

S

T :T

Q

:P

S

Q

:S R :P

T :R :P

P

Q

NULL

(e) After ba
ktra
king the literals :Q;:T; S;:R, the trail is: P .
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P

Q

R

S

T :T

Q

:P

S

Q

:S R :P

T :R :P

P

Q

NULL

:P

Q

(f) After learning the 
lause :P _Q, the trail is still P .

Figure 2.23: The wat
hed literals list a

ording to the impli
ation graph from

Figures 2.19 and 2.20 as well as the 
ontrol sta
k, trail and de
ision level of

Figure 2.18.

while learned 
lauses will be maintained. The motivation for this te
hnique has

to do with the fa
t that the solver 
an rea
h a point where in
orre
t variable

assignments were made and the solver is not able to resolve within a reasonable

amount of time the literals that are needed to �nd a 
on
i
t. In that 
ase a

restart is performed intending to make better variable assignments earlier on

with the previous learned information.

A further te
hnique that 
ontributes to the performan
e of the CDCL solver

is the rule Forget. With every 
on
i
t 
lause the number of learned 
lauses

in
reases. Re
ording all learned 
lauses 
an be very expensive espe
ially if some


lauses are repeatedly stored or if some 
lauses are subsumed by others. As a

result, this 
an lead to an exhaustion of available memory and to an additional

overhead. Therefore deleting suitable 
lauses from the learned 
lause set 
an be

useful. The 
riteria by whi
h the rule Forget is applied are the following: either

if the number of learned 
lauses is 4 times the number of original 
lauses or

if a spe
i�
 maximum number of learned 
lauses is rea
hed that is previously

given. In both 
ases the minimum of the following 2 
ases is exe
uted: either

half of the learned 
lauses are deleted or all learned 
lauses are deleted until a


lause is rea
hed that implies or has implied a 
urrent assignment. Furthermore,

an implementation 
ould also 
he
k the subsumption of learned 
lauses over

existing 
lauses but this 
he
k is often omitted due to performan
e reasons.
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2.11.6 Algorithm and Strategy

As shown in the examples 2.10.1 and 2.10.2 a 
ertain CDCL rule appli
ation

order 
an improve the performan
e of the rule-based CDCL algorithm. The

algorithm 5 depi
ts the strategy where Con
i
t is preferred over Propagate and

Propagate over any other rule. In general the rules De
ide and Propagate should

not be applied when a 
on
i
t already exists. For otherwise, the additional

literals that are added via De
ide or Propagate be
ome useless and will be

deleted again when ba
ktra
king. Therefore the appli
ation of the rule Con
i
t

is 
he
ked before any other rule. The statements from line 1 onwards des
ribe

the a
tual strategy, i.e. Con
i
t is always preferred over any other rule and

Propagate is preferred over De
ide. The reason why the rules Skip and Resolve

are always applied ex
essively on
e a 
on
i
t was found is due to �nding the


lause with the 1UIP of the 
on
i
t level. The rule Skip is applied to those

literals that are not involved in the 
on
i
t. Via the rule Resolve the 
on
i
t


lause is resolved with 
lauses that implied the 
on
i
t and thereby yielding

a new potentially learned 
lause. On
e both rules 
annot be applied anymore

the state is either a fail state, Ba
ktra
k 
annot be applied and the algorithm

returns the fail state (M ;N ;U ; k;?) or the state is not a fail state and the


on
i
t 
lause with the 1UIP was found. In the latter 
ase the 
urrent 
on
i
t


lause will be learned via the rule Ba
ktra
k. At this point it is 
he
ked whether

the total number of approa
hed 
on
i
ts rea
hed a 
ertain limit, i.e. a restart is

ne
essary, indi
ating that the solver needs too mu
h time dete
ting an in
orre
t

value assignment that was previously made. Sin
e the number of learned 
lauses

in
reases with every 
on
i
t it is also 
he
ked whether previously learned 
lauses


an be deleted, i.e. forget is ne
essary. In 
ase the 
urrent state has no 
on
i
t,

the rule Propagate is preferred over the rule De
ide in line 15 sin
e the 
han
es

of taking wrong de
isions when de
iding a literal's truth value de
reases. The

rule De
ide takes the value of the VSIDS heuristi
 for the 
urrent state into

a

ount.

2.12 Superposition and CDCL

At the time of this writing it is often believed that the superposition (resolution)


al
ulus is not su

essful in pra
ti
e whereas most of the su

essful SAT solvers

implemented in 2012 are based on CDCL. In this se
tion I will develop some

relationships between superposition and CDCL.

The start is a modi�
ation of the superposition model operator, De�ni-

tion 2.8.5. The goal of the original model operator is to 
reate minimal models

with respe
t to positive literals, i.e., if N

I

j= N for some N , then there is no

M

0

� N

I

su
h that M

0

j= N . However, if the goal generating minimal models

is dropped, then there is more freedom to 
onstru
t the model while preserving

the general properties of the superposition 
al
ulus. So, let's assume a heuristi


H that sele
ts whether a literal should be produ
tive or not.
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Algorithm 5: CDCL(S)

Input : An initial state (�;N ; ;; 0;>).

Output: A �nal state S = (M ;N ;U ; k;>) or S = (M ;N ;U ; k;?)

1 while (any rule appli
able) do

2 ifrule (Con
i
t(S)) then

3 while (Skip(S) k Resolve(S)) do

4 update VSIDS s
ores on resolved literals;

5 end

6 update VSIDS s
ores on learned 
lause;

7 Ba
ktra
k(S);

8 s
ale VSIDS s
ores;

9 if (forget heuristi
) then

10 Forget(S) redundant 
lauses ;

11 Restart(S);

12 else

13 ifrule (!Propagate(S)) then

14 De
ide(S);

15

16

17 end

18 return(S);

De�nition 2.12.1 (Heuristi
-Based Partial Model Constru
tion). Given a


lause set N , an ordering� and a variable heuristi
H : �! f0; 1g, the (partial)

model N

H

�

for N and signature �, with P;Q 2 � is indu
tively 
onstru
ted as

follows:

N

H

P

:=

S

Q�P

Æ

H

Q

Æ

H

P

:=

8

>

>

<

>

>

:

fPg if (D _ P ) 2 N;P stri
tly maximal and N

H

P

6j= D or

H(P ) = 1 and for all 
lauses (C _ :P ) 2 N;C � :P

it holds N

H

P

j= C

; otherwise

N

H

�

:=

S

P2�

Æ

H

P

T

Please note that N

I

is de�ned indu
tively over the 
lause ordering �

whereas N

H

�

is de�ned indu
tively over the atom ordering �.

Proposition 2.12.2. If H(P ) = 0 for all P 2 � then N

I

= N

H

�

for

any N .

Proof. The proof is by 
ontradi
tion. Assume N

I

6= N

H

�

, i.e., there is a minimal

P 2 � su
h that P o

urs only in one set out of N

I

and N

H

�

.
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Case 1: P 2 N

I

but P 62 N

H

�

.

Then there is a produ
tive 
lause D = D

0

_ P 2 N su
h that P is stri
tly

maximal in this 
lause andN

D

6j= D

0

. Sin
e P is stri
tly maximal in D the 
lause

D

0

only 
ontains literals stri
tly smaller than P . Sin
e both interpretations agree

on all literals smaller than P from N

D

6j= D

0

it follows N

H

P

6j= D

0

and therefore

Æ

H

P

= fPg 
ontradi
ting P 62 N

H

�

.

Case 2: P 62 N

I

but P 2 N

H

�

.

Then there is a produ
tive 
lause D = D

0

_ P 2 N su
h that P is stri
tly

maximal in this 
lause and N

H

P

6j= D

0

be
ause H(P ) = 0. Sin
e P is stri
tly

maximal in D the 
lause D

0

only 
ontains literals stri
tly smaller than P . Sin
e

both interpretations agree on all literals smaller than P fromN

H

P

6j= D

0

it follows

N

D

6j= D

0

and therefore Æ

D

= fPg 
ontradi
ting P 62 N

I

.

So the new model operator N

H

�

is a generalization of N

I

. Next, I will show

that with the help of N

H

�

a 
lose relationship between the model operator run

by the CDCL 
al
ulus and the superposition model operator 
an be established.

This result 
an then further be used to relate the abstra
t superposition redun-

dan
y 
riteria to CDCL. But before going into the relationship I �rst show that

the generalized superposition partial model operator N

H

�

supports the standard

superposition 
ompleteness result, analogous to Theorem 2.8.9. Re
all that the

same notion of redundan
y, De�nition 2.8.3, is used.

Theorem 2.12.3. If N is saturated up to redundan
y and ? =2 N then N is

satis�able and N

H

�

j= N .

Proof. The proof is by 
ontradi
tion. So I assume (i) any 
lause C derived by

Superposition Left or Fa
toring from N that C is redundant, i.e., N

�C

j= C,

(ii) ? =2 N and (iii) N

H

�

6j= N . Then there is a minimal, with respe
t to �,


lause C

1

_L 2 N su
h that N

I

6j= C

1

_L and L is a maximal literal in C

1

_L.

This 
lause must exist be
ause ? =2 N .

The 
lause C

1

_ L is not redundant. For otherwise, N

�C

1

_L

j= C

1

_ L and

hen
e N

H

�

j= C

1

_ L, be
ause N

H

�

j= N

�C

1

_L

, a 
ontradi
tion.

I distinguish the 
ase whether L is a positive or a negative literal. Firstly,

assume L is positive, i.e., L = P for some propositional variable P . Now if P is

stri
tly maximal in C

1

_ P then a
tually Æ

H

P

= fPg and hen
e N

H

P

j= C

1

_ P , a


ontradi
tion. So P is not stri
tly maximal. But then a
tually C

1

_ P has the

form C

0

1

_ P _ P and Fa
toring derives C

0

1

_ P where (C

0

1

_ P ) � (C

0

1

_ P _ P ).

Now C

0

1

_P is not redundant, stri
tly smaller than C

1

_L, we have C

0

1

_P 2 N

and N

H

�

6j= C

0

1

_ P , a 
ontradi
tion against the 
hoi
e that C

1

_ L is minimal.

Se
ondly, assume L is negative, i.e., L = :P for some propositional variable

P . Then, sin
e N

H

�

6j= C

1

_:P we know P 2 N

I

, i.e., Æ

H

P

= fPg. There are two


ases to distinguish. Firstly, there is a 
lause C

2

_ P 2 N where P is stri
tly

maximal and by de�nition (C

2

_ P ) � (C

1

_ :P ). So a Superposition Left

inferen
e derives C

1

_ C

2

where (C

1

_ C

2

) � (C

1

_ :P ). The derived 
lause

C

1

_ C

2


annot be redundant, be
ause for otherwise either N

�C

2

_P

j= C

2

_ P

or N

�C

1

_:P

j= C

1

_ :P . So C

1

_ C

2

2 N and N

H

�

6j= C

1

_ C

2

, a 
ontradi
tion
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against the 
hoi
e that C

1

_L is minimal. Se
ondly, there is no 
lause C

2

_P 2 N

where P is stri
tly maximal but H(P ) = 1. But a further 
ondition for this 
ase

is that there is no 
lause (C

1

_ :P ) 2 N su
h that N

H

P

6j= C

1


ontradi
ting the

above 
hoi
e of C

1

_ :P .

Re
alling Se
tion 2.8 Superposition is based on an ordering �. It relies

on a model assumption N

I

, De�nition 2.8.5 or its generalization N

H

�

, De�-

nition 2.12.1. Given a set N of 
lauses, either N

I

(N

H

�

) is a model for N , N


ontains the empty 
lause, or there is an inferen
e on the minimal false 
lause

with respe
t to �, see the proof of Theorem 2.8.9 or Theorem 2.12.3, respe
-

tively.

CDCL is based on a variable sele
tion heuristi
. It 
omputes a model as-

sumption via de
ision variables and propagation. Either this assumption is a

model of N , N 
ontains the empty 
lause, or there is a ba
kjump 
lause that is

learned.

For a CDCL state (M;N;U; k;D) generated by an appli
ation of the rule

Con
i
t, whereM = L

1

; : : : ; L

n

any following Resolve step a
tually 
orresponds

to a superposition step between a minimal false 
lause and its produ
tive 
oun-

terpart, where atom(L

1

) � atom(L

2

) � : : : � atom(L

n

). Furthermore, for a

positive de
ision literal L

>

m

o

urring in M the heuristi
 H(atom(L

m

)) = 1 and

H(atom(L

m

)) = 0 otherwise. Then the learned 
lause is in fa
t generated by su-

perposition with respe
t to the model operator N

H

�

. The following propositions

present this relationship between Superposition and CDCL in full detail.

Proposition 2.12.4. Let (M;N;U; k;D) be a CDCL state generated by a

strategy with eager appli
ation of Con
i
t and Propagate, in this order. LetM =

L

1

; : : : ; L

n

, H(atom(L

m

)) = 1 for any positive de
ision literal L

>

m

o

urring in

M and H(atom(L

m

)) = 0 otherwise. The superposition ordering is atom(L

1

) �

atom(L

2

) � : : : � atom(L

n

). Then

1. L

n

is a propagated literal.

2. The resolvent between C _ :L

k

and the 
lause C

0

_L

k

propagating L

k

is

a superposition inferen
e and the 
on
lusion is not redundant.

Proof. 1. Assume L

n

is a de
ision literal. Then, sin
e Con
i
t and Propagation

are applied eagerly,D has the formD = D

0

_:L

n

. But then at trail L

1

; : : : ; L

n�1

the 
lause D

0

_ :L

n

propagates :L

n

with respe
t to L

1

: : : L

n�1

, so with ea-

ger propagation, the literal L

n


annot be de
ision literal but its negation was

propagated by a 
lause D

0

_ :L

n

2 N .

2. Both C and C

0

only 
ontain literals with variables from atom(L

1

);

: : : ; atom(L

k�1

). Sin
e we assume dupli
ate literals to be removed and tau-

tologies to be deleted, the literal :L

k

is stri
tly maximal in C _ :L

k

and L

k

is stri
tly maximal in C

0

_ L

k

. So resolving on L

k

is a superposition inferen
e

with respe
t to the variable ordering atom(L

1

) � atom(L

2

) : : : � atom(L

k

).

Now assume C_C

0

is redundant, i.e., there are 
lauses D

1

; : : : ; D

n

from N with

D

i

� C _C

0

and D

1

; : : : ; D

n

j= C _C

0

. Sin
e C _C

0

is false in L

1

: : : L

k�1

there

is at least one D

i

that is also false in L

1

: : : L

k�1

. A 
ontradi
tion against the
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assumption that L

1

: : : L

k�1

does not falsify any 
lause in N , i.e., rule Con
i
t

was applied eagerly.

Proposition 2.12.4 is a
tually a ni
e explanation for the eÆ
ien
y of the

CDCL pro
edure: a learned 
lause is never redundant. Re
all that redundan
y

here means that the learned 
lause C is not entailed by smaller 
lauses in N[U .

Furthermore, the ordering underlying Proposition 2.12.4 is based on the trail,

i.e., it 
hanges during a CDCL run. For superposition it is well known that


hanging the ordering is not 
ompatible with the notion of redundan
y, i.e.,

superposition is in
omplete when the ordering may be 
hanged in�nitely often

and the superposition redundan
y notion is applied.

Example 2.12.5. Consider the superposition left inferen
e between the 
lauses

P _Q and R _ :Q with ordering P < R < Q resulting in P _R. Changing the

ordering to Q < P < R the inferen
e P _ R be
omes redundant. So 
ipping

in�nitely often between P < R < Q and Q < P < R is already suÆ
ient to

prevent any saturation progress.

Although Example 2.12.5 shows that 
hanging the ordering is not 
ompati-

ble with redundan
y and superposition 
ompleteness, Proposition 2.12.4 proves

that any CDCL learned 
lause is not redundant in the superposition sense and

the CDCL pro
edure 
hanges the ordering and is 
omplete. This relationship

shows the power of reasoning with respe
t to a model assumption. The model

assumption a
tually prevents the generation of redundant 
lauses. Nevertheless,

also in the CDCL framework 
ompleteness would be lost if redundant 
lauses

are eagerly removed in general. So either the ordering is not 
hanged and the

superposition redundan
y notion 
an be eagerly applied or only a weaker notion

of redundan
y is possible while keeping 
ompleteness.

