
Chapter 2

Propositional Logi

2.1 Syntax

Consider a �nite, non-empty signature � of propositional variables, the \alpha-

bet" of propositional logi. In addition to the alphabet \propositional onne-

tives" are further building bloks omposing the sentenes (formulas) of the

language and auxiliary symbols suh as parentheses enable disambiguation.

De�nition 2.1.1 (Propositional Formula). The set PROP(�) of propositional

formulas over a signature � is indutively de�ned by:

PROP(�) Comment

? onnetive ? denotes \false"

> onnetive > denotes \true"

P for any propositional variable P 2 �

(:�) onnetive : denotes \negation"

(� ^) onnetive ^ denotes \onjuntion"

(� _) onnetive _ denotes \disjuntion"

(�!) onnetive ! denotes \impliation"

(�$) onnetive $ denotes \equivalene"

where �; 2 PROP(�).

The above de�nition is an abbreviation for setting PROP(�) to be the

language of a ontext free grammar PROP(�) = L((N;T; P; S)) (see De�ni-

tion 1.3.9) where N = f�; g, T = � [f(;)g [f?;>;:;^;_;!;$g with start

symbol rules S) � j , �) ? j > j (:�) j (�^) j (�_) j (�!) j (�$),

) ? j > j (:�) j (� ^) j (� _) j (� !) j (� $), and �) P ,) P

for every P 2 �.

As a notational onvention we assume that : binds strongest and we omit

outermost parenthesis. So :P _ Q is atually a shorthand for ((:P) _ Q). For

all other logial onnetives we will expliitly put parenthesis when needed.

From the semantis we will see that ^ and _ are assoiative and ommutative.

Therefore instead of ((P ^Q) ^ R) we simply write P ^Q ^ R.

27

28 CHAPTER 2. PROPOSITIONAL LOGIC

De�nition 2.1.2 (Atom, Literal,Clause). A propositional formula P is alled

an atom. It is also alled a (positive) literal and its negation :P is alled a

(negative) literal. If L is a literal, then :L = P if L = :P and :L = :P if

L = P , j:P j = P and jP j = P . Literals are denoted by letters L;K. The literals

P and :P are alled omplementary. A disjuntion of literals L

1

_ : : : _ L

n

is

alled a lause.

Automated reasoning is very muh formula manipulation. In order to pre-

isely represent the manipulation of a formula, we introdue positions.

De�nition 2.1.3 (Position). A position is a word over N. The set of positions

of a formula � is indutively de�ned by

pos(�) := f�g if � 2 f>;?g or � 2 �

pos(:�) := f�g [f1p j p 2 pos(�)g

pos(� Æ) := f�g [f1p j p 2 pos(�)g [f2p j p 2 pos()g

where Æ 2 f^;_;!;$g.

The pre�x order � on positions is de�ned by p � q if there is some p

0

suh

that pp

0

= q. Note that the pre�x order is partial, e.g., the positions 12 and 21

are not omparable, they are \parallel", see below. By < we denote the strit

part of �, i.e., p < q if p � q but not q � p. By k we denote inomparable

positions, i.e., p k q if neither p � q, nor q � p. A position p is above q if p � q,

p is stritly above q if p < q, and p and q are parallel if p k q.

The size of a formula � is given by the ardinality of pos(�): j�j := j pos(�)j.

The subformula of � at position p 2 pos(�) is reursively de�ned by �j

�

:= �,

:�j

1p

:= �j

p

, and (�

1

Æ �

2

)j

ip

:= �

i

j

p

where i 2 f1; 2g, Æ 2 f^;_;!;$g.

Finally, the replaement of a subformula at position p 2 pos(�) by a formula

 is reursively de�ned by �[℄

�

:= and (�

1

Æ �

2

)[℄

1p

:= (�

1

[℄

p

Æ �

2

),

(�

1

Æ �

2

)[℄

2p

:= (�

1

Æ �

2

[℄

p

), where Æ 2 f^;_;!;$g.

Example 2.1.4. The set of positions for the formula � = (P ^ Q) ! (P _Q)

is pos(�) = f�; 1; 11; 12; 2; 21; 22g. The subformula at position 22 is Q, �j

22

= Q

and replaing this formula by P $ Q results in �[P $ Q℄

22

= (P ^ Q) !

(P _ (P $ Q)).

A further prerequisite for eÆient formula manipulation is the notion of

the polarity of the subformula �j

p

of � at position p. The polarity onsiders the

number of \negations" starting from � at � down to p. It is 1 for an even number

along the path, �1 for an odd number and 0 if there is at least one equivalene

onnetive along the path.

De�nition 2.1.5 (Polarity). The polarity of the subformula �j

p

of � at position

p 2 pos(�) is indutively de�ned by

pol(�; �) := 1

pol(:�; 1p) := � pol(�; p)

pol(�

1

Æ �

2

; ip) := pol(�

i

; p) if Æ 2 f^;_g

pol(�

1

! �

2

; 1p) := � pol(�

1

; p)

pol(�

1

! �

2

; 2p) := pol(�

2

; p)

pol(�

1

$ �

2

; ip) := 0

2.2. SEMANTICS 29

Example 2.1.6. We reuse the formula � = (A^B) ! (A_B) of Example 2.1.4.