The 
ru
ial point is that for the superposition 
al
ulus the ordering is also

the bases for termination and 
ompleteness. If the 
ompleteness proof 
an be

de
oupled from the ordering, then the ordering might be 
hanged in�nitely often

and other notions of redundan
y be
ome available. However, these new notions

of redundan
y need to be 
ompatible with the 
ompleteness, termination proof.

De�nition 2.12.6 (Abstra
t Length Redundan
y). A 
lause C is length redun-

dant with respe
t to a 
lause set N if N

�jCj

j= C, where N

�jCj

= fD j jDj �

jCjg.

Theorem 2.12.7 (Length Redundan
y and Superposition). Arbitrary Order-

ing Changes plus fairness plus length redundan
y preserves 
ompleteness.

Theorem 2.12.8 (Length Redundan
y and CDCL). At any time length re-

dundant 
lauses may be removed.

2.13 Redundan
y

One of the most su

essful and robust heuristi
s is to keep the formula, 
lause

set \small". This heuristi
 is already the motivation for the spe
i�
 renaming
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algorithm presented in Se
tion 2.6.3. So getting rid of super
uous, i.e., redun-

dant formulas or 
lauses is typi
ally bene�
ial to any eÆ
ient reasoning. The

se
tion on normal form transformation (Se
tion 2.6) and the se
tions on CDCL

and superposition already introdu
ed some redundan
y 
riteria. In this se
tion

they are extended for the 
ase of 
lause sets.

There is an important di�eren
e between 
lause redundan
y before a CDCL

or superposition 
al
ulus starts reasoning and 
lause redundan
y while the 
al-


ulus (superposition, CDCL) is operating on a set of 
lauses. For the former

it is suÆ
ient that the redundan
y pro
edure is sound and terminating. For

the latter the pro
edure has in addition to respe
t the redundan
y notion of

the respe
tive 
al
ulus in order to preserve 
ompleteness, see De�nition 2.8.3,

Example 2.12.5, and Theorem 2.12.8, Theorem 2.12.7.

2.13.1 Redundan
y before Superposition and CDCL

Here are some standard rules for removing redundant 
lauses before superposi-

tion or CDCL starts. Subsumption, Tautology Deletion and Subsumption Res-

olution have already been introdu
ed in Se
tion 2.8. Purity and Blo
ked Clause

Deletion are new.

Subsumption Deletion

(N ℄ fC

1

; C

2

g) )

RBSC

(N [ fC

1

g)

provided C

1

� C

2

Tautology Deletion

(N ℄ fC _ P _ :Pg) )

RBSC

(N)

Subsumption Resolution

(N ℄ fC

1

_ L;C

2

_ Lg) )

RBSC

(N [ fC

1

_ L;C

2

g)

where C

1

� C

2

Purity

(N ℄ fC

1

_ L; : : : ; C

k

_ Lg) )

RBSC

(N)

where L, L do not o

ur in N

Blo
ked Clause Elimination

(N ℄ fC

1

_ L; : : : ; C

k

_ L;C

0

1

_ L; : : : ; C

0

l

_ Lg) )

RBSC

(N)

where L, L do not o

ur in N and all resolvents on L between any C

i

_ L and

C

0

j

_ L result in tautologies

Example 2.13.1. Consider a 
lause set 
onsisting of the �ve 
lauses

(1) P _Q

(2) P _Q _R _ S

(3) :R _ S

(4) R _ :S

(5) :Q _ S

Clause (1) subsumes 
lause (2). Subsumption resolution is appli
able to
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lause (2) and 
lause (5) resulting in P _ R _ S. Purity is appli
able to P .

Blo
ked 
lause elimination is not appli
able.

Applying �rst subsumption deletion results in the 
lauses

(1) P _Q

(3) :R _ S

(4) R _ :S

(5) :Q _ S

Now subsumption resolution is no longer appli
able, but blo
ked 
lause elimina-

tion is to R and 
lauses (3), (4). After appli
ation of blo
ked 
lause elimination

the resulting 
lauses are

(1) P _Q

(5) :Q _ S

Now P and S are pure and after applying purity the result is the empty set of


lauses indi
ating satis�ability.

For the above Example 2.13.1 other rule appli
ation orderings are possible,

e.g., starting with purity on P . Nevertheless, any appli
ation ordering results in

an empty set of 
lauses. However, )

RBSC

is not 
on
uent.

Lemma 2.13.2 ()

RBSC

terminates).

Proof. Exer
ise

Lemma 2.13.3 ()

RBSC

is sound). If (N))

RBSC

(N

0

) then N is satis�able i�

N

0

is.

Proof. ): All rules remove 
lauses ex
ept subsumption resolution. Removing


lauses obviously preservers satis�ability. For subsumption resolution any model

satisfying C

1

_ L and C

2

_ L has to satisfy C

1

or C

2

. Sin
e C

1

� C

2

it satis�es

C

2

.

(: The dire
tion is obvious for Subsumption Deletion, Tautology Deletion, and

Subsumption Resolution. Sin
e, a
tually, Purity is a spe
ial 
ase of Blo
ked

Clause Elimination, it suÆ
es to show the 
ase of Blo
ked Clause Elimination.

In this 
ase N = N

0

℄ fC

1

_L; : : : ; C

k

_L;C

0

1

_L; : : : ; C

0

l

_Lg and L, L do not

o

ur in N

0

and all resolvents on L between any C

i

_ L and C

0

j

_ L result in

tautologies. Let A be a model for N

0

. Obviously, being A a model for N does

not depend on the truth value of L, be
ause neither L nor L o

urs in N . If A

does not satisfy some 
lause C

i

_ L (analogously C

0

j

_ L), then A(L) = 0 and

A(C

i

) = 0. Sin
e all 
ombinations C

i

_C

0

j

, for any j are tautologies, A(C

0

j

) = 1

for all j. Hen
e A

0

whi
h is like A ex
ept that A

0

(L) = 1 is a model for N .

2.13.2 Redundan
y while Superposition and CDCL

2.14 Complexity

This book does not fo
us on 
omplexity but on how to build systems that are

useful for sele
ted appli
ations. Nevertheless, any system, 
al
ulus presented in
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this 
hapter on SAT has a worst 
ase exponential running time. So it 
annot run

eÆ
iently on any SAT instan
e. So some ba
kground knowledge about relevant


omplexity results is useful. Here I 
on
entrate on a personal sele
tion of \
las-

si
s", 
omplexity results everybody interested in propositional logi
 reasoning

should know.

The pigeon hole formulas are su
h a 
lassi
, be
ause they were among the

�rst dete
ted formulas that don't have polynomial length resolution proofs. In

addition, they explain why the renaming te
hniques introdu
ed in Se
tion 2.6.3

are not only useful to prevent an explosion in the number of generated 
lauses

out of a formula, but also for the afterwards reasoning pro
ess.

De�nition 2.14.1 (Pigeon Hole Formulas ph(n)). For some given n and propo-

sitional variables P

i;j

, where 1 � j � n, 1 � i � n+1, the 
orresponding pigeon

hole formula (
lause set) ph(n) is

ph(n) =

^

1�i�n+1

P

i;1

_ : : : _ P

i;n

^

^

1�j�n

^

1 � i; k � n+ 1

i < k

:P

i;j

_ :P

k;j

The intuition behind a variable P

i;j

is that it is true i� pigeon i sits in hole

j. Then the formulas P

i;1

_ : : :_P

i;n

express that every pigeon has to sit in some

hole and the formulas :P

i;j

_ :P

k;j

that a hole 
an host at most one pigeon.

Sin
e there is one more pigeon than holes, the formula is unsatis�able.

Note that the number of 
lauses of a pigeon hole formula ph(n) grows 
ubi


in n. The famous theorem on the pigeon whole formulas says that any resolution

proof showing unsatis�ability of ph(n) has a length at least exponential in n,

i.e., no resolution-based system 
an eÆ
iently show unsatis�ability of a pigeon

hole formula.

Theorem 2.14.2 (Haken [22℄). The length of any resolution refutation of ph(n)

is exponential in n.

Re
all that any refutation of a CDCL pro
edure 
orresponds to a resolution

refutation, where ea
h 
on
i
t generates some new resolvents. Now, a CDCL

pro
edure solves the pigeon hole problem by an enumeration of all possible


ombinations how to put the n + 1 pigeons into the n holes. It guesses some

pigeon in some whole, potentially propagates the 
onsequen
es of the de
ision,

guesses the next one and so on until a 
on
i
t for the parti
ular guess shows that

there is one hole missing for the �nal pigeon. Then it ba
ktra
ks by remembering

that for the parti
ular guess, i.e., 
ombination pigeons, holes, there is no solution.

The CDCL pro
edure never \re
ognizes" the fa
t that the problem is 
ompletely

symmetri
 in pigeons and holes, e.g., on
e it has shown that there is no solution

with pigeon 1 in hole 1 (P

1;1

true) then the problem 
annot be solved at all. It

is not ne
essary anymore to test the holes 2 to n for pigeon 1, be
ause these


ases are symmetri
. This is an informal explanation for the above theorem.

The pigeon hole problem 
an be easily solved by an indu
tive argument. For

ph(n) we put pigeon n+1 in hole n. Then the problem is solvable i� ph(n� 1)

has a solution. Repeating this argument n � 1 times it remains to show that
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there is no solution for ph(1), i.e., the 
lause set P

1;1

, P

2;1

, :P

1;1

_ :P

2;1

is

unsatis�able.

This reasoning 
an be perfe
tly simulated by resolution if additional 
lauses

over extra variables are added to ph(n). Let B

k

i;j

be fresh propositional variables

where 2 � k � n, 1 � j < k, 1 � i � k, where we add the 
lauses resulting from

B

n

i;j

$ (P

i;j

_ (P

i;n

^ P

n+1;j

)) for the �rst step

B

k

i;j

$ (B

k+1

i;j

_ (B

k+1

i;k

^ B

k+1

k+1;j

)) for all subsequent steps

to ph(n), where 2 � k � n � 1 and the i; j run in the limits 
orresponding to

B

k

i:j

or B

n

i:j

, respe
tively. Sin
e the B

k

i;j

are fresh and there is only one de�ning

equivalen
e for ea
h B

k

i;j

, the resulting problem is unsatis�able i� the original

is. Ea
h equivalen
e results in four 
lauses, e.g., the �rst equivalen
e generates

the 
lauses B

n

i;j

_:P

i;j

, B

n

i;j

_:P

i;n

_:P

n+1;j

, :B

n

i;j

_P

i;j

_P

i;n

, :B

n

i;j

_P

i;j

_

P

n+1;j

. Thus there are only polynomially many 
lauses added to ph(n). Now the

additional 
lauses enable to reprodu
e via resolution the indu
tive argument,

where for ea
h \indu
tion step" only polynomially many resolution steps are

needed. Thus the extended pigeon hole problem 
an be refuted by resolution in

polynomially many steps [13℄.

For example, for the 
ase n = 2 the pigeon hole 
lauses are

(1) P

1;1

_ P

1;2

(2) P

2;1

_ P

2;2

(3) P

3;1

_ P

3;2

(4) :P

1;1

_ :P

2;1

(5) :P

1;1

_ :P

3;1

(6) :P

2;1

_ :P

3;1

(7) :P

1;2

_ :P

2;2

(8) :P

1;2

_ :P

3;2

(9) :P

2;2

_ :P

3;2

and the additional equivalen
es de�ning the B

2

i;j

are

B

2

1;1

$ (P

1;1

_ (P

1;2

^ P

3;1

))

B

2

2;1

$ (P

2;1

_ (P

2;2

^ P

3;1

))

Now from :B

2

1;1

_ P

1;1

_ P

3;1

, :B

2

2;1

_ P

2;1

_ P

3;1

with (1), (2), (4), (5), (6), (7)

via resolution the 
lause

(10) :B

2

1;1

_ :B

2

2;1


an be derived. From B

2

1;1

_ :P

1;1

, B

2

1;1

_ :P

1;2

_ :P

3;1

with (1), (3), (8) via

resolution the 
lause

(11) B

2

1;1


an be derived. Analogously, from B

2

2;1

_ :P

2;1

, B

2

2;1

_ :P

2;2

_ :P

3;1

with (2),

(3), (9) via resolution the 
lause

(12) B

2

2;1
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an be derived. Now, (10), (11), (12) 
onstitute ph(1), i.e., the above resolution

steps su

essfully perform the redu
tion from ph(2) to ph(1).

C

There are two reasons why I dis
uss the pigeon hole problem in su
h

detail. First, it shows that the invention of new names (propositional

variables) for subformulas, 
an lead to an exponential redu
tion in

proof size. So it 
onstitutes a further justi�
ation for renaming during CNF

transformation (see Se
tion 2.6.3). However, in general, there is no easy answer

when additional names help in proof length redu
tion or in proof sear
h. Se
ond,

and in my opinion even more important, the pigeon hole problem example ni
ely

shows that \indu
tive reasoning" 
an be done in propositional logi
 and that it


an pay o�. For many real world problems, e.g., hardware veri�
ation, indu
tive

reasoning is key to solve the problems. At the time of this writing, resear
h

in how to automati
ally dete
t and make use of indu
tive properties has just

started for propositional logi
. This holds as well and gets even more diÆ
ult

for more expressive logi
s, su
h as �rst-order logi
.

For the rest of this se
tion I will study some well-known 
lasses for whi
h

SAT 
an be solved in polynomial time, namely, Horn-SAT and 2-SAT. Horn SAT

is the 
lass of 
lauses where ea
h 
lause has at most one positive literal, 2-SAT

the 
lass of 
lauses where ea
h 
lause has at most two literals. For both 
lauses

SAT is de
idable in polynomial time. A
tually, the 2-SAT 
lass 
onstitutes a

sharp border between polynomially solvable and NP-
omplete, be
ause the 3-

SAT 
lass is already NP-
omplete.

De�nition 2.14.3 (Horn-SAT). A propositional 
lause set N belongs to the


lass of Horn-SAT problems if every 
lause 
ontains at most one positive literal.

De�nition 2.14.4 (k-SAT). A propositional 
lause set N belongs to the 
lass

of k-SAT problems if every 
lause 
ontains at most k literals.

Proposition 2.14.5. Any Horn-SAT 
lause set N 
an be de
ided in time linear

in the size of N .

Proof. Superposition with sele
tion is 
omplete for SAT (Theorem 2.12.3). So


onsider a superposition saturation for N where in every 
lause 
ontaining a

negative literal it is sele
ted. Then the saturation pro
ess has two ni
e properties.

First, any superposition inferen
e is an inferen
e between a positive unit 
lause

and a 
lause 
ontaining at least one negative literal. Se
ond, there is always a


lause where all negative literals 
an be resolved away by positive unit 
lauses

or the 
lause set N is satis�able. Combining the two properties results in a

linear-time algorithm for Horn-SAT.

A
tually, the proof of the above proposition implies that the CDCL rules

Propagate and Con
i
t (see Se
tion 2.10) are 
omplete for Horn-SAT. Another


onsequen
e is that unit superposition, a restri
tion to superposition where for

all inferen
es one parent 
lause must be a unit 
lause, is also 
omplete for Horn-

SAT. For unit superposition the result 
an even be reversed. If for some 
lause

set N there is a unit superposition refutation, then the subset of 
lauses involved
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in the unit refutation 
an be transformed into a Horn 
lause set by 
ipping signs

of literals.

The 
lause set P _Q, :P _R, :R_Q, :Q is unsatis�able and refutable by

unit superposition. It is not Horn be
ause of the 
lause P _Q. Now by 
ipping

the sign of Q in all 
lauses results in the 
lause set P _ :Q, :P _R, :R _ :Q,

Q whi
h is Horn, equisatis�able, and still unit refutable.

Proposition 2.14.6. Any 2-SAT 
lause set N 
an be de
ided in time polyno-

mial in the size of N .

Proof. (Idea) Firstly, all unit 
lauses 
an be eliminated by re
ursively resolv-

ing away the respe
tive literals, following the algorithm of Proposition 2.14.5.

For a 
lause set N 
ontaining only 
lauses of length two a dire
ted graph is


onstru
ted. The nodes are the propositional literals from N . For ea
h 
lause

L_K 2 N , the graph 
ontains the two dire
ted edges (L;K) and (K;L). Then

N is unsatis�able i� there is a 
y
le in the graph 
ontaining two nodes L, L.

This 
an be de
ided in time at most quadrati
 in N .

Interestingly, 2-SAT 
onstitutes the border to NP-
ompleteness, be
ause 3-

SAT is already NP-
omplete. This 
an be seen by redu
ing any 
lause set to a

satis�ability equivalent 3-SAT 
lause set via the following transformation. For

any 
lause

L

1

_ : : : _ L

n


onsisting of more than three literals (n > 3) repla
e the 
lause by the 
lauses

L

1

_ : : : _ L

bn=2


_ P

L

bn=2
+1

_ : : : _ L

n

_ :P

where P is a fresh propositional variable. Obviously, L

1

_ : : : _ L

n

is satis�able

i� L

1

_ : : : _ L

bn=2


_ P , L

bn=2
+1

_ : : : _ L

n

_ :P are.

Proposition 2.14.7. 3-SAT is NP-
omplete.

2.15 Appli
ations

For the appli
ation of propositional logi
 on an arbitrary problem it needs to

be en
oded into a propositional formula �. The satis�ability of � 
an then be


he
ked via one of the 
al
uli developed in this 
hapter, e.g. Resolution or DPLL.

In 
ase � is satis�able the 
orresponding 
al
ulus derives a model whi
h has to

be interpreted as a solution to the original problem. The unsatis�ability of �

must be interpreted 
orrespondingly.

2.15.1 Sudoku

As a suitable appli
ation of propositional logi
 serves the Sudoku puzzle. In


hapter 1.1 a spe
i�
 4� 4 Sudoku puzzle was solved using a spe
i�
 
al
ulus.

In this se
tion a general n

2

� n

2

Sudoku puzzle is en
oded into propositional
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logi
 and exemplarily the Resolution 
al
ulus from this 
hapter is applied to a

4� 4 Sudoku puzzle.

For the en
oding propositional variables P

d

i;j

are de�ned where P

d

i;j

is true

i� the value of square (i; j) is d. Square boxes are denoted by Q

i;j

where Q

i;j

in-


ludes the squares (i; j); : : : ; (i+n�1; j+n�1). The 
orresponding propositional


lauses are 
onstru
ted as follows:

1. For every initially assigned square (i; j) with value d generate P

d

i;j

2. For every square (i; j) generate P

1

i;j

_ : : : _ P

n

2

i;j

3. For every square (i; j) and pair of values d < d

0

generate :P

d

i;j

_ :P

d

0

i;j

4. For every value d and 
olumn i generate P

d

i;1

_ : : :_P

d

i;n

2

(analogously for

rows)

5. For every value d and square box Q

i;j

generate P

d

i;j

_ : : : _ P

d

i+n�1;j+n�1

6. For every value d, 
olumn i and pair of rows j < j

0

generate :P

d

i;j

_:P

d

i;j

0

(analogously for rows)

7. For every value d, square box Q

i;j

and pair of squares (k; l) <

lex

(k

0

; l

0

)

where i � k; k

0

< i+ n and j � l; l

0

< j + n generate :P

d

k;l

_ :P

d

k

0

;l

0

The 
orresponding formula � is the 
onjun
tion of ea
h subformula generated

by the steps 1 to 7. This makes a total of m + n

4

+

1

2

n

6

(n

2

� 1) + 2n

4

+ n

4

+

1

2

n

6

(n

2

� 1) +

1

2

n

6

(n

2

� 1) = m + 4n

4

+

3

2

n

6

(n

2

� 1) 
lauses where m is the

number of initially assigned squares.

After the appli
ation of a propositional logi
 
al
ulus the remaining unit


lauses P

d

i;j

, i.e. the missing numbers to the initial Sudoku puzzle, are derived if

the en
oded formula is satis�able. Otherwise there is no solution to the Sudoku

puzzle.

1 2 3 4

1 1

2 1

3 2

4 4

Figure 2.24: A 4� 4 Sudoku

The appli
ation of this en
oding on the puzzle from Figure 2.24 yields for

example the 
lauses P

1

3;4

_ P

2

3;4

_ P

3

3;4

_ P

4

3;4

, :P

2

2;3

_ :P

2

3;3

, :P

2

2;3

_ :P

2

4;3

and

P

2

2;3

. Applying the rule Resolution from the Resolution 
al
ulus from 
hapter 2.7

results in:

(N ℄ f:P

2

2;3

_ :P

2

3;3

; P

2

2;3

g )

RES

(N [ f:P

2

2;3

_ :P

2

3;3

; P

2

2;3

g [ f:P

2

3;3

g) and

(N

0

℄fP

1

3;4

_P

2

3;4

_P

3

3;4

_P

4

3;4

;:P

2

3;3

g))

RES

(N

0

[fP

1

3;4

_P

2

3;4

_P

3

3;4

_P

4

3;4

;:P

2

3;3

g[
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fP

1

3;4

_ P

3

3;4

_ P

4

3;4

g) )

�

RES

(N

00

[ fP

2

3;4

g) see Figure 2.25. After exhaustive

appli
ation of the Resolution 
al
ulus the remaining unit 
onstraints are derived

and the solution is found.

1 2 3 4

1 1

2 1

3 2

4 2 4

Figure 2.25: A 4� 4 Sudoku after generating the unit 
onstraint P

2

3;4

2.15.2 Hardware Veri�
ation

Another example for the appli
ation of propositional logi
 is the veri�
ation of

logi
 hardware 
ir
uits. Sin
e spe
i�
 logi
 hardware 
ir
uits 
an be transformed

into CNF the satis�ability of small logi
 
ir
uits as well as 
ertain properties of

logi
 
ir
uits 
an be 
he
ked with a propositional 
al
ulus from this 
hapter. This


hapter shows how to en
ode spe
i�
 logi
 
ir
uits into propositional logi
 and

how to apply the en
oding on an exemplary logi
 
ir
uit as shown in Figure 2.26.

This 
hapter 
onsiders logi
 
ir
uits with three di�erent types of gates G

i

:

AND-, OR- and NOT-gates. Ea
h gate has one output, AND- and OR-gates

have two inputs whereas the NOT-gate has only one input. For the en
oding of

the logi
 
ir
uits a propositional variable Q

i

is de�ned for ea
h gate G

i

where

Q

i

is true i� the gate G

i

has output value 1. The propositional 
lauses are


onstru
ted as follows:

1. For every AND-gate G

i

with inputs Q

j

and Q

k

we have Q

i

$ (Q

j

^Q

k

)

whi
h is equivalent to (:Q

i

_Q

j

) ^ (:Q

i

_Q

k

) ^ (:Q

j

_ :Q

k

_Q

i

)

2. For every OR-gate G

i

with inputs Q

j

and Q

k

we have Q

i

$ (Q

j

_ Q

k

)

whi
h is equivalent to (:Q

i

_Q

j

_Q

k

) ^ (:Q

j

_Q

i

) ^ (:Q

k

_Q

i

)

3. For every NOT-gate G

i

with input Q

j

we have Q

i

$ :Q

j

whi
h is equiv-

alent to (:Q

i

_ :Q

j

) ^ (Q

j

_Q

i

).

The 
orresponding formula � is the 
onjun
tion of all 
lauses generated by

the steps 1 to 3. After generating this en
oding a propositional 
al
ulus from


hapter 2 
an be applied in order to 
he
k 
ertain properties of logi
 
ir
uits

(note that the 
al
uli presented in 
hapter 2 are ineÆ
ient on larger logi
 
ir
uit


onstru
tions). Some of the properties that 
an be 
he
ked are for example the

satis�ability of logi
 
ir
uits given a partial truth assignment � (whi
h assigns

boolean values to outputs), the satis�ability of logi
 
ir
uits in 
ase of a re
ursive


onstru
tion, the equivalen
e of two logi
 
ir
uits or to 
he
k if 
ertain properties

for example Q

0

! Q

5

for the logi
 
ir
uit in Figure 2.26 hold.
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As an example the satis�ability of the logi
 
ir
uit in Figure 2.26 under a

given partial truth assignment �(Q

0

) = 1 and �(Q

5

) = 1 
an be 
he
ked using

the DPLL 
al
ulus:

Q

0

G

2

G

4

G

5

Q

1

G

3

Figure 2.26: A logi
 
ir
uit with two NOT-gates (G

2

and G

3

), an OR-gate G

4

and an AND-gate G

5

The appli
ation of the en
oding to the logi
 
ir
uit of Figure 2.26 to-

gether with the partial truth assignment � yields a total of 12 
lauses:

N = fQ

0

; Q

5

;:Q

4

_ Q

2

_ Q

1

;:Q

2

_ Q

4

;:Q

1

_ Q

4

;:Q

2

_ :Q

0

; Q

2

_

Q

0

;:Q

3

_ :Q

1

; Q

3

_ Q

1

;:Q

5

_ Q

4

;:Q

5

_ Q

3

;:Q

4

_ :Q

3

_ Q

5

g. Apply-

ing the DPLL 
al
ulus we a
hieve: (�;N) )

Propagate

DPLL

(Q

0

;N) )

Propagate

DPLL

(Q

0

Q

5

;N) )

Propagate

DPLL

(Q

0

Q

5

Q

4

;N) )

Propagate

DPLL

(Q

0

Q

5

Q

4

Q

3

;N) )

Propagate

DPLL

(Q

0

Q

5

Q

4

Q

3

:Q

1

;N))

Propagate

DPLL

(Q

0

Q

5

Q

4

Q

3

:Q

1

Q

2

;N). LetM = (Q

0

Q

5

Q

4

Q

3

:Q

1

Q

2

)

then the logi
 
ir
uit is unsatis�able under the given truth assignment sin
e

M j= :N and there is no de
ision literal in M .

If the logi
 
ir
uit of Figure 2.26 is 
onsidered without a partial truth as-

signment then the 
onstru
tion is satis�able for example with M = (:Q

0

:Q

1

).

If the gate G

4

of Figure 2.26 is repla
ed by an AND-gate instead of an OR-

gate then the 
onstru
tion will always be unsatis�able independent of any truth

assignment.

Histori
 and Bibliographi
 Remarks

Although already Greek philosophers like Aristotle (384 BC { 322 BC) were

interested in \truth of propositions" the syntax and semanti
s of propositional

logi
 goes ba
k to the modern logi
ians, mathemati
ians and philosophers Au-

gustus de Morgan (1806 { 1871), George Boole (1815 { 1864), Charles Sanders

Peir
e (1839 { 1914), and Gottlob Frege (1848 { 1925). In parti
ular, today

Boole's 
al
ulus [9℄ is known as \propositional logi
". For a ni
e histori
 per-

spe
tive see Martin Davis's book [15℄.



Chapter 3

First-Order Logi


First-Order logi
 is a generalization of propositional logi
. Propositional logi



an represent propositions, whereas �rst-order logi
 
an represent individuals

and propositions about individuals. For example, in propositional logi
 from

\So
rates is a man" and \If So
rates is a man then So
rates is mortal" the


on
lusion \So
rates is mortal" 
an be drawn. In �rst-order logi
 this 
an be

represented mu
h more �ne-grained. From \So
rates is a man" and \All man

are mortal" the 
on
lusion \So
rates is mortal" 
an be drawn.

This 
hapter introdu
es �rst-order logi
 with equality. However, all 
al
uli

presented here, namely Tableaux (Se
tion 3.6) and Superposition (Se
tion ??)

are presented only for its restri
tion without equality. Purely equational logi


and �rst-order logi
 with equality are presented separately in Chapter ?? and

Chapter ??, respe
tively.

3.1 Syntax

De�nition 3.1.1 (Many-Sorted Signature). A many-sorted signature � =

(S;
;�) is a triple 
onsisting of a �nite non-empty set S of sort symbols, a

non-empty set 
 of operator symbols (also 
alled fun
tion symbols) over S and

a set � of predi
ate symbols. Every operator symbol f 2 
 has a unique sort

de
laration f : S

1

� : : :�S

n

! S, indi
ating the sorts of arguments (also 
alled

domain sorts) and the range sort of f , respe
tively, for some S

1

; : : : ; S

n

; S 2 S

where n � 0 is 
alled the arity of f , also denoted with arity(f). An operator

symbol f 2 
 with arity 0 is 
alled a 
onstant. Every predi
ate symbol P 2 �

has a unique sort de
laration P � S

1

� : : : � S

n

. A predi
ate symbol P 2 �

with arity 0 is 
alled a propositional variable. For every sort S 2 S there must

be at least one 
onstant a 2 
 with range sort S.

In addition to the signature �, a variable set X , disjoint from 
 is assumed, so

that for every sort S 2 S there exists a 
ountably in�nite subset of X 
onsisting

of variables of the sort S. A variable x of sort S is denoted by x

S

.

De�nition 3.1.2 (Term). Given a signature � = (S;
;�), a sort S 2 S and

95
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a variable set X , the set T

S

(�;X ) of all terms of sort S is re
ursively de�ned

by (i) x

S

2 T

S

(�;X ) if x

S

2 X , (ii) f(t

1

; : : : ; t

n

) 2 T

S

(�;X ) if f 2 
 and

f : S

1

� : : :� S

n

! S and t

i

2 T

S

i

(�;X ) for every i 2 f1; : : : ; ng.

The sort of a term t is denoted by sort(t), i.e., if t 2 T

S

(�;X ) then sort(t) =

S. A term not 
ontaining a variable is 
alled ground.

For the sake of simpli
ity it is often written: T (�;X ) for

S

S2S

T

S

(�;X ), the

set of all terms, T

S

(�) for the set of all ground terms of sort S 2 S, and T (�)

for

S

S2S

T

S

(�), the set of all ground terms over �.

De�nition 3.1.3 (Equation, Atom, Literal). If s; t 2 T

S

(�;X ) then s � t is an

equation over the signature �. Any equation is an atom (also 
alled atomi
 for-

mula) as well as every P (t

1

; : : : ; t

n

) where t

i

2 T

S

i

(�;X ) for every i 2 f1; : : : ; ng

and P 2 �, arity(P ) = n, P � S

1

� : : : � S

n

. An atom or its negation of an

atom is 
alled a literal.

The literal s

.

� t denotes either s � t or t � s. A literal is positive if it is an

atom and negative otherwise. A negative equational literal :(s � t) is written

as s 6� t.

C

Non equational atoms 
an be transformed into equations: For this a

given signature is extended for every predi
ate symbol P as follows:

(i) add a distin
t sort B to S, (ii) introdu
e a fresh 
onstant true of

the sort B to 
, (iii) for every predi
ate P , P � S

1

� : : : � S

n

add a fresh

fun
tion f

P

: S

1

; : : : ; S

n

! B to 
, and (iv) en
ode every atom P (t

1

; : : : ; t

n

) as

a fun
tion f

P

: S

1

; : : : ; S

n

! B. Thus, predi
ate atoms are turned into equations

f

P

(t

1

; : : : ; t

n

) � true. are overloaded here.