Then pol(�; 1) = pol(�; 11) = �1 and pol(�; 2) = pol(�; 22) = 1. For the

formula �

0

= (A ^ B)$ (A _ B) we get pol(�

0

; �) = 1 and pol(�

0

; p) = 0 for all

other p 2 pos(�

0

), p 6= �.

2.2 Semantis

In lassial logi there are two truth values \true" and \false" whih we shall

denote, respetively, by 1 and 0. There are many-valued logis [36℄ having more

than two truth values and in fat, as we will see later on, for the de�nition of

some propositional logi aluli, we will need an impliit third truth value alled

\unde�ned".

De�nition 2.2.1 ((Partial) Valuation). A �-valuation is a map

A : �! f0; 1g:

where f0; 1g is the set of truth values. A partial �-valuation is a map A

0

: �

0

!

f0; 1g where �

0

� �.

De�nition 2.2.2 (Semantis). A �-valuation A is indutively extended from

propositional variables to propositional formulas �; 2 PROP(�) by

A(?) := 0

A(>) := 1

A(:�) := 1�A(�)

A(� ^) := min(fA(�);A()g)

A(� _) := max(fA(�);A()g)

A(�!) := max(f(1�A(�));A()g)

A(�$) := if A(�) = A() then 1 else 0

If A(�) = 1 for some �-valuation A of a formula � then � is satis�able and we

write A j= �. In this ase A is a model of �. If A(�) = 1 for all �-valuations A

of a formula � then � is valid and we write j= �. If there is no �-valuation A

for a formula � where A(�) = 1 we say � is unsatis�able. A formula � entails

 , written � j= , if for all �-valuations A whenever A j= � then A j= .

Aordingly, a formula � is satis�able, valid, unsatis�able, respetively, with

respet to a partial valuation A

0

with domain �

0

, if for any valuation A with

A(P) = A

0

(P) for all P 2 �

0

the formula � is satis�able, valid, unsatis�able,

respetively, with respet to a A.

I all the fat that some formula � is satis�able, unsatis�able, or valid, the

status of �. Note that if � is valid it is also satis�able, but not the other way

round.

Valuations an be niely represented by sets or sequenes of literals that do

not ontain omplementary literals nor dupliates. If A is a (partial) valuation

of domain � then it an be represented by the set fP j P 2 � and A(P) =

1g [f:P j P 2 � and A(P) = 0g. For example, for the valuation A = fP;:Qg

30 CHAPTER 2. PROPOSITIONAL LOGIC

the truth value of P _ Q is A(P _ Q) = 1, for P _ R it is A(P _ R) = 1, for

:P ^ R it is A(:P ^ R) = 0, and the status of :P _ R annot be established

by A. In partiular, A is a partial valuation for � = fP;Q;Rg.

Example 2.2.3. The formula � _ :� is valid, independently of �. Aording

to De�nition 2.2.2 we need to prove that for all �-valuations A of � we have

A(� _ :�) = 1. So let A be an arbitrary valuation. There are two ases to

onsider. If A(�) = 1 then A(� _ :�) = 1 beause the valuation funtion takes

the maximum if distributed over _. If A(�) = 0 then A(:�) = 1 and again by

the before argument A(� _ :�) = 1. This �nishes the proof that j= � _ :�.

Proposition 2.2.4 (Dedution Theorem). � j= i� j= �!

Proof. ()) Suppose that � entails and let A be an arbitrary �-valuation.

We need to show A j= � ! . If A(�) = 1, then A() = 1, beause � entails

 , and therefore A j= � ! . For otherwise, if A(�) = 0, then A(� !) =

max(f(1�A(�));A()g) = max(f(1;A()g) = 1, independently of the value of

A(). In both ases A j= �! .

(() By ontraposition. Suppose that � does not entail . Then there exists a

�-valuation A suh that A j= �, A(�) = 1 but A 6j= , A() = 0. By de�nition,

A(� !) = max(f(1 � A(�));A()g) = max(f(1 � 1); 0g) = 0, hene � !

does not hold in A.

Proposition 2.2.5. The equivalenes of Figure 2.1 are valid for all formulas

�; ; �.

From Figure 2.1 we onlude that the propositional language introdued

in De�nition 2.1.1 is redundant in the sense that ertain onnetives an be

expressed by others. For example, the equivalene Eliminate ! expresses im-

pliation by means of disjuntion and negation. So for any propositional for-

mula � there exists an equivalent formula �

0

suh that �

0

does not ontain the

impliation onnetive. In order to prove this proposition we need the below

replaement lemma.

T

Note that the formulas � ^ and ^ � are equivalent. Nevertheless,

realling the problem state de�nition for Sudokus in Setion 1.1 the

two states (N ; f(2; 3) = 1 ^ f(2; 4) = 4;>) and (N ; f(2; 4) = 4 ^

f(2; 3) = 1;>) are signi�antly di�erent. For example, it an be that the �rst

state an lead to a solution by the rules of the algorithm where the latter

annot, beause the latter impliitly means that the square (2; 4) has already

been heked for all values smaller than 4. This reveals the important point that

arguing by logial equivalene in the ontext of a rule set manipulating formulas

an lead to wrong results.