De�nition 3.1.4 (Formulas). The set FOL(�;X ) of many-sorted �rst-order

formulas with equality over the signature � is de�ned as follows for formulas

�;  2 F

�

(X ) and a variable x 2 X :

FOL(�;X ) Comment

? falsum

> verum

P (t

1

; : : : ; t

n

); s � t atom

(:�) negation

(� ^  ) 
onjun
tion

(� _  ) disjun
tion

(�!  ) impli
ation

(�$  ) equivalen
e

8x:� universal quanti�
ation

9x:� existential quanti�
ation

A 
onsequen
e of the above de�nition is that PROP(�) � FOL(�

0

;X ) if

the propositional variables of � are 
ontained in �

0

as predi
ates of arity 0. A

formula not 
ontaining a quanti�er is 
alled quanti�er-free.
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De�nition 3.1.5 (Positions). It follows from the de�nitions of terms and for-

mulas that they have tree-like stru
ture. For referring to a 
ertain subtree,


alled subterm or subformula, respe
tively, sequen
es of natural numbers are

used, 
alled positions (as introdu
ed in Chapter 2.1.3). The set of positions of

a term, formula is indu
tively de�ned by:

pos(x) := f�g if x 2 X

pos(�) := f�g if � 2 f>;?g

pos(:�) := f�g [ f1p j p 2 pos(�)g

pos(� Æ  ) := f�g [ f1p j p 2 pos(�)g [ f2p j p 2 pos( )g

pos(s � t) := f�g [ f1p j p 2 pos(s)g [ f2p j p 2 pos(t)g

pos(f(t

1

; : : : ; t

n

)) := f�g [

S

n

i=1

fip j p 2 pos(t

i

)g

pos(P (t

1

; : : : ; t

n

)) := f�g [

S

n

i=1

fip j p 2 pos(t

i

)g

pos(8x:�) := f�g [ f1p j p 2 pos(�)g

pos(9x:�) := f�g [ f1p j p 2 pos(�)g

where Æ 2 f^;_;!;$g and t

i

2 T (�;X ) for all i 2 f1; : : : ; ng.

The pre�x orders (above, stri
tly above and parallel), the sele
tion and re-

pla
ement with respe
t to positions are de�ned exa
tly as in Chapter 2.1.3.

An term t (formula �) is said to 
ontain another term s (formula  ) if t

p

= s

(�

p

=  ). It is 
alled a stri
t subexpression if p 6= �. The term t (formula �)

is 
alled an immediate subexpression of s (formula  ) if jpj = 1. For terms a

subexpression is 
alled a subterm and for formulas a subformula, respe
tively.

The size of a term t (formula �), written jtj (j�j), is the 
ardinality of pos(t),

i.e., jtj := j pos(t)j (j�j := j pos(�)j). The depth of a term, formula is the maximal

length of a position in the term, formula: depth(t) := maxfjpj j p 2 pos(t)g

(depth(�) := maxfjpj j p 2 pos(�)g). The set of all variables o

urring in a

term t (formula �) is denoted by vars(t) (vars(phi)) and formally de�ned as

vars(t) := fx 2 X j x = tj

p

; p 2 pos(t)g (vars(�) := fx 2 X j x = �j

p

; p 2

pos(�)g). A term t (formula �) is ground if vars(t) = ; (vars(�) = ;).

Note that vars(8x:a � b) = ; where a; b are 
onstants. This is justi�ed by the

fa
t that the formula does not depend on the quanti�er, see semanti
s below. The

set of free variables of a formula � (term t) is given by fvars(�; ;) (fvars(t; ;)) and

re
ursively de�ned by fvars( 

1

Æ 

2

; B) := fvars( 

1

; B)[ fvars( 

2

; B) where Æ 2

f^;_;!;$g, fvars(8x: ;B) := fvars( ;B[fxg), fvars(9x: ;B) := fvars( ;B[

fxg), fvars(: ;B) := fvars( ;B), fvars(L;B) := vars(L) n B (fvars(t; B) :=

vars(t) nB. For fvars(�; ;) I also write fvars(�)

In 8x:� (9x:�) the formula � is 
alled the s
ope of the quanti�er. An o
-


urren
e q of a variable x in a formula � (�j

q

= x) is 
alled bound if there is

some p < q with �j

p

= 8x:�

0

or �j

p

= 9x:�

0

. Any other o

urren
e of a vari-

able is 
alled free. A formula not 
ontaining a free o

urren
e of a variable is


alled 
losed. If fx

1

; : : : ; x

n

g are the variables freely o

urring in a formula

� then 8x

1

; : : : ; x

n

:� and 9x

1

; : : : ; x

n

:� (abbreviations for 8x

1

:8x

2

: : :8x

n

:�,

9x

1

:8x

2

: : :8x

n

:�, respe
tively) are the universal and the existential 
losure of

�.
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Example 3.1.6. For the literal :P (f(x; g(a))) the atom P (f(x; g(a))) is an

immediate subformula of o

urring at position 1. The terms x and g(a) are

stri
t subterms o

urring at positions 111 and 112, respe
tively. The for-

mula :P (f(x; g(a)))[b℄

111

= :P (f(b; g(a))) is obtained by repla
ing x with b.

pos(:P (f(x; g(a)))) = f�; 1; 11; 111; 112; 1121gmeaning its size is 6, its depth 4

and vars(:P (f(x; g(a)))) = fxg.

The polarity of a subformula  = �j

p

at position p is pol(�; p) where pol is

re
ursively de�ned by

pol(�; �) := 1

pol(:�; 1p) := � pol(�; p)

pol(�

1

Æ �

2

; ip) := pol(�

i

; p) if Æ 2 f^;_g

pol(�

1

! �

2

; 1p) := � pol(�

1

; p)

pol(�

1

! �

2

; 2p) := pol(�

2

; p)

pol(�

1

$ �

2

; ip) := 0

pol(P (t

1

; : : : ; t

n

); p) := 1

pol(t � s; p) := 1

pol(8x:�; 1p) := pol(�; p)

pol(9x:�; 1p) := pol(�; p)

3.2 Semanti
s

De�nition 3.2.1 (�-algebra). Let � = (S;
;�) be a signature with set of

sorts S, operator set 
 and predi
ate set �. A �-algebra A, also 
alled �-

interpretation, is a mapping that assigns (i) a non-empty 
arrier set S

A

to every

sort S 2 S, so that (S

1

)

A

\(S

2

)

A

= ; for any distin
t sorts S

1

; S

2

2 S, (ii) a total

fun
tion f

A

: (S

1

)

A

� : : :�(S

n

)

A

! (S)

A

to every operator f 2 
, arity(f) = n

where f : S

1

� : : : � S

n

! S, (iii) a relation P

A

� ((S

1

)

A

� : : : � (S

m

)

A

) to

every predi
ate symbol P 2 �, arity(P ) = m. (iv) the equality relation be
omes

�

A

= f(e; e) j e 2 U

A

g where the set U

A

:=

S

S2S

(S)

A

is 
alled the universe of

A.

A (variable) assignment, also 
alled a valuation for an algebraA is a fun
tion

� : X ! U

A

so that �(x) 2 S

A

for every variable x 2 X , where S = sort(x). A

modi�
ation �[x 7! e℄ of an assignment � at a variable x 2 X , where e 2 S

A

and S = sort(x), is the assignment de�ned as follows:

�[x 7! e℄(y) =

(

e if x = y

�(y) otherwise.

Informally speaking, the assignment �[x 7! e℄ is identi
al to � for every variable

ex
ept x, whi
h is mapped by �[x 7! e℄ to e.

The homomorphi
 extension A(�) of � onto terms is a mapping T (�;X )!

U

A

de�ned as (i) A(�)(x) = �(x), where x 2 X and (ii) A(�)(f(t

1

; : : : ; t

n

)) =

f

A

(A(�)(t

1

); : : : ;A(�)(t

n

)), where f 2 
, arity(f) = n.
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Given a term t 2 T (�;X ), the value A(�)(t) is 
alled the interpretation of

t under A and �. If the term t is ground, the value A(�)(t) does not depend

on a parti
ular 
hoi
e of �, for whi
h reason the interpretation of t under A is

denoted by A(t).

An algebra A is 
alled term-generated, if every element e of the universe U

A

of A is the image of some ground term t, i.e., A(t) = e.

De�nition 3.2.2 (Semanti
s). An algebra A and an assignment � are extended

to formulas � 2 FOL(�;X ) by

A(�)(?) := 0

A(�)(>) := 1

A(�)(s � t) := 1 if A(�)(s) = A(�)(t) and 0 otherwise

A(�)(P (t

1

; : : : ; t

n

)) := 1 if (A(�)(t

1

); : : : ;A(�)(t

n

)) 2 P

A

and 0 otherwise

A(�)(:�) := 1�A(�)(�)

A(�)(� ^  ) := min(fA(�)(�);A(�)( )g)

A(�)(� _  ) := max(fA(�)(�);A(�)( )g)

A(�)(� !  ) := max(f(1�A(�)(�));A(�)( )g)

A(�)(� $  ) := if A(�)(�) = A(�)( ) then 1 else 0

A(�)(9x

S

:�) := 1 if A(�[x 7! e℄)(�) = 1 for some e 2 S

A

and 0 otherwise

A(�)(8x

S

:�) := 1 if A(�[x 7! e℄)(�) = 1 for all e 2 S

A

and 0 otherwise

A formula � is 
alled satis�able by A under � (or valid in A under �) if

A; � j= �; in this 
ase, � is also 
alled 
onsistent ; satis�able by A if A; � j= �

for some assignment �; satis�able if A; � j= � for some algebra A and some

assignment �; valid in A, written A j= �, if A; � j= � for any assignment �; in

this 
ase, A is 
alled a model of �; valid, written j= �, if A; � j= � for any algebra

A and any assignment �; in this 
ase, � is also 
alled a tautology ; unsatis�able

if A; � 6j= � for any algebra A and any assignment �; in this 
ase � is also 
alled

in
onsistent.

Note that ? is in
onsistent whereas > is valid. If � is a senten
e that is

a formula not 
ontaining a free variable, it is valid in A if and only if it is

satis�able by A. This means the truth of a senten
e does not depend on the


hoi
e of an assignment.

Given two formulas � and  , � entails  , or  is a 
onsequen
e of �, written

� j=  , if for any algebra A and assignment �, if A; � j= � then A; � j=  . The

formulas � and  are 
alled equivalent, written � j=j  , if � j=  and  j= �. Two

formulas � and  are 
alled equisatis�able, if � is satis�able i�  is satis�able (not

ne
essarily in the same models). Note that if � and  are equivalent then they

are equisatis�able, but not the other way around. The notions of \entailment",

\equivalen
e" and \equisatis�ability" are naturally extended to sets of formulas,

that are treated as 
onjun
tions of single formulas. Thus, given formula setsM

1

and M

2

, the set M

1

entails M

2

, written M

1

j= M

2

, if for any algebra A and

assignment �, if A; � j= � for every � 2M

1

then A; � j=  for every  2M

2

. The

sets M

1

and M

2

are equivalent, written M

1

j=jM

2

, if M

1

j=M

2

and M

2

j=M

1

.

Given an arbitrary formula � and formula set M , M j= � is written to denote

M j= f�g; analogously, � j=M stands for f�g j=M .
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Sin
e 
lauses are impli
itly universally quanti�ed disjun
tions of literals, a


lause C is satis�able by an algebra A if for every assignment � there is a literal

L 2 C with A; � j= L. Note that if C = fL

1

; : : : ; L

k

g is a ground 
lause, i.e.,

every L

i

is a ground literal, then A j= C if and only if there is a literal L

j

in C

so that A j= L

j

. A 
lause set N is satis�able i� all 
lauses C 2 N are satis�able

by the same algebra A. A

ordingly, if N and M are two 
lause sets, N j= M

i� every model A of N is also a model of M .

3.3 Equality

The equality predi
ate is build into the �rst-order language in Se
tion 3.1 and

not part of the signature. It is a �rst 
lass 
itizen. This is the 
ase although

it 
an be a
tually axiomatized in the language. The motivation is that �rstly,

many real world problems naturally 
ontain equations. They are a means to

de�ne fun
tions. Then predi
ates over terms model properties of the fun
tions.

Se
ondly, without spe
ial treatment in a 
al
ulus, it is almost impossible to

automati
ally prove non-trivial properties of a formula 
ontaining equations.

In this se
tion I �rstly show that any formula 
an be transformed into a

formula where all atoms are equations. Se
ondly, that any formula 
ontaining

equations 
an be transformed into a formula where the equality predi
ate is

repla
ed by a fresh predi
ate together with some axioms. In the �rst 
ase the

respe
tive 
lause sets are equivalent, in the se
ond 
ase the transformation is

satis�ability preserving. For the repla
ement of any predi
ate R by equations

over a fresh fun
tion f

R

we assume an additional fresh sort Bool with two fresh


onstants true and false.

InjEq �[R(t

1;1

; : : : ; t

1;n

)℄

p

1

: : : [R(t

m;1

; : : : ; t

m;n

)℄

p

m

)

IE

�[f

R

(t

1;1

; : : : ; t

1;n

) �

true℄

p

1

: : : [f

R

(t

m;1

; : : : ; t

m;n

) � true℄

p

m

provided R is a predi
ate o

urring in �, fp

1

; : : : ; p

m

g are all positions of atoms

with predi
ate R in � and f

R

is new with appropriate sorting

Proposition 3.3.1. Let �)

�

IE

�

0

then � is satis�able (valid) i� �

0

is satis�able

(valid).

Proof. (Sket
h) The basi
 proof idea is to establish the relation (t

A

1

; : : : ; t

A

n

) 2

R

A

i� f

A

R

(t

A

1

; : : : ; t

A

n

) = true

A

. Furthermore, the sort of true is fresh to � and

the equations f

R

(t

1

; : : : ; t

n

) � true do not interfere with any term t

i

be
ause

the f

R

are all fresh and only o

ur on top level of the equations.

When removing equality from a formula it needs to be axiomatized. For

simpli
ity, I assume here that the 
onsidered formula � is one-sorted, i.e., there

is only one sort o

urring for fun
tions, relations in �. The extension to formulas

with many sorts is straightforward and dis
ussed below.

RemEq �[l

1

� r

1

℄

p

1

: : : [l

m

� r

m

℄

p

m

)

RE

�[E(l

1

; r

1

)℄

p

1

: : : [E(l

m

; r

m

)℄

p

m

^

def(�;E)
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provided fp

1

; : : : ; p

m

g are all positions of equations l

i

= r

i

in � and E is a new

binary predi
ate

The formula def(�;E) is the axiomatization of equality for � and it 
onsists

of a 
onjun
tion of the equivalen
e relation axioms for E

8x:E(x; x)

8x; y:(E(x; y)! E(y; x))

8x; y; z:((E(x; y) ^ E(x; z))! E(x; z))

plus the 
ongruen
e axioms for E for every n-ary fun
tion symbol f

8x

1

; y

1

; : : : ; x

n

; y

n

:((E(x

1

; y

1

) ^ : : : ^E(x

n

; y

n

))! E(f(x

1

; : : : ; x

n

); f(y

1

; : : : ; y

n

)))

plus the 
ongruen
e axioms for E for every m-ary predi
ate symbol P

8x

1

; y

1

; : : : ; x

m

; y

m

:((E(x

1

; y

1

) ^ : : : ^ E(x

m

; y

m

) ^ P (x

1

; : : : ; x

m

))! P (y

1

; : : : ; y

m

)

Proposition 3.3.2. Let �)

RE

�

0

then � is satis�able i� �

0

is satis�able.

Proof. (Sket
h) The identity on an algebra (see De�nition 3.2.2) is a 
ongruen
e

relation proving the dire
tion from left to right. The dire
tion from right to left

is more involved.

Note that )

RE

is not validity preserving. Consider the simple example for-

mula a � a whi
h is valid for any 
onstant a. Its translation E(a; a) ^ def(a �

a;E) is not valid, e.g., 
onsider an algebra with E

A

= ;.

Now in 
ase � has many di�erent sorts then for ea
h sort S one new fresh

predi
ate E

S

is needed for the translation. For ea
h of these predi
ates equiv-

alen
e relation and 
ongruen
e axioms need to be generated where for every

fun
tion f only one axiom using E

S

is needed, where S is the range sort of S.

Similar for the domain sorts of f and a

ordingly for predi
ates.

3.4 Substitution and Uni�er

De�nition 3.4.1 (Substitution). A substitution is a mapping � : X ! T (�;X )

so that

1. �(x) 6= x for only �nitely many variables x and

2. sort(x) = sort(t) for every variable x 2 X that is mapped to a term

t 2 T

S

(�;X ).

The appli
ation �(x) of a substitution � to a variable x is often written in

post�x notation as x�. The variable set dom(�) := fx 2 X j x� 6= xg is 
alled

the domain of �. The term set 
odom(�) := fx� j x 2 dom(�)g is 
alled the


odomain of �. From the above de�nition of substitution it follows that dom(�)

is �nite for any substitution �. The 
omposition of two substitutions � and �

is written as a juxtaposition �� , i.e., t�� = (t�)� . A substitution � is 
alled

idempotent if �� = �. � is idempotent i� dom(�) \ vars(
odom(�)) = ;.