Lemma 2.2.6 (Formula Replaement). Let � be a propositional formula on-

taining a subformula at position p, i.e., �j

p

= . Furthermore, assume

j= $ �. Then j= �$ �[�℄

p

.

2.2. SEMANTICS 31

(I) (� ^ �)$ � Idempoteny ^

(� _ �)$ � Idempoteny _

(II) (� ^)$ (^ �) Commutativity ^

(� _)$ (_ �) Commutativity _

(III) (� ^ (^ �))$ ((� ^) ^ �) Assoiativity ^

(� _ (_ �))$ ((� _) _ �) Assoiativity _

(IV) (� ^ (_ �))$ (� ^) _ (� ^ �) Distributivity ^_

(� _ (^ �))$ (� _) ^ (� _ �) Distributivity _^

(V) (� ^ (� _))$ � Absorption ^_

(� _ (� ^))$ � Absorption _^

(VI) :(� _)$ (:� ^ :) De Morgan :_

:(� ^)$ (:� _ :) De Morgan :^

(VII) (� ^ :�)$? Introdution ?

(� _ :�)$ > Introdution >

:> $? Propagate :>

:? $ > Propagate :?

(� ^ >)$ � Absorption >^

(� _ ?)$ � Absorption ?_

(::�) $ � Absorption ::

(�! ?)$:� Eliminate ! ?

(? ! �)$ > Eliminate ? !

(�! >)$ > Eliminate ! >

(> ! �)$ � Eliminate > !

(�$?)$:� Eliminate ? $

(�$ >)$ � Eliminate > $

(� _ >)$ > Propagate >

(� ^ ?)$? Propagate ?

(VIII) (�!)$ (:� _) Eliminate !

(IX) (�$)$ (�!) ^ (! �) Eliminate1 $

(�$)$ (� ^) _ (:� ^ :) Eliminate2 $

Figure 2.1: Valid Propositional Equivalenes

32 CHAPTER 2. PROPOSITIONAL LOGIC

Proof. By indution on jpj and strutural indution on �. For the base step let

p = � and A be an arbitrary valuation.

A(�) = A() (by de�nition of replaement)

= A(�) (beause A j= $ �)

= A(�[�℄

�

) (by de�nition of replaement)

For the indution step the lemma holds for all positions p and has to be

shown for all positions ip. By strutural indution on �, I show the ases where

� = :�

1

and � = �

1

! �

2

in detail. All other ases are analogous.

If � = :�

1

then showing the lemma amounts to proving j= :�

1

$:�

1

[�℄

1p

.

Let A be an arbitrary valuation.

A(:�

1

) = 1�A(�

1

) (expanding semantis)

= 1�A(�

1

[�℄

p

) (by indution hypothesis)

= A(:�[�℄

1p

) (applying semantis)

If � = �

1

! �

2

then showing the lemma amounts to proving the two ases

j= (�

1

! �

2

) $ (�

1

! �

2

)[�℄

1p

and j= (�

1

! �

2

) $ (�

1

! �

2

)[�℄

2p

. Both

ases are similar so I show only the �rst ase. Let A be an arbitrary valuation.

A(�

1

! �

2

) = max(f(1�A(�

1

));A(�

2

)g) (expanding semantis)

= max(f(1�A(�

1

[�℄

p

));A(�

2

)g) (by indution hypothesis)

= A((�

1

! �

2

)[�℄

1p

) (applying semantis)

Lemma 2.2.7 (Polarity Dependent Replaement). Consider a formula �, po-

sition p 2 pos(�), pol(�; p) = 1 and (partial) valuation A with A(�) = 1. If for

some formula , A() = 1 then A(�[℄

p

) = 1. Symmetrially, if pol(�; p) = �1

and A() = 0 then A(�[℄

p

) = 1.

Proof. By indution on the length of p.

Note that the ase for the above lemma where pol(�; p) = 0 is atually

Lemma 2.2.6.

C

The equivalenes of Figure 2.1 show that the propositional language

introdued in De�nition 2.1.1 is redundant in the sense that ertain

onnetives an be expressed by others. For example, the equivalene

Eliminate! expresses impliation by means of disjuntion and negation. So for

any propositional formula � there exists an equivalent formula �

0

suh that �

0

does not ontain the impliation onnetive. In order to prove this proposition

the above replaement lemma is key.

2.3. ABSTRACT PROPERTIES OF CALCULI 33

2.3 Abstrat Properties of Caluli

A proof proedure an be sound, omplete, strongly omplete, refutationally

omplete or terminating. Terminating means that it terminates on any input

formula. Now depending on whether the alulus investigates validity (unsat-

is�ability) or satis�ability the aforementioned notions have (slightly) di�erent

meanings.

Validity Satis�ability

Sound If the alulus derives a

proof of validity for the

formula, it is valid.

If the alulus derives sat-

is�ability of the formula, it

has a model.

Complete If the formula is valid, a

proof of validity is deriv-

able by the alulus.

If the formula has a model,

the alulus derives satis-

�ability.

Strongly

Complete

For any proof of the for-

mula, there is a derivation

in the alulus produing

this proof.