Substitutions are often written as fx

1

7! t

1

; : : : ; x

n

7! t

n

g if dom(�) =

fx

1

; : : : ; x

n

g and x

i

� = t

i

for every i 2 f1; : : : ; ng. The modi�
ationof a substi-

tution � at a variable x is de�ned as follows:
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�[x 7! t℄(y) =

�

t if y = x

�(y) otherwise

A substitution � is identi�ed with its extension to expression and de�ned as

following:

1. ?� = ?,

2. >� = >,

3. (f(t

1

; : : : ; t

n

))� = f(t

1

�; : : : ; t

n

�),

4. (P (t

1

; : : : ; t

n

))� = P (t

1

�; : : : ; t

n

�),

5. (s � t)� = (s� � t�),

6. (:�)� = :(��),

7. (� Æ  )� = �� Æ  � where Æ 2 f_;^g,

8. (Qx�)� = Qz(��[x 7! z℄) where Q 2 f8; 9g, z and x are of the same sort

and z is a fresh variable.

The result e� of applying a substitution � to an expression e is 
alled an

instan
e of e. The substitution � is 
alled ground if it maps every domain

variable to a ground term. If the appli
ation of a substitution � to an expression

e produ
es a ground expression e� then e� is 
alled ground instan
e of e. A

ground substitution � is 
alled grounding for an expression e if e� is ground. A

substitution � is 
alled variable renaming if im(�) � X and for any x; y 2 X , if

x 6= y then x� 6= y�.

De�nition 3.4.2 (Uni�er). Two terms s and t are said to be uni�able if there

exists a substitution � so that s� = t�, the substitution � is then 
alled a uni�er

of s and t. The uni�er � is 
alled most general uni�er, written � = mgu(s; t), if

any other uni�er � of s and t 
an be represented as � = ��

0

, for some substitution

�

0

.

3.5 Uni�
ation Cal
uli

The �rst 
al
ulus is the naive standard uni�
ation 
al
ulus that is typi
ally

found in the (old) literature on automated reasoning. A state of the naive stan-

dard uni�
ation 
al
ulus is a set of equations E or ?, where ? denotes that

no uni�er exists. The set E is also 
alled a uni�
ation problem. The start state

for 
he
king whether two terms s, t with sort(s) = sort(t) (or atoms A, B) are

uni�able is the set E = fs = tg. A variable x is solved in E if E = fx = tg℄E

0

,

x 62 vars(t) and x 62 vars(E).

Tautology E ℄ ft = tg )

SU

E
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De
omposition E ℄ ff(s

1

; : : : ; s

n

) = f(t

1

; : : : ; t

n

)g )

SU

E [ fs

1

=

t

1

; : : : ; s

n

= t

n

g

Clash

E ℄ ff(s

1

; : : : ; s

n

) = g(s

1

; : : : ; s

m

)g )

SU

?

if f 6= g

Substitution

E ℄ fx = tg )

SU

Efx 7! tg [ fx = tg

if x 2 vars(E) and x 62 vars(t)

O

urs Che
k

E ℄ fx = tg )

SU

?

if x 6= t and x 2 vars(t)

Orient

E ℄ ft = xg )

SU

E [ fx = tg

if t 62 X

Theorem 3.5.1 (Soundness, Completeness and Termination of )

SU

). If s; t

are two terms with sort(s) = sort(t) then

1. if fs = tg )

�

SU

E then any equation (s

0

= t

0

) 2 E is well-sorted, i.e.,

sort(s

0

) = sort(t

0

).

2. )

SU

terminates on fs = tg.

3. if fs = tg )

�

SU

E then � is a uni�er (mgu) of E i� � is a uni�er (mgu) of

fs = tg.

4. if fs = tg )

�

SU

? then s and t are not uni�able.

5. if fs = tg )

�

SU

fx

1

= t

1

; : : : ; x

n

= t

n

g and this is a normal form, then

fx

1

7! t

1

; : : : ; x

n

7! t

n

g is an mgu of s, t.

Proof. 1. by indu
tion on the length of the derivation and a 
ase analysis for

the di�erent rules.

2. for a state E = fs

1

= t

1

; : : : ; s

n

= t

n

g take the measure �(E) := (n;M; k)

where n is the number of unsolved variables,M the multiset of all term depths of

the s

i

, t

i

and k the number of equations t = x in E where t is not a variable. The

state ? is mapped to (0; ;; 0). Then the lexi
ographi
 
ombination of > on the

naturals and its multiset extension shows that any rule appli
ation de
rements

the measure.

3. by indu
tion on the length of the derivation and a 
ase analysis for the

di�erent rules. Clearly, for any state where Clash, or O

urs Che
k generate ?

the respe
tive equation is not uni�able.

4. a dire
t 
onsequen
e of 3.

5. if E = fx

1

= t

1

; : : : ; x

n

= t

n

g is a normal form, then for all x

i

= t

i

we have

x

i

62 vars(t

i

) and x

i

62 vars(E n fx

i

= t

i

g), so fx

1

= t

1

; : : : ; x

n

= t

n

gfx

1

7!

t

1

; : : : ; x

n

7! t

n

g = ft

1

= t

1

; : : : ; t

n

= t

n

g and hen
e fx

1

7! t

1

; : : : ; x

n

7! t

n

g is

an mgu of fx

1

= t

1

; : : : ; x

n

= t

n

g. By 3. it is also an mgu of s, t.
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Example 3.5.2 (Size of Standard Uni�
ation Problems). Any normal form of

the uni�
ation problem E given by

ff(x

1

; g(x

1

; x

1

); x

3

; : : : ; g(x

n

; x

n

)) = f(g(x

0

; x

0

); x

2

; g(x

2

; x

2

); : : : ; x

n+1

)g

with respe
t to )

SU

is exponentially larger than E.

The se
ond 
al
ulus, polynomial uni�
ation, prevents the problem of expo-

nential growth by introdu
ing an impli
it representation for the mgu. For this


al
ulus the size of a normal form is always polynomial in the size of the input

uni�
ation problem.

Tautology E ℄ ft = tg )

PU

E

De
omposition E ℄ ff(s

1

; : : : ; s

n

) = f(t

1

; : : : ; t

n

)g )

PU

E ℄ fs

1

=

t

1

; : : : ; s

n

= t

n

g

Clash

E ℄ ff(t

1

; : : : ; t

n

) = g(s

1

; : : : ; s

m

)g )

PU

?

if f 6= g

O

urs Che
k

E ℄ fx = tg )

PU

?

if x 6= t and x 2 vars(t)

Orient

E ℄ ft = xg )

PU

E ℄ fx = tg

if t 62 X

Substitution

E ℄ fx = yg )

PU

Efx 7! yg ℄ fx = yg

if x 2 vars(E) and x 6= y

Cy
le E ℄ fx

1

= t

1

; : : : ; x

n

= t

n

g )

PU

?

if there are positions p

i

with t

i

j

p

i

= x

i+1

; t

n

j

p

n

= x

1

and some p

i

6= �

Merge E ℄ fx = t; x = sg )

PU

E ℄ fx = t; t = sg

if t; s 62 X and jtj � jsj

Theorem 3.5.3 (Soundness, Completeness and Termination of )

PU

). If s; t

are two terms with sort(s) = sort(t) then

1. if fs = tg )

�

PU

E then any equation (s

0

= t

0

) 2 E is well-sorted, i.e.,

sort(s

0

) = sort(t

0

).

2. )

PU

terminates on fs = tg.

3. if fs = tg )

�

PU

E then � is a uni�er (mgu) of E i� � is a uni�er (mgu) of

fs = tg.

4. if fs = tg )

�

PU

? then s and t are not uni�able.

Theorem 3.5.4 (Uni�er generated by )

PU

). Let fs = tg )

�

PU

fx

1

=

t

1

; : : : ; x

n

= t

n

g. Then
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 Des
endant 
(t)

8x

S

:  fx

S

7! tg

:9x

S

: : fx

S

7! tg

for any ground term t 2 T

S

(�)

Æ Des
endant Æ(
)

9x

S

:  fx

S

7! 
g

:8x

S

: : fx

S

7! 
g

for some fresh Skolem 
onstant 
 2 T

S

(�)

Figure 3.1: 
- and Æ-Formulas

1. x

i

6= x

j

for all i 6= j and without loss of generality x

i

=2 vars(t

i+k

) for all

i; k, 1 � i < n, i+ k � n.

2. the substitution fx

1

7! t

1

gfx

2

7! t

2

g : : : fx

n

7! t

n

g is an mgu of s = t.

Proof. 1. If x

i

= x

j

for some i 6= j then Merge is appli
able. If x

i

2 vars(t

i

)

for some i then O

urs Che
k is appli
able. If the x

i


annot be ordered in the

des
ribed way, then either Substitution or Cy
le is appli
able.

2. Sin
e x

i

=2 vars(t

i+k

the 
omposition yields the mgu.

3.6 First-Order Tableaux

The di�erent versions of tableaux for �rst-order logi
 di�er in parti
ular in the

treatment of variables by the tableaux rules. The �rst variant is standard �rst-

order tableaux where variables are instantiated by ground terms.

De�nition 3.6.1 (
-,Æ-Formulas). A formula � is 
alled a 
-formula if � is a

formula 8x

S

: or :9x

S

: . A formula � is 
alled a Æ-formula if � is a formula

9x

S

: or :8x

S

: .

De�nition 3.6.2 (Dire
t Standard Tableaux Des
endant). Given a 
- or Æ-

formula �, Figure 3.1 shows its dire
t des
endants.

For the standard �rst-order tableaux rules to make sense \enough" Skolem


onstants are needed in the signature, e.g., 
ountably in�nitely many for ea
h

sort. A Æ formula � o

urring in some sequen
e is 
alled open if no dire
t de-

s
endant of it is part of the sequen
e. In general, the number of 
 des
endants


annot be limited for a su

essful tableaux proof.


-Expansion N℄f(�

1

; : : : ;  ; : : : ; �

n

)g )

FT

N℄f(�

1

; : : : ;  ; : : : ; �

n

;  

0

)g

provided  is a 
-formula,  

0

a 
(t) des
endant where t is an arbitrary ground

term in the signature of the sequen
e (bran
h) and the sequen
e is not 
losed.

Æ-Expansion N℄f(�

1

; : : : ;  ; : : : ; �

n

)g )

FT

N℄f(�

1

; : : : ;  ; : : : ; �

n

;  

0

)g
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provided  is an open Æ-formula,  

0

a Æ(
) des
endant where 
 is fresh to the

sequen
e and the sequen
e is not 
losed.

The standard �rst-order tableaux 
al
ulus 
onsists of the rules �-, and

�-expansion (see Se
tion 2.5) and the above two rules 
-Expansion and Æ-

Expansion.

Theorem 3.6.3 (Standard First-Order Tableaux is Sound and Complete). A

formula � (without equality) is valid i� standard tableaux 
omputes a 
losed

state out of f(:�)g.

Skolem 
onstants are suÆ
ient: In a Æ-formula 9x�, 9 is the outermost quan-

ti�er and x is the only free variable in �. The 
 rule has to be applied several

times to the same formula for tableaux to be 
omplete. For instan
e, 
onstru
t-

ing a 
losed tableau for

f8x (P (x)! P (f(x))); P (b); :P (f(f(b)))g

is impossible without applying 
-expansion twi
e on one path.

The main disadvantage of standard �rst-order tableau is that the 
 ground

term instan
es need to be guessed. The whole 
omplexity of the problem lies in

this guessing as for otherwise tableaux terminates. A natural idea is to guess

ground terms that 
an eventually be used to 
lose a bran
h. This is the idea

of free-variable �rst-order tableaux. Instead of guessing a ground term for a


 formula the variable remains, the instantiation is delayed until a bran
h is


losed for two literals via uni�
ation. As a 
onsequen
e, for Æ formulas no longer


onstants are introdu
ed but Skolem terms in the formerly universally quanti�ed

variables that had the Æ formula in their s
ope.

The new 
al
ulus suggests to keep tra
k of s
opes of variables, so I move

from a state as a set of sequen
es of formulas to a set of sequen
es of pairs

l

i

= (�

i

; X

i

) where X

i

is a set of variables.

De�nition 3.6.4 (Dire
t Free-Variable Tableaux Des
endant). Given a 
- or

Æ-formula �, Figure 3.2 shows its dire
t des
endants.


-Expansion N℄f(l

1

; : : : ; ( ;X); : : : ; l

n

)g )

FT

N℄f(l

1

; : : : ; ( ;X); : : : ; l

n

; ( 

0

; X[

fyg))g

provided  is a 
-formula,  

0

a 
(y) des
endant where y is fresh to the sequen
e

(bran
h) and the sequen
e is not 
losed.

Æ-Expansion N℄f(l

1

; : : : ; ( ;X); : : : ; l

n

)g )

FT

N℄f(l

1

; : : : ; ( ;X); : : : ; l

n

; ( 

0

; X))g

provided  is an open Æ-formula,  

0

a Æ(f(y

1

; : : : ; y

n

)) des
endant where f is

fresh to the sequen
e, X = fy

1

; : : : ; y

n

g and the sequen
e is not 
losed.

Bran
h-Closing N ℄ f(l

1

; : : : ; (L;X); : : : ; (K;X

0

); : : : ; l

n

)g )

FT

N� ℄

f(l

1

; : : : ; (L;X); : : : ; (K;X

0

); : : : ; l

n

; g�
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 Des
endant 
(y)

8x

S

:  fx

S

7! yg

:9x

S

: : fx

S

7! yg

for a fresh variable y; sort(y) = S

Æ Des
endant Æ(f(y

1

; : : : ; y

n

))

9x

S

:  fx

S

7! f(y

1

; : : : ; y

n

)g

:8x

S

: : fx

S

7! f(y

1

; : : : ; y

n

)g

for some fresh Skolem fun
tion f

where f(y

1

; : : : ; y

n

) 2 T

S

(�;X )

Figure 3.2: 
- and Æ-Formulas

provided K and L are literals and there is an mgu � su
h that K� = :L� and

the sequen
e is not 
losed.

The standard �rst-order tableaux 
al
ulus 
onsists of the rules �-, and �-

expansion (see Se
tion 2.5) whi
h are adapted to pairs and the above three rules


-Expansion, Æ-Expansion and Bran
h-Closing.

Theorem 3.6.5 (Free-variable First-Order Tableaux is Sound and Complete).

A formula � (without equality) is valid i� free-variable tableaux 
omputes a


losed state out of f(:�)g.

Example 3.6.6.

1: :[9w8xR(x;w; f(x;w)) ! 9w8x9yR(x;w; y)℄

2: 9w8x R(x;w; f(x;w)) 1

1

[�℄

3: :9w8x9y R(x;w; y) 1

2

[�℄

4: 8x R(x; 
; f(x; 
)) 2(
) [Æ℄

5: :8x9y R(x; v

1

; y) 3(v

1

) [
℄

6: :9y R(g(v

1

); v

1

; y) 5(g(v

1

)) [Æ℄

7: R(v

2

; 
; f(v

2

; 
)) 4(v

2

) [
℄

8: :R(g(v

1

); v

1

; v

3

) 6(v

3

) [
℄

7. and 8. are 
omplementary (modulo uni�
ation):

v

2

= g(v

1

); 
 = v

1

; f(v

2

; 
) = v

3

is solvable with an mgu � = fv

1

7! 
; v

2

7! g(
); v

3

7! f(g(
); 
)g, and hen
e,

T� is a 
losed (linear) tableau for the formula in 1.

Problem: Stri
tness for 
 is still in
omplete. For instan
e, 
onstru
ting a


losed tableau for

f8x (P (x)! P (f(x))); P (b); :P (f(f(b)))g

is impossible without applying 
-expansion twi
e on one path.

Semanti
 Tableau vs. Resolution
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1. Tableau: global, goal-oriented, \ba
kward".