For any model of the for-

mula, there is a derivation

in the alulus produing

this model.

There are some assumptions underlying these informal de�nitions. First, the

alulus atually produes a proof in ase of investigating validity, and in ase of

investigating satis�ability it produes a model. This in fat requires the notion of

a proof and a model. Then soundness means in both ases that the alulus has

no bugs. The results it produes are orret. Completeness means that if there

is a proof (model) for a formula, the alulus ould eventually �nd it. Strong

ompleteness requires in addition that any proof (model) an be found by the

alulus. A variant of omplete alulus is a refutationally omplete alulus:

a alulus is refutationally omplete, if for any unsatis�able formula it derives

a proof of ontradition. Many automated theorem proedures like resolution

(see Setion 2.7), or tableaux (see Setion 2.5) are atually only refutationally

omplete.

2.4 Truth Tables

The �rst alulus I onsider are truth tables. For example, onsider proving

validity of the formula � = (A ^ B) ! A. Aording to De�nition 2.2.2 this is

the ase when atually for all valuations A over � = fA;Bg we have A(�) = 1.

The extension of A to formulas is de�ned indutively over the onnetives, so if

the result of A on the arguments of a onnetive is known, it an be straightfor-

wardly omputed for the overall formula. That's the idea behind truth tables.

We simply make all valuations A on � expliit and then extend it onnetive by

onnetive bottom-up to the overall formula. Stated di�erently, in order to es-

tablish the truth value for a formula � we establish it subformula by subformula

34 CHAPTER 2. PROPOSITIONAL LOGIC

of � aording to �. If p; q 2 pos(�) and p � q then we �rst ompute the truth

value for �j

q

. The truth table for (P ^Q)! P is then depited in Figure 2.2

P Q P ^Q (P ^Q)! P

0 0 0 1

0 1 0 1

1 0 0 1

1 1 1 1

Figure 2.2: Truth Table for (P ^Q)! P

De�nition 2.4.1 (Truth Table). Let � be a propositional formula over variables

P

1

; : : : ; P

n

, p

i

2 pos(�), 1 � i � k and p

k

= �. Then a truth table for � is a

table with n+ k olumns and 2

n

+ 1 rows of the form

P

1

: : : P

n

�j

p

1

: : : �j

p

k

0 : : : 0 A

1

(�j

p

1

) : : : A

1

(�j

p

k

)

.

.

.

1 : : : 1 A

2

n

(�j

p

1

) : : : A

2

n

(�j

p

k

)

suh that the A

i

are exatly the 2

n

di�erent valuations for P

1

; : : : ; P

n

and either

p

i

k p

i+j

or p

i

� p

i+j

, for all i; j � 0, i+ j � k and whenever �j

p

i

has a proper

subformula that is not an atom, there is exatly one j < i with �j

p

j

= .

Now given a truth table for some formula �, � is satis�able, if there is at

least one 1 in the � olumn. It is valid, if there is no 0 in the � olumn. It is

unsatis�able, if there is no 1 in the � olumn. So truth tables are a simple and

\easy" way to establish the status of a formula. They need not to be ompletely

omputed in order to establish the status of a formula. For example, as soon as

the olumn of � in a truth table ontains a 1 and a 0, then � is satis�able but

neither valid nor unsatis�able.

The formula (P _ Q) $ (P _ R) is satis�able but not valid. Figure 2.3

ontains a truth table for the formula.

P Q R P _Q P _ R (P _Q)$ (P _R)

0 0 0 0 0 1

0 1 0 1 0 0

1 0 0 1 1 1

1 1 0 1 1 1

0 0 1 0 1 0

0 1 1 1 1 1

1 0 1 1 1 1

1 1 1 1 1 1

Figure 2.3: Truth Table for (P _Q)$ (P _ R)

2.5. PROPOSITIONAL TABLEAUX 35

Of ourse, there are ases where a truth table for some formula � an have

less olumns than the number of variables ourring in � plus the number of

subformulas in �. For example, for the formula � = (P _ Q) ^ (R ! (P _

Q)) only one olumn with formula (P _ Q) is needed for both subformulas �j

1

and �j

22

. In general, a single olumn is needed for eah di�erent subformula.

Deteting subformula equivalene is bene�ial. For the above example, this was

simply syntati, i.e., the two subformulas �j

1

and �j

22

. But what about a

slight variation of the formula �

0

= (P _Q)^ (R ! (Q_P))? Stritly speaking,

now the two subformulas �

0

j

1

and �

0

j

22

are di�erent, but sine disjuntion is

ommutative, they are equivalent. One or two olumns in the truth table for the

two subformulas? Again, saving a olumn is bene�ial but in general, deteting

equivalene of two subformulas may beome as diÆult as heking whether the

overall formula is valid. A ompromise, often performed in pratie, are normal

forms that guarantee that ertain ourrenes of equivalent subformulas an be

found in polynomial time. For the running example, we an simply assume some

ordering on the propositional variables and assume that for a disjuntion of two

propositional variables, the smaller variable always omes �rst. So if P < Q

then the normal form of P _Q and Q _ P is in fat P _Q.