2. Resolution: lo
al, \forward".

3. Goal-orientation is a 
lear advantage if only a small subset of a large set

of formulas is ne
essary for a proof. (Note that resolution provers saturate

also those parts of the 
lause set that are irrelevant for proving the goal.)

4. Resolution 
an be 
ombined with more powerful redundan
y elimination

methods; be
ause of its global nature this is more diÆ
ult for the tableau

method.

5. Resolution 
an be re�ned to work well with equality; for tableau this seems

to be impossible.

6. On the other hand tableau 
al
uli 
an be easily extended to other logi
s;

in parti
ular tableau provers are very su

essful in modal and des
ription

logi
s.

3.7 First-Order CNF Transformation

Similar to the propositional 
ase, �rst-order superposition operates on 
lauses.

In this se
tion I show how any �rst-order senten
e 
an be eÆ
iently transformed

into a CNF, preserving satis�ability. To this end all existentially quanti�ed

variables are repla
ed with so 
alled Skolem fun
tions. Similar to renaming this

repla
ement only preserves satis�ability. Eventually, all variables in 
lauses are

impli
itly universally quanti�ed.

As usual, the CNF transformation is done by a set of rules. All rules known

from the propositional 
ase apply. Further rules deal with the quanti�es 8, 9

and some of the propositional rules need an extension in order to 
ope with

�rst-order variables.

The �rst set of rules eliminates > and ? from a �rst-order formula.

ElimTB1

�[(� ^ >)℄

p

)

CNF

�[�℄

p

ElimTB2

�[(� ^ ?)℄

p

)

CNF

�[?℄

p

ElimTB3

�[(� _ >)℄

p

)

CNF

�[>℄

p

ElimTB4

�[(� _ ?)℄

p

)

CNF

�[�℄

p

ElimTB5

�[:?℄

p

)

CNF

�[>℄

p

ElimTB6

�[:>℄

p

)

CNF

�[?℄

p
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ElimTB7

�[�$ ?℄

p

)

CNF

�[:�℄

p

ElimTB8

�[�$ >℄

p

)

CNF

�[�℄

p

ElimTB9

�[�! ?℄

p

)

CNF

�[:�℄

p

ElimTB10

�[�! >℄

p

)

CNF

�[>℄

p

ElimTB11

�[? ! �℄

p

)

CNF

�[>℄

p

ElimTB12

�[> ! �℄

p

)

CNF

�[�℄

p

ElimTB13

�[f8; 9gx:>℄

p

)

CNF

�[>℄

p

ElimTB14

�[f8; 9gx:?℄

p

)

CNF

�[?℄

p

where the expression f8; 9gx:� 
overs both 
ases 8x:� and 9x:�. The next

step is to rename all variable su
h that di�erent quanti�ers bind di�erent vari-

ables. This step is ne
essary to prevent a later on 
onfusion of variables.

RenVar

� )

CNF

��

for � = fg

On
e the variable renaming is done, renaming of bene�
ial subformulas is

the next step. The me
hanism of renaming and the 
on
ept of a bene�
ial sub-

formula is exa
tly the same as in propositional logi
. The only di�eren
e is

that renaming does introdu
e an atom in the free variables of the respe
tive

subformula. When some formula  is renamed at position p an atom P ( ~x

n

),

~x

n

= x

1

; : : : ; x

n

repla
es  j

p

where fvars( j

p

) = fx

1

: : : ; x

n

g. The respe
tive

de�nition of P ( ~x

n

) be
omes

def( ; p; P ( ~x

n

)) :=

8

<

:

8 ~x

n

:(P ( ~x

n

)!  j

p

) if pol( ; p) = 1

8 ~x

n

:( j

p

! P ( ~x

n

)) if pol( ; p) = �1

8 ~x

n

:(P ( ~x

n

)$  j

p

) if pol( ; p) = 0

and the rule SimpleRenaming is 
hanged a

ordingly.

SimpleRenaming � )

CNF

�[A

1

℄

p

1

[A

2

℄

p

2

: : : [A

n

℄

p

n

^ def(�; p

1

; A

1

) ^

: : : ^ def(�[A

1

℄

p

1

[A

2

℄

p

2

: : : [A

n�1

℄

p

n�1

; p

n

; A

n

)

provided fp

1

; : : : ; p

n

g � pos(�) and for all i; i+ j either p

i

k p

i+j

or p

i

> p

i+j

and the A

i

= P

i

(x

i;1

; : : : ; x

i;k

i

) where fvars(�j

p

i

) = fx

i;1

; : : : ; x

i;k

i

g and all P

i

are di�erent and new to �
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Negation normal form is again done as in the propositional 
ase with addi-

tional rules for the quanti�ers.

ElimEquiv1 �[(�$  )℄

p

)

CNF

�[(�!  ) ^ ( ! �)℄

p

provided pol(�; p) 2 f0; 1g

ElimEquiv2 �[(�$  )℄

p

)

CNF

�[(� ^  ) _ (:� ^ : )℄

p

provided pol(�; p) = �1

ElimImp �[(�!  )℄

p

)

CNF

�[(:� _  )℄

p

PushNeg1 �[:(� _  )℄

p

)

CNF

�[(:� ^ : )℄

p

PushNeg2 �[:(� ^  )℄

p

)

CNF

�[(:� _ : )℄

p

PushNeg3 �[::�℄

p

)

CNF

�[�℄

p

PushNeg4 �[:8x:�℄

p

)

CNF

�[9x::�℄

p

PushNeg5 �[:9x:�℄

p

)

CNF

�[8x::�℄

p

In propositional logi
 after NNF, the CNF 
an be generated using distribu-

tivity. In �rst-order logi
 the existential quanti�ers are eliminated �rst by the

introdu
tion of Skolem fun
tions. In order to re
eive Skolem fun
tions with few

arguments, the quanti�ers are �rst moved inwards as far as passible. This step

is 
alled mini-s
oping.

MiniS
ope1 �[8x:( 

1

Æ  

2

)℄

p

)

CNF

�[(8x: 

1

) Æ  

2

℄

p

provided Æ 2 f^;_g, x 62 fvars( 

2

)

MiniS
ope2 �[9x:( 

1

Æ  

2

)℄

p

)

CNF

�[(9x: 

1

) Æ  

2

℄

p

provided Æ 2 f^;_g, x 62 fvars( 

2

)

MiniS
ope3 �[8x:( 

1

^  

2

)℄

p

)

CNF

�[(8x: 

1

) ^ (8x: 

2

)�℄

p

where � = fg, x 2 (fvars( 

1

) \ fvars( 

2

))

MiniS
ope4 �[9x:( 

1

_  

2

)℄

p

)

CNF

�[(9x: 

1

) _ (9x: 

2

)�℄

p

where � = fg; x 2 (fvars( 

1

) \ fvars( 

2

))
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The rules MiniS
ope1, MiniS
ope2 are applied modulo the 
ommutativity

of ^, _. On
e the quanti�ers are moved inwards Skolemization 
an take pla
e.

Skolemization

�[9x;  ℄

p

)

CNF

�[ fx 7! f(y

1

; : : : ; y

n

)g℄

p

provided there is no q, q < p with �j

q

= 9x

0

: 

0

, fvars(9x: ) = fy

1

; : : : ; y

n

g,

arity(f) = n is a new fun
tion symbol to � mat
hing the respe
tive sorts of the

y

i

with range sort sort(x)

Example 3.7.1 (Mini-S
oping and Skolemization). Consider the simple for-

mula 8x:9y:(R(x; x) ^ P (y). Applying Skolemization dire
tly to this formula,

without mini-s
oping results in

8x:9y:(R(x; x) ^ P (y)))

CNF,Skolemization

8x:(R(x; x) ^ P (g(x))

for a unary Skolem fun
tion g be
ause fvars(9y:(R(x; x)^P (y))) = fxg. Apply-

ing mini-s
oping and then Skolemization generates

8x:9y:(R(x; x) ^ P (y)) )

�

CNF,MiniS
ope2,1

8x:R(x; x) ^ 9y:P (y)

)

CNF,Skolemization

8x:R(x; x) ^ P (a)

for some Skolem 
onstant a be
ause fvars(9y:P (y)) = ;. Now the former for-

mula after Skolemization is seriously more 
omplex than the latter. The former

belongs to an unde
idable fragment of �rst-order logi
 while the latter belongs

to a de
idable one (see Se
tion 3.14).

Finally, the universal quanti�ers are removed. In a �rst-order logi
 CNF any

variable is universally quanti�ed by default. Furthermore, the variables of two

di�erent 
lauses are always assumed to be di�erent.

RemForall

�[8x: ℄

p

)

CNF

�[ ℄

p

The a
tual CNF is then done by distributivity.

PushDisj �[(�

1

^ �

2

) _  ℄

p

)

CNF

�[(�

1

_  ) ^ (�

2

_  )℄

p

Theorem 3.7.2 (Properties of the CNF Transformation). Let � be a �rst-order

senten
e, then

1. 
nf(�) terminates

2. � is satis�able i� 
nf(�) is satis�able

Proof. (Idea) 1. is a straightforward extension of the propositional 
ase. It is

easy to de�ne a measure for any line of Algorithm 6.

2. 
an also be established separately for all rule appli
ations. The rules SimpleR-

enaming and Skolemization need separate proofs, the rest is straightforward or


opied from the propositional 
ase.
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Algorithm 6: 
nf(�)

Input : A �rst-order formula �.

Output: A formula  in CNF satis�ability preserving to �.

1 whilerule (ElimTB1(�),: : :,ElimTB14(�)) do ;

2 RenVar(�);

3 SimpleRenaming(�) on obvious positions;

4 whilerule (ElimEquiv1(�),ElimEquiv2(�)) do ;

5 whilerule (ElimImp(�)) do ;

6 whilerule (PushNeg1(�),: : :,PushNeg5(�)) do ;

7 whilerule (MiniS
ope1(�),: : :,MiniS
ope4(�)) do ;

8 whilerule (Skolemization(�)) do ;

9 whilerule (RemForall(�)) do ;

10 whilerule (PushDisj(�)) do ;

11 return �;

C In addition to the 
onsideration of repeated subformulas, dis
ussed

in Se
tion 2.6, for �rst-order renaming another te
hnique 
an pay o�:

generalization. Consider the formula [�

1

_ (Q

1

(a

1

) ^Q

2

(a

1

))℄ ^ [�

2

_ (Q

1

(a

2

) ^

Q

2

(a

2

))℄^ : : :^ [�

n

_ (Q

1

(a

n

)^Q

2

(a

n

)℄. SimpleRenaming on obvious renamings

applied to this formula will independently rename any o

urren
es of a formula

(Q

1

(a

i

)^Q

2

(a

i

)). However generalization pays o� here. By adding the de�nition

8x; y (R(x; y) ! (Q

1

(x) ^ Q

2

(y))) and repla
ing the i

th

o

urren
e of the 
on-

jun
t by R(x; y)fx 7! a

i

; y 7! a

i

g one de�nition for all subformula o

urren
es

suÆ
es.

3.8 Herbrand Interpretations

For propositional logi
 the existen
e of a 
anoni
al model is straightforward

be
ause the de�nition of the semanti
s leads to an e�e
tive representation. A

propositional variable 
an be either true or false. For �rst-order logi
 this is no

longer straightforward be
ause an interpretation 
an assign any non-empty set

to a sort, any fun
tion to a fun
tion symbol and any relation to a predi
ate

symbol. A giant step forward towards the me
hanization of �rst-order logi


was the dis
overy of a 
anoni
al model 
onstru
tion by Herbrand. A �rst-order

formula has a model i� it has su
h a 
anoni
al model whi
h is build out of the

syntax.

For this and the following se
tion I restri
t the fo
us to �rst-order logi


without equality. Equality is then 
onsidered and added to the 
on
epts of this


hapter in Chapters ??, ??.

De�nition 3.8.1 (Herbrand Interpretation). A Herbrand Interpretation (over

�) is a �-algebra A so that

1. S

A

= T

S

(�) for every sort S 2 S
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2. f

A

: (s

1

; : : : ; s

n

) 7! f(s

1

; : : : ; s

n

) where f 2 
, arity(f) = n, s

i

2 T

S

i

(�)

and f : S

1

� : : :� S

n

! S is the sort de
laration for f

3. P

A

� (T

S

1

(�) � : : : � T

S

m

(�)) where P 2 �, arity(P ) = m and P �

S

1

� : : :� S

m

is the sort de
laration for P

In other words, values are �xed to be ground terms and fun
tions are �xed

to be the term 
onstru
tors. Only predi
ate symbols may be freely interpreted

as relations over ground terms.

Proposition 3.8.2. Every set of ground atoms I uniquely determines a Her-

brand interpretation A via

(s

1

; : : : ; s

n

) 2 P

A

i� P (s

1

; : : : ; s

n

) 2 I

Thus Herbrand interpretations (over �) 
an be identi�ed with sets of �-

ground atoms. A Herbrand interpretation I is 
alled a Herbrand model of �, if

I j= �.

Example 3.8.3. Consider the signature � = (fSg; fa; bg; fP;Qg), where a; b

are 
onstants, arity(P ) = 1, arity(Q) = 2, and all 
onstants, predi
ates are

de�ned over the sort S. Then the following are examples of Herbrand interpre-

tations over �, where for all interpretations S

A

= fa; bg.

I

1

: = ;

I

2

: = fP (a); Q(a; a); Q(b; b)g

I

3

: = fP (a); P (b); Q(a; a); Q(b; b); Q(a; b); Q(b; a)g

Now 
onsider the extension �

0

of � by one unary fun
tion symbol g : S ! S.

Then the following are examples of Herbrand interpretations over �

0

, where for

all interpretations S

A

= fa; b; g(a); g(b); g(g(a)); : : :g.

I

0

1

: = ;

I

0

2

: = fP (a); Q(a; g(a)); Q(b; b)g

I

0

3

: = fP (a); P (g(a)); P (g(g(a))); : : : ; Q(a; a); Q(b; b); Q(b; g(b)); Q(b; g(g(b))); : : :g

Theorem 3.8.4 (Herbrand). Let N be a set of �-
lauses. Then N is satis�able

i� N has a Herbrand model over � i� ground(�; N) has a Herbrand model

over �, where ground(�; N) = fC� j C 2 N; dom(�) = vars(C); and x� 2

T

sort(x)

(�) for all x 2 dom(�)g is the set of ground instan
es of N .

Example 3.8.5 (Example of a ground(�; N)). Consider �

0

from Example 3.8.3

and the 
lause set N = fQ(x; x) _ :P (x);:P (x) _ P (g(x))g. Then the set of

ground instan
es ground(�

0

; N) = f

Q(a; a) _ :P (a)

Q(b; b) _ :P (b)

Q(g(a); g(a)) _ :P (g(a))

: : :

:P (a) _ P (g(a))

:P (b) _ P (g(b))

:P (g(a)) _ P (g(g(a)))

: : :g
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is satis�able. For example by the Herbrand models

I

1

: = ;

I

2

: = fP (b); Q(b; b); P (g(b)); Q(g(b); g(b)); : : :g

3.9 Orderings

De�nition 3.9.1 (�-Operation Compatible Relation). A binary relation

A over T (�;X ) is 
alled 
ompatible with �-operations, if s A s

0

implies

f(t

1

; : : : ; s; : : : ; t

n

) A f(t

1

; : : : ; s

0

; : : : ; t

n

) for all f 2 
 and s; s

0

; t

i

2 T (�;X ).

Lemma 3.9.2. A relation A is 
ompatible with �-operations i� s A s

0

implies

t[s℄

p

A t[s

0

℄

p

for all s; s

0

; t 2 T (�;X ) and p 2 pos(t).

In the literature 
ompatible with �-operations is sometimes also 
alled 
om-

patible with 
ontexts.

De�nition 3.9.3 (Substitution Stable Relation, Rewrite Relation). A binary

relation A over T (�;X ) is 
alled stable under substitutions, if s A s

0

implies

s� A s

0

� for all s; s

0

2 T (�;X ) and substitutions �. A binary relation A is


alled a rewrite relation, if it is 
ompatible with �-operations and stable under

substitutions.

De�nition 3.9.4 (Lexi
ographi
al Path Ordering (LPO)). Let � = (S;
;�)

be a signature and let � be a stri
t partial ordering on operator symbols in 
,


alled pre
eden
e. The lexi
ographi
al path ordering �

lpo

on T (�;X ) is de�ned

as follows: if s; t are terms in T

S

(�;X ) then s �

lpo

t i�

1. t = x 2 X , x 2 vars(s) and s 6= t or

2. s = f(s

1

; : : : ; s

n

), t = g(t

1

; : : : ; t

m

) and

(a) s

i

�

lpo

t for some i 2 f1; : : : ; ng or

(b) f � g and s �

lpo

t

j

for every j 2 f1; : : : ;mg or

(
) f = g, s �

lpo

t

j

for every j 2 f1; : : : ;mg and (s

1

; : : : ; s

n

)(�

lpo

)

lex

(t

1

; : : : ; t

m

).

Theorem 3.9.5. 1. The LPO is a rewrite ordering.

2. If the pre
eden
e � is total on 
 then �

lpo

is total on the set of ground

terms T (�).

3. If 
 is �nite then �

lpo

is well-founded.

Example 3.9.6. Consider the terms g(x), g(y), g(g(a)), g(b), g(a), b, a. With

respe
t to the pre
eden
e g � b � a the ordering on the ground terms is

g(g(a)) �

lpo

g(b) �

lpo

g(a) �

lpo

b �

lpo

a. The terms g(x) and g(y) are not


omparable. Note that the terms g(g(a)), g(b), g(a) are all instan
es of both

g(x) and g(y).

With respe
t to the pre
eden
e b � a � g the ordering on the ground terms

is g(b) �

lpo

b �

lpo

g(g(a)) �

lpo

g(a) �

lpo

a.
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De�nition 3.9.7 (The Knuth-Bendix Ordering). Let � = (S;
;�) be a �nite

signature, let � be a stri
t partial ordering (\pre
eden
e") on 
, let w : 
 [

X ! R

+

0

be a weight fun
tion, so that the following admissibility 
onditions are

satis�ed:

1. w(x) = w

0

2 R

+

for all variables x 2 X ; w(
) � w

0

for all 
onstants 
 2 
.

2. If w(f) = 0 for some f 2 
 with arity(f) = 1, then f � g for all g 2 
.

Then, the weight fun
tion w 
an be extended to terms re
ursively:

w(f(t

1

; : : : ; t

n

)) = w(f) +

X

1�i�n

w(t

i

)

or alternatively

X

w(t) =

X

x2vars(t)

w(x) �#(x; t) +

X

f2


w(f) �#(f; t)

where #(a; t) is the number of o

urren
es of a in t.

The Knuth-Bendix ordering �

kbo

on T (�;X ) indu
ed by � and admissible

w is de�ned by: s �

kbo

t i�

1. #(x; s) � #(x; t) for all variables x and w(s) > w(t), or

2. #(x; s) � #(x; t) for all variables x, w(s) = w(t), and

(a) t = x, s = f

n

(x) for some n � 1, or

(b) s = f(s

1

; : : : ; s

m

), t = g(t

1

; : : : ; t

n

), and f � g, or

(
) s = f(s

1

; : : : ; s

m

), t = f(t

1

; : : : ; t

m

), and (s

1

; : : : ; s

m

)(�

kbo

)

lex

(t

1

; : : : ; t

m

).

Theorem 3.9.8. 1. The KBO is a rewrite ordering.

2. If the pre
eden
e � is total on 
 then �

kbo

is total on the set of ground

terms T (�).

3. If 
 is �nite then �

kbo

is well-founded.

The LPO ordering as well as the KBO ordering 
an be extended to atoms in

a straightforward way. The pre
eden
e � is extended to �. For LPO atoms are

then 
ompared a

ording to De�nition 3.9.4-2. For KBO the weight fun
tion w

is also extended to atoms by giving predi
ates a non-zero positive weight and

then atoms are 
ompared a

ording to terms.

A
tually, sin
e atoms are never substituted for variables in �rst-order logi
,

an alternative to the above would be to �rst 
ompare the predi
ate symbols and

let � de
ide the ordering. Only if the atoms share the same predi
ate symbol,

the argument terms are 
onsidered, e.g., in a lexi
ographi
 way and are then


ompared with respe
t to KBO or LPO, respe
tively.
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3.10 Ground Superposition

Propositional 
lauses and ground 
lauses are essentially the same, as long as

equational atoms are not 
onsidered. This se
tion deals only with ground 
lauses

and re
alls mostly the material from Se
tion 2.7 for �rst-order ground 
lauses.

Let N be a set of ground 
lauses.

De�nition 3.10.1 (Clause Ordering). Let � be a total stri
t rewrite ordering

on terms and atoms. Then � 
an be lifted to a total ordering �

L

on literals

by its multiset extension �

mul

where a positive literal P (t

1

; : : : ; t

n

) is mapped

to the multiset fP (t

1

; : : : ; t

n

)g and a negative literal :P (t

1

; : : : ; t

n

) to the mul-

tiset fP (t

1

; : : : ; t

n

); P (t

1

; : : : ; t

n

)g. The ordering �

L

is further lifted to a total

ordering on 
lauses �

C

by 
onsidering the multiset extension of �

L

for 
lauses.

Proposition 3.10.2 (Properties of the Clause Ordering). (i) The orderings on

literals and 
lauses are total and well-founded.

(ii) Let C and D be 
lauses with P (t

1

; : : : ; t

n

) = jmax(C)j, Q(s

1

; : : : ; s

m

) =

jmax(D)j, where max(C) denotes the maximal literal in C.

1. If Q(s

1

; : : : ; s

m

) �

L

P (t

1

; : : : ; t

n

) then D �

C

C.

2. If P (t

1

; : : : ; t

n

) = Q(s

1

; : : : ; s

m

), P (t

1

; : : : ; t

n

) o

urs negatively in C but

only positively in D, then D �

C

C.

Eventually, as I did for propositional logi
, I overload � with �

L

and �

C

. So

if � is applied to literals it denotes �

L

, if it is applied to 
lauses, it denotes �

C

.

Note that � is a total ordering on literals and 
lauses as well. For superposition,

inferen
es are restri
ted to maximal literals with respe
t to �. For a 
lause set

N , I de�ne N

�C

= fD 2 N j D � Cg.

De�nition 3.10.3 (Abstra
t Redundan
y). A ground 
lause C is redundant

with respe
t to a ground 
lause set N if N

�C

j= C.

Tautologies are redundant. Subsumed 
lauses are redundant if � is stri
t.

Dupli
ate 
lauses are anyway eliminated quietly be
ause the 
al
ulus operates

on sets of 
lauses.

C

Note that for �nite N , and any C 2 N redundan
y N

�C

j= C 
an

be de
ided but is as hard as testing unsatis�ability for a 
lause set

N . So the goal is to invent redundan
y notions that 
an be eÆ
iently

de
ided and that are useful.

De�nition 3.10.4 (Sele
tion Fun
tion). The sele
tion fun
tion sel maps 
lauses

to one of its negative literals or ?. If sel(C) = :P (t

1

; : : : ; t

n

) then :P (t

1

; : : : ; t

n

)

is 
alled sele
ted in C. If sel(C) = ? then no literal in C is sele
ted.

The sele
tion fun
tion is, in addition to the ordering, a further means to

restri
t superposition inferen
es. If a negative literal is sele
ted on a 
lause, any

superposition inferen
e must be on the sele
ted literal.
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De�nition 3.10.5 (Partial Model Constru
tion). Given a 
lause set N and an

ordering � we 
an 
onstru
t a (partial) model N

I

for N indu
tively as follows:

N

C

:=

S

D�C

Æ

D

Æ

D

:=

8

>

<

>

:

fP (t

1

; : : : ; t

n

)g if D = D

0

_ P (t

1

; : : : ; t

n

); P (t

1

; : : : ; t

n

) stri
tly maximal, no literal

sele
ted in D and N

D

6j= D

; otherwise

N

I

:=

S

C2N

Æ

C

Clauses C with Æ

C

6= ; are 
alled produ
tive.

Proposition 3.10.6. Some properties of the partial model 
onstru
tion.

1. For every D with (C _:P (t

1

; : : : ; t

n

)) � D we have Æ

D

6= fP (t

1

; : : : ; t

n

)g.

2. If Æ

C

= fP (t

1

; : : : ; t

n

)g then N

C

[ Æ

C

j= C.

3. If N

C

j= D and D � C then for all C

0

with C � C

0

we have N

C

0

j= D

and in parti
ular N

I

j= D.

4. There is no 
lause C with P (t

1

; : : : ; t

n

) _ P (t

1

; : : : ; t

n

) � C su
h that

Æ

C

= fPg.

T

Please properly distinguish: N is a set of 
lauses interpreted as the


onjun
tion of all 
lauses. N

�C

is of set of 
lauses from N stri
tly

smaller than C with respe
t to �. N

I

, N

C

are Herbrand interpreta-

tions (see Proposition 3.8.2). N

I

is the overall (partial) model for N , whereas

N

C

is generated from all 
lauses from N stri
tly smaller than C.

Superposition Left (N℄fC

1

_P (t

1

; : : : ; t

n

); C

2

_:P (t

1

; : : : ; t

n

)g) )

SUP

(N [ fC

1

_ P (t

1

; : : : ; t

n

); C

2

_ :P (t

1

; : : : ; t

n

)g [ fC

1

_ C

2

g)

where (i) P (t

1

; : : : ; t

n

) is stri
tly maximal in C

1

_ P (t

1

; : : : ; t

n

) (ii) no literal in

C

1

_P (t

1

; : : : ; t

n

) is sele
ted (iii) :P (t

1

; : : : ; t

n

) is maximal and no literal sele
ted

in C

2

_ :P (t

1

; : : : ; t

n

), or :P (t

1

; : : : ; t

n

) is sele
ted in C

2

_ :P (t

1

; : : : ; t

n

)

Fa
toring (N ℄ fC _ P (t

1

; : : : ; t

n

) _ P (t

1

; : : : ; t

n

)g) )

SUP

(N [ fC _ P (t

1

; : : : ; t

n

) _ P (t

1

; : : : ; t

n

)g [ fC _ P (t

1

; : : : ; t

n

)g)

where (i) P (t

1

; : : : ; t

n

) is maximal in C _ P (t

1

; : : : ; t

n

) _ P (t

1

; : : : ; t

n

) (ii) no

literal is sele
ted in C _ P (t

1

; : : : ; t

n

) _ P (t

1

; : : : ; t

n

)

Note that the superposition fa
toring rule di�ers from the resolution fa
tor-

ing rule in that it only applies to positive literals.

De�nition 3.10.7 (Saturation). A set N of 
lauses is 
alled saturated up to

redundan
y, if any inferen
e from non-redundant 
lauses in N yields a redundant


lause with respe
t to N .
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Examples for spe
i�
 redundan
y rules that 
an be eÆ
iently de
ided are

Subsumption (N ℄ fC

1

; C

2

g) )

SUP

(N [ fC

1

g)

provided C

1

� C

2

Tautology Dele-

tion

(N ℄ fC _ P (t

1

; : : : ; t

n

) _ :P (t

1

; : : : ; t

n

)g) )

SUP

(N)

Condensation

(N ℄ fC

1

_ L _ Lg) )

SUP

(N [ fC

1

_ Lg)

Subsumption

Resolution

(N ℄ fC

1

_ L;C

2

_ :Lg) )

SUP

(N [ fC

1

_ L;C

2

g)

where C

1

� C

2

Proposition 3.10.8. All 
lauses removed by Subsumption, Tautology Deletion,

Condensation and Subsumption Resolution are redundant with respe
t to the

kept or added 
lauses.

Theorem 3.10.9. LetN be a, possibly 
ountably in�nite, set of ground 
lauses.

If N is saturated up to redundan
y and ? =2 N then N is satis�able and N

I

j=

N .

Proof. The proof is by 
ontradi
tion. So I assume: (i) for any 
lause D derived

by Superposition Left or Fa
toring from N that D is redundant, i.e., N

�D

j= D,

(ii) ? =2 N and (iii) N

I

6j= N . Then there is a minimal, with respe
t to �, 
lause

C_L 2 N su
h that N

I

6j= C_L and L is a sele
ted literal in C_L or no literal

in C _ L is sele
ted and L is maximal. This 
lause must exist be
ause ? =2 N .

The 
lause C _ L is not redundant. For otherwise, N

�C_L

j= C _ L and

hen
e N

I

j= C _ L, be
ause N

I

j= N

�C_L

, a 
ontradi
tion.

I distinguish the 
ase L is a positive and no literal sele
ted in C _ L or L

is a negative literal. Firstly, assume L is positive, i.e., L = P (t

1

; : : : ; t

n

) for

some ground atom P (t

1

; : : : ; t

n

). Now if P (t

1

; : : : ; t

n

) is stri
tly maximal in

C _ P (t

1

; : : : ; t

n

) then a
tually Æ

C_P

= fP (t

1

; : : : ; t

n

)g and hen
e N

I

j= C _ P ,

a 
ontradi
tion. So P (t

1

; : : : ; t

n

) is not stri
tly maximal. But then a
tually C _

P (t

1

; : : : ; t

n

) has the form C

0

1

_P (t

1

; : : : ; t

n

)_P (t

1

; : : : ; t

n

) and Fa
toring derives

C

0

1

_P (t

1

; : : : ; t

n

) where (C

0

1

_P (t

1

; : : : ; t

n

)) � (C

0

1

_P (t

1

; : : : ; t

n

)_P (t

1

; : : : ; t

n

)).

Now C

0

1

_ P (t

1

; : : : ; t

n

) is not redundant, stri
tly smaller than C _ L, we have

C

0

1

_P (t

1

; : : : ; t

n

) 2 N and N

I

6j= C

0

1

_P (t

1

; : : : ; t

n

), a 
ontradi
tion against the


hoi
e that C _ L is minimal.

Se
ondly, let us assume L is negative, i.e., L = :P (t

1

; : : : ; t

n

) for some

ground atom P (t

1

; : : : ; t

n

). Then, sin
e N

I

6j= C _ :P (t

1

; : : : ; t

n

) we know

P (t

1

; : : : ; t

n

) 2 N

I

. So there is a 
lause D _ P (t

1

; : : : ; t

n

) 2 N where

Æ

D_P (t

1

;:::;t

n

)

= fP (t

1

; : : : ; t

n

)g and P (t

1

; : : : ; t

n

) is stri
tly maximal in D _

P (t

1

; : : : ; t

n

) and (D _ P (t

1

; : : : ; t

n

)) � (C _ :P (t

1

; : : : ; t

n

)). So Superposition

Left derives C _ D where (C _ D) � (C _ :P (t

1

; : : : ; t

n

)). The derived 
lause

C _ D 
annot be redundant, be
ause for otherwise either N

�D_P (t

1

;:::;t

n

)

j=
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D _ P (t

1

; : : : ; t

n

) or N

�C_:P (t

1

;:::;t

n

)

j= C _ :P (t

1

; : : : ; t

n

). So C _D 2 N and

N

I

6j= C _D, a 
ontradi
tion against the 
hoi
e that C _L is the minimal false


lause.

So the proof a
tually tells us that at any point in time we need only to


onsider either a superposition left inferen
e between a minimal false 
lause and

a produ
tive 
lause or a fa
toring inferen
e on a minimal false 
lause.

Theorem 3.10.10 (Compa
tness of First-Order Logi
). Let N be a, possibly

in�nite, set of �rst-order logi
 ground 
lauses. Then N is unsatis�able i� there

is a �nite subset N

0

� N su
h that N

0

is unsatis�able.

Proof. If N is unsatis�able, saturation via superposition generates ?. So there

is an i su
h that N )

i

SUP

N

0

and ? 2 N

0

. The 
lause ? is the result of at

most i many superposition inferen
es, redu
tions on 
lauses fC

1

; : : : ; C

n

g � N .

Superposition is sound, so fC

1

; : : : ; C

n

g is a �nite, unsatis�able subset of N .