C

In pratie, nobody uses truth tables as a reasoning proedure. Worst

ase, omputing a truth table for heking the status of a formula �

requires O(2

n

) steps, where n is the number of di�erent propositional

variables in �. But this is atually not the reason why the proedure is impra-

tial, beause the worst ase behavior of all other proedures for propositional

logi known today is also of exponential omplexity. So why are truth tables

not a good proedure? The answer is: beause they do not adapt to the inher-

ent struture of a formula. The reasoning mehanism of a truth table for two

formulas � and sharing the same propositional variables is exatly the same:

we enumerate all valuations. However, if � is, e.g., of the form � = P ^ �

0

and

we are interested in the satis�ability of �, then � an only beome true for a

valuation A with A(P) = 1. Hene, 2

n�1

rows of �'s truth table are superu-

ous. All proedures I will introdue in the sequel, automatially detet this (and

further) spei� strutures of a formula and use it to speed up the reasoning

proess.

2.5 Propositional Tableaux

Like resolution, semanti tableaux were developed in the sixties, independently

by Lis [25℄ and Smullyan [34℄ on the basis of work by Gentzen in the 30s [18℄

and of Beth [8℄ in the 50s. For an at that time state of the art overview onsider

Fitting's book [16℄.

In ontrast to the aluli introdued in subsequent setions, semanti tableau

does not rely on a normal form of input formulas but atually applies to any

propositional formula. The formulas are divided into �- and �-formulas, where

intuitively an � formula represents a (hidden) onjuntion and a � formula a

36 CHAPTER 2. PROPOSITIONAL LOGIC

� Left Desendant Right Desendant

::� � �

�

1

^ �

2

�

1

�

2

�

1

$ �

2

�

1

! �

2

�

2

! �

1

:(�

1

_ �

2

) :�

1

:�

2

:(�

1

! �

2

) �

1

:�

2

� Left Desendant Right Desendant

�

1

_ �

2

�

1

�

2

�

1

! �

2

:�

1

�

2

:(�

1

^ �

2

) :�

1

:�

2

:(�

1

$ �

2

) :(�

1

! �

2

) :(�

2

! �

1

)

Figure 2.4: �- and �-Formulas

(hidden) disjuntion.

De�nition 2.5.1 (�-, �-Formulas). A formula � is alled an �-formula if � is

a formula ::�

1

, �

1

^ �

2

, �

1

$ �

2

, :(�

1

_ �

2

), or :(�

1

! �

2

). A formula � is

alled an �-formula if � is a formula �

1

_�

2

, �

1

! �

2

, :(�

1

^�

2

), or :(�

1

$ �

2

).

A ommon property of �-, �-formulas is that they an be deomposed into

diret desendants representing (modulo negation) subformulas of the respetive

formulas. Then an �-formula is valid i� all its desendants are valid and a �-

formula is valid i� one of its desendants is valid. Therefore, the literature uses

both the notions semanti tableaux and analyti tableaux.

De�nition 2.5.2 (Diret Desendant). Given an �- or �-formula �, Figure 2.4

shows its diret desendants.

Dupliating � for the �-desendants of ::� is a trik for onformity. Any

propositional formula is either an �-formula or a �-formula or a literal.

Proposition 2.5.3. For any valuation A: (i) if � is an �-formula then A(�) = 1

i� A(�

1

) = 1 and A(�

2

) = 1 for its desendants �

1

, �

2

. (ii) if � is a �-formula

then A(�) = 1 i� A(�

1

) = 1 or A(�

2

) = 1 for its desendants �

1

, �

2

.

The tableaux alulus operates on states that are sets of sequenes of for-

mulas. Semantially, the set represents a disjuntion of sequenes that are in-

terpreted as onjuntions of the respetive formulas. A sequene of formulas

(�

1

; : : : ; �

n

) is alled losed if there are two formulas �

i

and �

j

in the sequene

where �

i

= :�

j

or :�

i

= �

j

. A state is losed if all its formula sequenes are

losed. A state atually represents a tree and this tree is alled a tableau in

the literature. So if a state is losed, the respetive tree, the tableau is losed

too. The tableaux alulus is a alulus showing unsatis�ability. Suh aluli are

alled refutational aluli. Later on soundness and ompleteness of the alulus

2.5. PROPOSITIONAL TABLEAUX 37

:[(P ^ :(Q _ :R))! (Q ^ R)℄

P ^ :(Q _ :R)

:(Q ^ R)

P

:(Q _ :R)

:Q

::R

R

:Q :R

Figure 2.5: A Tableau for (P ^ :(Q _ :R))! (Q ^R)

imply that a formula � is valid i� the rules of tableaux produe a losed state

starting with N = f(:�)g.

A formula � ourring in some sequene is alled open if in ase � is an

�-formula not both diret desendants are already part of the sequene and if

it is a �-formula none of its desendants is part of the sequene.

�-Expansion N℄f(�

1

; : : : ; ; : : : ; �

n

)g)

T

N℄f(�

1

; : : : ; ; : : : ; �

n

;

1

;

2

)g

provided is an open �-formula,

1

,

2

its diret desendants and the sequene

is not losed.

�-Expansion N℄f(�

1

; : : : ; ; : : : ; �

n

)g)

T

N℄f(�

1

; : : : ; ; : : : ; �

n

;

1

)g℄

f(�

1

; : : : ; ; : : : ; �

n

;

2

)g

provided is an open �-formula,

1

,

2

its diret desendants and the sequene

is not losed.

Consider the question of validity of the formula (P ^:(Q_:R)) ! (Q^R).

Applying the tableau rules generates the following derivation:

f(:[(P ^ :(Q _ :R))! (Q ^ R)℄)g

�-Expansion)

�

T

f(:[(P ^ :(Q _ :R))! (Q ^ R)℄;

P ^ :(Q _ :R);:(Q ^ R); P;:(Q _ :R);:Q;::R;R)g

�-Expansion)

T

f(:[(P ^ :(Q _ :R))! (Q ^ R)℄;

P ^ :(Q _ :R);:(Q ^ R); P;:(Q _ :R);:Q;::R;R;:Q);

(:[(P ^ :(Q _ :R))! (Q ^ R)℄;

P ^ :(Q _ :R);:(Q ^ R); P;:(Q _ :R);:Q;::R;R;:R)g

The state after �-expansion is �nal, i.e., no more rule an be applied. The

�rst sequene is not losed, whereas the seond sequene is beause it ontains R

and :R. A tree representation, where ommon formulas of sequenes are shared,

an be seen in Figure 2.5.

38 CHAPTER 2. PROPOSITIONAL LOGIC

Theorem 2.5.4 (Propositional Tableaux is Sound). If for a formula � the

tableaux alulus omputes f(:�)g)

�

T

N and N is losed, then � is valid.

Proof. It is suÆient to show the following: (i) if N is losed then the disjuntion

of the onjuntion of all sequene formulas is unsatis�able (ii) the two tableaux

rules preserve satis�ability.

Part (i) is obvious: if N is losed all its sequenes are losed. A sequene is

losed if it ontains a formula and its negation. The onjuntion of two suh

formulas is unsatis�able.

Part (ii) is shown by indution on the length of the derivation and then by

a ase analysis for the two rules. �-Expansion: for any valuation A if A() = 1

then A(

1

) = A(

2

) = 1. �-Expansion: for any valuation A if A() = 1 then

A(

1

) = 1 or A(

2

) = 1 (see Proposition 2.5.3).

Theorem 2.5.5 (Propositional Tableaux Terminates). Starting from a start

state f(�)g for some formula �,)

+

T

is well-founded.

Proof. Take the two-folded multi-set extension of the lexiographi extension

of > on the naturals to triples (n; k; l). The measure � is �rst de�ned on for-

mulas by �(�) := (n; k; l) where n is the number of equivalene symbols in �,

k is the sum of all disjuntion, onjuntion, impliation symbols in � and l is

j�j. On sequenes (�

1

; : : : ; �

n

) the measure is de�ned to deliver a multiset by

�((�

1

; : : : ; �

n

)) := ft

1

; : : : ; t

n

g where t

i

= �(�

i

) if � is open in the sequene

and t

i

= (0; 0; 0) otherwise. Finally, � is extended to states by omputing the

multiset �(N) := f�(s) j s 2 Ng.

Note, that �-, as well as �-expansion stritly extend sequenes. One a for-

mula is losed in a sequene by applying an expansion rule, it remains losed

forever in the sequene.

An �-expansion on a formula

1

^

2

on the sequene (�

1

; : : : ;

1

^

2

; : : : ; �

n

)

results in (�

1

; : : : ;

1

^

2

; : : : ; �

n

;

1

;

2

). It needs to be shown �((�

1

; : : : ;

1

^

2

; : : : ; �

n

)) >

mul

�((�

1

; : : : ;

1

^

2

; : : : ; �

n

;

1

;

2

)). In the seond sequene

�(

1

^

2

) = (0; 0; 0) beause the formula is losed. For the triple (n; k; l)

assigned by � to

1

^

2

in the �rst sequene, it holds (n; k; l) >

lex

�(

1

),

(n; k; l) >

lex

�(

2

) and (n; k; l) >

lex

(0; 0; 0), the former beause the

i

are

subformulas and the latter beause l 6= 0. This proves the ase.

A �-expansion on a formula

1

_

2

on the sequene (�

1

; : : : ;

1

_

2

; : : : ; �

n

)

results in (�

1

; : : : ;

1

_

2

; : : : ; �

n

;

1

), (�

1

; : : : ;

1

_

2

; : : : ; �

n

;

2

). It needs to

be shown �((�

1

; : : : ;

1

_

2

; : : : ; �

n

)) >

mul

�((�

1

; : : : ;

1

_

2

; : : : ; �

n

;

1

)) and

�((�

1

; : : : ;

1

_

2

; : : : ; �

n

)) >

mul

�((�

1

; : : : ;

1

_

2

; : : : ; �

n

;

2

)). In the derived

sequenes �(

1

_

2

) = (0; 0; 0) beause the formula is losed. For the triple

(n; k; l) assigned by � to

1

_

2

in the starting sequene, it holds (n; k; l) >

lex

�(

1

), (n; k; l) >

lex

�(

2

) and (n; k; l) >

lex

(0; 0; 0), the former beause the

i

are subformulas and the latter beause l 6= 0. This proves the ase.