Corollary 3.10.11 (Compa
tness of First-Order Logi
: Classi
al). A set N of


lauses is satis�able i� all �nite subsets of N are satis�able

Theorem 3.10.12 (Soundness and Completeness of Ground Superposition). A

�rst-order �-senten
e � is valid i� there exists a ground superposition refutation

for ground(�; 
nf(:�)).

Proof. A �rst-order senten
e � is valid i� :� is unsatis�able i� 
nf(:�) is unsat-

is�able i� ground(�; 
nf(:�)) is unsatis�able i� superposition provides a refu-

tation of ground(�; 
nf(:�)).

Theorem 3.10.13 (Semi-De
idability of First-Order Logi
 by Ground Super-

position). If a �rst-order �-senten
e � is valid then a ground superposition

refutation 
an be 
omputed.

Proof. In a fair way enumerate ground(�; 
nf(:�)) and perform superposition

inferen
e steps. The enumeration 
an, e.g., be done by 
onsidering Herbrand

terms of in
reasing size.

Example 3.10.14 (Ground Superposition). Consider the below 
lauses 1-4

and superposition refutation with respe
t a KBO with pre
eden
e P � Q �

g � f � 
 � b � a where the weight fun
tion w returns 1 for all signature

symbols. Maximal literals are marked with a

�

.

1: :P (f(
))

�

_ :P (f(
))

�

_Q(b) (Input)

2: P (f(
))

�

_Q(b) (Input)

3: :P (g(b; 
))

�

_ :Q(b) (Input)

4: P (g(b; 
))

�

(Input)

5: :P (f(
))

�

_Q(b) (Cond(1))

6: Q(b)

�

_Q(b)

�

(Sup(5; 2)))

7: Q(b)

�

(Fa
t(6))

8: :Q(b)

�

(Sup(3; 4))

10: ? (Sup(8; 7))
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Note that 
lause 5 
annot be derived by Fa
toring whereas 
lause 7 
an also be

derived by Condensation. Clause 8 is also the result of a Subsumption Resolution

appli
ation to 
lauses 3, 4.

Theorem 3.10.15 (Craig Theorem [14℄). Let � and  be two propositional

formulas so that � j=  . Then there exists a formula � (
alled the interpolant

for � j=  ), so that � 
ontains only propositional variables o

urring both in �

and in  so that � j= � and � j=  .

Proof. Translate � and : into CNF. let N and M , respe
tively, denote the

resulting 
lause set. Choose an atom ordering � for whi
h the propositional

variables that o

ur in � but not in  are maximal. Saturate N into N

�

w.r.t.

Sup

�

sel

with an empty sele
tion fun
tion sel. Then saturate N

�

[M w.r.t. Sup

�

sel

to derive ?. As N

�

is already saturated, due to the ordering restri
tions only

inferen
es need to be 
onsidered where premises, if they are from N

�

, only


ontain symbols that also o

ur in  . The 
onjun
tion of these premises is an

interpolant �. The theorem also holds for �rst-order formulas. For universal for-

mulas the above proof 
an be easily extended. In the general 
ase, a proof based

on superposition te
hnology is more 
ompli
ated be
ause of Skolemization.

3.11 First-Order Superposition with Sele
tion

The 
ompleteness proof of ground superposition (Se
tion 3.10) talks about

(stri
tly) maximal literals of ground 
lauses. The non-ground 
al
ulus 
onsiders

those literals that 
orrespond to (stri
tly) maximal literals of ground instan
es.

The used ordering is exa
tly the ordering of De�nition 3.10.1 where 
lauses

with variables are proje
ted to their ground instan
es for ordering 
omputations.

De�nition 3.11.1 (Maximal Literal). A literal L is 
alled [stri
tly℄ maximal

in a 
lause C if and only if there exists a grounding substitution � so that L�

is [stri
tly℄ maximal in C� (i.e., if for no other L

0

in C: L� � L

0

� [L� � L

0

�℄).

Superposition Left (N℄fC

1

_P (t

1

; : : : ; t

n

); C

2

_:P (s

1

; : : : ; s

n

)g) )

SUP

(N [ fC

1

_ P (t

1

; : : : ; t

n

); C

2

_ :P (s

1

; : : : ; s

n

)g [ f(C

1

_ C

2

)�g)

where (i) P (t

1

; : : : ; t

n

)� is stri
tly maximal in (C

1

_ P (t

1

; : : : ; t

n

))� (ii) no

literal in C

1

_ P (t

1

; : : : ; t

n

) is sele
ted (iii) :P (s

1

; : : : ; s

n

)� is maximal and

no literal sele
ted in (C

2

_ :P (s

1

; : : : ; s

n

))�, or :P (s

1

; : : : ; s

n

) is sele
ted in

(C

2

_ :P (s

1

; : : : ; s

n

))� (iv) � is the mgu of P (t

1

; : : : ; t

n

) and P (s

1

; : : : ; s

n

)

Fa
toring (N ℄ fC _ P (t

1

; : : : ; t

n

) _ P (s

1

; : : : ; s

n

)g) )

SUP

(N [ fC _ P (t

1

; : : : ; t

n

) _ P (s

1

; : : : ; s

n

)g [ f(C _ P (t

1

; : : : ; t

n

))�g)

where (i) P (t

1

; : : : ; t

n

)� is maximal in (C _ P (t

1

; : : : ; t

n

) _ P (s

1

; : : : ; s

n

))�

(ii) no literal is sele
ted in C _P (t

1

; : : : ; t

n

)_P (s

1

; : : : ; s

n

) (iii) � is the mgu of

P (t

1

; : : : ; t

n

) and P (s

1

; : : : ; s

n

)
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Note that the above inferen
e rules Superpositions Left and Fa
toring are

generalizations of their respe
tive 
ounterparts from Se
tion 3.10. On ground


lauses they 
oin
ide. Therefore, we 
an safely overload them in the sequel.

De�nition 3.11.2 (Abstra
t Redundan
y). A 
lause C is redundant with

respe
t to a 
lause set N if for all ground instan
es C� where are 
lauses

fC

1

; : : : ; C

n

g � N with ground instan
es C

1

�

1

; : : : ; C

n

�

n

su
h that C

i

�

i

� C�

for all i and C

1

�

1

; : : : ; C

n

�

n

j= C�.

De�nition 3.11.3 (Saturation). A set N of 
lauses is 
alled saturated up to

redundan
y, if any inferen
e from non-redundant 
lauses in N yields a redundant


lause with respe
t to N .

In 
ontrast to the ground 
ase, the above abstra
t notion of redundan
y is

not e�e
tive, i.e., it is unde
idable for some 
lause C whether it is redundant, in

general. Nevertheless, the 
on
rete redundan
y notions from Se
tion 3.10 
arry

over to the non-ground 
ase. Let dup be a fun
tion from 
lauses to 
lauses that

removes dupli
ate literals, i.e., dup(C) = C

0

where C

0

� C, C

0

does not 
ontain

any dupli
ate literals, and for ea
h L 2 C also L 2 C

0

.

Subsumption (N ℄ fC

1

; C

2

g) )

SUP

(N [ fC

1

g)

provided C

1

� � C

2

for some �

Tautology Dele-

tion

(N ℄ fC _ P (t

1

; : : : ; t

n

) _ :P (t

1

; : : : ; t

n

)g) )

SUP

(N)

Condensation

(N ℄ fC

1

_L_L

0

g) )

SUP

(N [ fdup((C

1

_L_L

0

)�)g)

provided L� = L

0

and dup((C

1

_ L _ L

0

)�) subsumes C

1

_ L _ L

0

for some �

Subsumption

Resolution

(N ℄ fC

1

_ L;C

2

_ L

0

g) )

SUP

(N [ fC

1

_ L;C

2

g)

where L� = :L

0

and C

1

� � C

2

for some �

Lemma 3.11.4. All redu
tion rules are instan
es of the abstra
t redundan
y


riterion

Lemma 3.11.5 (Subsumption is NP-
omplete). Subsumption is NP-
omplete.

Proof. Let C

1

subsume C

2

with substitution � Subsumption is in NP be
ause

the size of � is bound by the size of C

2

and the subset relation 
an be 
he
ked

in time at most quadrati
 in the size of C

1

and C

2

.

Propositional SAT 
an be redu
ed as follows. Assume a 3-SAT 
lause set

N . Consider a 3-pla
e predi
ate R and a unary fun
tion g and a mapping from

propositional variables P to �rst order variables x

P

. : : :

Lemma 3.11.6 (Lifting). Let D_L and C_L

0

be variable-disjoint 
lauses and

� a grounding substitution for C _L and D _L

0

. If there is a superposition left

inferen
e

(N ℄ f(D _ L)�; (C _ L

0

)�g))

SUP

(N [ f(D _ L)�; (C _ L

0

)�g [ fD� _ C�g)
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and if sel((D _ L)�) = sel((D _ L))�, sel((C _ L

0

)�) = sel((C _ L

0

))� , then

there exists a mgu � su
h that

(N ℄ fD _ L;C _ L

0

g))

SUP

(N [ fD _ L;C _ L

0

g [ f(D _ C)�g):

Let C _L_L

0

be a 
lause and � a grounding substitution for C _L_L

0

. If

there is a fa
toring inferen
e

(N ℄ f(C _ L _ L

0

)�g))

SUP

(N [ f(C _ L _ L

0

)�g [ f(C _ L)�g)

and if sel((C _ L _ L

0

)�) = sel((C _ L _ L

0

))� , then there exists a mgu � su
h

that

(N ℄ fC _ L _ L

0

g))

SUP

(N [ fC _ L _ L

0

g [ f(C _ L)�g)

Note that in the above lemma the 
lause D�_C� is an instan
e of the 
lause

(D _C)� The redu
tion rules 
annot be lifted in the same way as the following

example shows.

Example 3.11.7 (First-Order Redu
tions are not Liftable). Consider the two


lauses P (x) _ Q(x), P (g(y)) and grounding substitution fx 7! g(a); y 7! ag.

Then P (g(y))� subsumes (P (x)_Q(x))� but P (g(y)) does not subsume P (x)_

Q(x). For all other redu
tion rules similar examples 
an be 
onstru
ted.

Lemma 3.11.8 (Soundness and Completeness). Superposition is sound and


omplete.

Proof. Soundness is obvious. For 
ompleteness, Theorem 3.10.12 proves the

ground 
ase. Now by applying Lemma 3.11.6 to this proof it 
an be lifted to the

�rst-order level.

There are questions left open by Lemma 3.11.8. It just says that a ground

refutation 
an be lifted to a �rst-order refutation. But what about abstra
t

redundan
y, De�nition 3.11.2? Can �rst-order redundant 
lauses be deleted

without harming 
ompleteness? And what about the ground model operator

with respe
t to 
lause sets N saturated on the �rst order level. Is in this 
ase

ground(�; N)

I

a model? The next two lemmas answer these questions positively.

Lemma 3.11.9 (Redundant Clauses are Obsolete). If a 
lause set N is unsat-

is�able, then there is a derivation N )

�

SUP

N

0

su
h that ? 2 N

0

and no 
lause

in the derivation of ? is redundant.

Proof. If N is unsatis�able then there is a ground superposition refutation of

ground(�; N) su
h that no ground 
lause in the refutation is redundant. Now

a

ording to Lemma 3.11.8 this proof 
an be lifted to the �rst-order level. Now

assume some 
lause C in the �rst-order proof is redundant that is the lifting of

some 
lause C� from the ground proof with respe
t to a grounding substitution

�. The 
lause C is redundant by De�nition 3.11.2 if all its ground instan
es are,

in parti
ular, C�. But this 
ontradi
ts the fa
t that the lifted ground proof does

not 
ontain redundant 
lauses.
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Lemma 3.11.10 (Model Property). If N is a saturated 
lause set and ? 62 N

then ground(�; N)

I

j= N .

Proof. As usual we assume that sele
tion on the ground and respe
tive non-

ground 
lauses is identi
al. Assume ground(�; N)

I

6j= N . Then there is a min-

imal ground 
lause C�, C 6= ?, C 2 N su
h that ground(�; N)

I

6j= C�.

Note that C� is not redundant as for otherwise ground(�; N)

I

j= C�. So

ground(�; N) is not saturated. If C� is produ
tive, i.e., C� = (C

0

_ L)� su
h

that L is positive, L� stri
tly maximal in (C

0

_ L)� then L� 2 ground(�; N)

I

and hen
e ground(�; N)

I

j= C� 
ontradi
ting ground(�; N)

I

6j= C�.

If C� = (C

0

_L_L

0

)� su
h that L is positive, L� maximal in (C

0

_L_L

0

)�

then, be
ause N is saturated, there is a 
lause (C

0

_ L)� 2 N su
h that (C

0

_

L)�� = (C

0

_L)�. Now (C

0

_L)� is not redundant, ground(�; N)

I

6j= (C

0

_L)� ,


ontradi
ting the minimal 
hoi
e of C�.

If C� = (C

0

_L)� su
h that L is sele
ted, or negative and maximal then there

is a 
lause (D

0

_L

0

) 2 N and grounding substitution �, su
h that L

0

� is a stri
tly

maximal positive literal in (D

0

_ L

0

)�, L

0

� 2 ground(�; N)

I

and L

0

� = :L�.

Again, sin
e N is saturated, there is variable disjoint 
lause (C

0

_ D

0

)� 2 N

for some uni�er � , (C

0

_ D

0

)��� � C�, and ground(�; N)

I

6j= (C

0

_ D

0

)���


ontradi
ting the minimal 
hoi
e of C�.

De�nition 3.11.11 (Persistent Clause). Let N

0

)

SUP

N

1

)

SUP

: : : be a,

possibly in�nite, superposition derivation. A 
lause C is 
alled persistent in this

derivation if C 2 N

i

for some i and for all j > i also C 2 N

j

.

De�nition 3.11.12 (Fair Derivation). A derivation N

0

)

SUP

N

1

)

SUP

: : : is


alled fair if for any persistent 
lause C 2 N

i

where fa
toring is appli
able to

C, there is a j su
h that the fa
tor of C

0

2 N

j

or ? 2 N

j

. If fC;Dg � N

i

are

persistent 
lauses su
h that superposition left is appli
able to C, D then the

superposition left result is also in N

j

for some j or ? 2 N

j

.

Theorem 3.11.13 (Dynami
 Superposition Completeness). If N is unsatis�-

able and N = N

0

)

SUP

N

1

)

SUP

: : : is a fair derivation, then there is ? 2 N

j

for some j.

Proof. If N is unsatis�able, then by Lemma 3.11.8 there is a derivation of ?

by superposition. Furthermore, no 
lause 
ontributing to the derivation of ? is

redundant (Lemma 3.11.9). So all 
lauses in the derivation of ? are persistent.

The derivation N

0

)

SUP

N

1

)

SUP

: : : is fair, hen
e ? 2 N

j

for some j.

Lemma 3.11.14. Let red(N) be all 
lauses that are redundant with respe
t to

the 
lauses in N and N , M be 
lause sets. Then

1. if N �M then red(N) � red(M)

2. if M � red(N) then red(N) � red(N nM)

It follows that redundan
y is preserved when, during a theorem proving

pro
ess, new 
lauses are added (or derived) or redundant 
lauses are deleted.

Furthermore, red(N) may in
lude 
lauses that are not in N .



124 CHAPTER 3. FIRST-ORDER LOGIC

Algorithm 7: SupProver(N)

Input : A set of 
lauses N .

Output: A saturated set of 
lauses N

0

, equivalent to N .

1 WO := ;;

2 US := N ;

3 while (US 6= ; and ? 62 US) do

4 Given:= pi
k a 
lause from US;

5 WO :=WO [ fGiveng;

6 New := SupLeft(WO,Given) [ Fa
t(Given);

7 while (New 6= ;) do

8 Given:= pi
k a 
lause from New;

9 if (!TautDel(Given)) then

10 if (!SubDel(Given,WO [US)) then

11 Given:= Cond(Given);

12 Given:= SubRes(Given,WO);

13 WO:= SubDel(WO,Given);

14 US:= SubDel(US,Given);

15 New:= New [ SubRes(WO [US,Given);

16 US:= US [ fGiven g;

17

18

19 end

20 end

21 return WO;