Theorem 2.5.6 (Propositional Tableaux is Complete). If � is valid, tableaux

omputes a losed state out of f(:�)g.

2.6. NORMAL FORMS 39

Proof. If � is valid then :� is unsatis�able. Now assume after termination the

resulting state and hene at least one sequene is not losed. For this sequene

onsider a valuation A onsisting of the literals in the sequene. By assumption

there are no opposite literals, so A is well-de�ned. I prove by ontradition that

A is a model for the sequene. Assume it is not. Then there is a minimal formula

in the sequene, with respet to the ordering on triples onsidered in the proof

of Theorem 2.5.5, that is not satis�ed by A. By de�nition of A the formula

annot be a literal. So it is an �-formula or a �-formula. In all ases at least one

desendant formula is ontained in the sequene, is smaller than the original

formula, false in A (Proposition 2.5.3) and hene ontradits the assumption.

Therefore, A satis�es the sequene ontraditing that :� is unsatis�able.

Corollary 2.5.7 (Propositional Tableaux generates Models). Let � be a for-

mula, f(�)g)

�

T

N and s 2 N be a sequene that is not losed and neither

�-expansion nor �-expansion are appliable to s. Then the literals in s form a

(partial) valuation that is a model for �.

Proof. A onsequene of the proof of Theorem 2.5.6

Consider the example tableau shown in Figure 2.5. The open �rst branh

orresponds to the valuation A = fP;R;:Qg whih is a model of the formula

:[(P ^ :(Q _ :R))! (Q ^ R)℄.

L

n

L

0

n

L

1

L

n

L

0

n

L

0

1

K

n

K

0

n

K

1

. . .

K

n

L

n

L

0

n

L

1

L

n

L

0

n

L

0

1

K

0

n

K

0

1

Figure 2.6: Semanti tableau.

2.6 Normal Forms

In order to hek the status of a formula � via truth tables, the truth table

ontains a olumn for the subformulas of � and all valuations for its variables.

40 CHAPTER 2. PROPOSITIONAL LOGIC

Any shape of � is �ne in order to generate the respetive truth table. The

superposition alulus (Setion 2.8) and the CDCL (Conit Driven Clause

Learning) alulus (Setion 2.10) both operate on a normal form, i.e., the shape

of � is restrited. Both aluli aept only onjuntions of disjuntions of literals,

a partiular normal form. It is alled Clause Normal Form or simply CNF. The

purpose of this setion is to show that an arbitrary formula � an be e�etively

transformed into an equivalent formula in CNF.

2.6.1 Conjuntive and Disjuntive Normal Forms

De�nition 2.6.1 (CNF, DNF). A formula is in onjuntive normal form (CNF)

or lause normal form if it is a onjuntion of disjuntions of literals, or in other

words, a onjuntion of lauses.

A formula is in disjuntive normal form (DNF), if it is a disjuntion of

onjuntions of literals.

So a CNF has the form

V

i

W

j

L

j

and a DNF the form

W

i

V

j

L

j

where L

j

are

literals. In the sequel the logial notation with _ is overloaded with a multiset

notation. Both the disjuntion L

1

_ : : : _ L

n

and the multiset fL

1

; : : : ; L

n

g are

lauses. For lauses the letters C, D, possibly indexed are used. Furthermore, a

onjuntion of lauses is onsidered as a set of lauses. Then, for a set of lauses,

the empty set denotes >. For a lause, the empty multiset denotes ; and at the

same time ?.

T

Although CNF and DNF are de�ned in almost any text book on au-

tomated reasoning, the de�nitions in the literature di�er with respet

to the \border" ases: (i) are omplementary literals permitted in a

lause? (ii) are dupliated literals permitted in a lause? (iii) are empty dis-

juntions/onjuntions permitted? The above De�nition 2.6.1 answers all three

questions with \yes". A lause ontaining omplementary literals is valid, as in

P _Q_:P . Dupliate literals may our, as in P _Q_P . The empty disjuntion

is ? and the empty onjuntion >, i.e., the empty disjuntion is always false

while the empty onjuntion is always true.

Cheking the validity of CNF formulas or the unsatis�ability of DNF formu-

las is easy: (i) a formula in CNF is valid, if and only if eah of its disjuntions

ontains a pair of omplementary literals P and :P , (ii) onversely, a formula

in DNF is unsatis�able, if and only if eah of its onjuntions ontains a pair of

omplementary literals P and :P (see Exerise ??).

C

On the other hand, heking the unsatis�ability of CNF formulas or

the validity of DNF formulas is oNP-omplete. For any propositional

formula � there is an equivalent formula in CNF and DNF and I will

prove this below by atually providing an e�etive proedure for the transforma-

tion. However, also beause of the above omment on validity and satis�ability

heking for CNF and DNF formulas, respetively, the transformation is ostly.

In general, a CNF or DNF of a formula � is exponentially larger than � as

2.6. NORMAL FORMS 41

long as the normal forms need to be logially equivalent. If this is not needed,

then by the introdution of fresh propositional variables, CNF or DNF normal

forms for � an be omputed in linear time in the size of �. More onretely,

given a formula � instead of heking validity the unsatis�ability of :� an be

onsidered. Then the linear time CNF normal form algorithm (see Setion ??)

is satis�ability preserving, i.e., the linear time CNF of :� is unsatis�able i� :�

is.

Proposition 2.6.2. For every formula there is an equivalent formula in CNF

and also an equivalent formula in DNF.

Proof. See the rewrite systems)

BCNF

, and)

ACNF

below and the lemmata on

their properties.

2.6.2 Basi CNF/DNF Transformation

The below algorithm bnf is a basi algorithm for transforming any propositional

formula into CNF, or DNF if the rule PushDisj is replaed by PushConj.

Algorithm 2: bnf(�)

Input : A propositional formula �.

Output: A propositional formula equivalent to � in CNF.

1 whilerule (ElimEquiv(�)) do ;

2 whilerule (ElimImp(�)) do ;

3 whilerule (ElimTB1(�),: : :,ElimTB6(�)) do ;

4 whilerule (PushNeg1(�),: : :,PushNeg3(�)) do ;

5 whilerule (PushDisj(�)) do ;

6 return �;

In the sequel I study only the CNF version of the algorithm. All properties

hold in an analogous way for the DNF version. To start an informal analysis of

the algorithm, onsider the following example CNF transformation.

Example 2.6.3. Consider the formula :((P _ Q) $ (P ! (Q ^ >))) and the

appliation of)

BCNF

depited in Figure 2.8. Already for this simple formula

the CNF transformation via)

BCNF

beomes quite messy. Note that the CNF

result in Figure 2.8 is still highly redundant. If I remove all disjuntions that

are trivially true, beause they ontain a propositional literal and its negation,

the result beomes

(P _ :Q) ^ (:Q _ :P) ^ (:Q _ :Q)

now elimination of dupliate literals beauti�es the third lause and the overall

formula into

(P _ :Q) ^ (:Q _ :P) ^ :Q.

Now let's inspet this formula a little loser. Any valuation satisfying the formula

must set A(Q) = 0, beause of the third lause. But then the �rst two lauses are

already satis�ed. The formula :Q subsumes the formulas P _:Q and :Q_:P

42 CHAPTER 2. PROPOSITIONAL LOGIC

ElimEquiv �[(�$)℄

p

)

BCNF

�[(�!) ^ (! �)℄

p

ElimImp �[(�!)℄

p

)

BCNF

�[(:� _)℄

p

PushNeg1 �[:(� _)℄

p

)

BCNF

�[(:� ^ :)℄

p

PushNeg2 �[:(� ^)℄

p

)

BCNF

�[(:� _ :)℄

p

PushNeg3 �[::�℄

p

)

BCNF

�[�℄

p

PushDisj �[(�

1

^ �

2

) _ ℄

p

)

BCNF

�[(�

1

_) ^ (�

2

_)℄

p

PushConj �[(�

1

_ �

2

) ^ ℄

p

)

BDNF

�[(�

1

^) _ (�

2

^)℄

p

ElimTB1

�[(� ^ >)℄

p

)

BCNF

�[�℄

p

ElimTB2

�[(� ^ ?)℄

p

)

BCNF

�[?℄

p

ElimTB3

�[(� _ >)℄

p

)

BCNF

�[>℄

p

ElimTB4

�[(� _ ?)℄

p

)

BCNF

�[�℄

p

ElimTB5

�[:?℄

p

)

BCNF

�[>℄

p

ElimTB6

�[:>℄

p

)

BCNF

�[?℄

p

Figure 2.7: Basi CNF/DNF Transformation Rules

in this sense. The notion of subsumption will be disussed in detail for lauses

in Setion 2.7.

So it is eventually equivalent to

:Q.

The orretness of the result is obvious by looking at the original formula and

doing a ase analysis. For any valuation A with A(Q) = 1 the two parts of the

equivalene beome true, independently of P , so the overall formula is false.

For A(Q) = 0, for any value of P , the truth values of the two sides of the

equivalene are di�erent, so the equivalene beomes false and hene the overall

formula true.

After proving)

BCNF

orret and terminating, in the sueeding setion I

will present an algorithm)

ACNF

that atually generates :Q out of :((P _Q)$

(P ! (Q ^>))) and does this without generating the mess of formulas)

BCNF

does. Please reall that the above rules apply modulo ommutativity of _, ^,

e.g., the rule ElimTB1 is both appliable to the formulas � ^ > and > ^ �.

I

Figure 2.1 ontains more potential for simpli�ation. For example, the

idempoteny equivalenes (� ^ �) $ �, (� _ �) $ � an be turned

into simpli�ation rules by applying them left to right. However, the

way they are stated they an only be applied in ase of idential subformulas.

The formula (P _Q)^ (Q_P) does this way not redue to (Q_ P). A solution

is to onsider identity modulo ommutativity. But then identity modulo om-

mutativity and assoiativity (AC) as in ((P _ Q) _ R) ^ (Q _ (R _ P) is still

not deteted. On the other hand, in pratie, heking identity modulo AC is

often too expensive. An elegant way out of this situation is to implement AC

2.6. NORMAL FORMS 43

:((P _Q)$ (P ! (Q ^ >)))

)

Step 1

BCNF

:([(P _Q)! (P ! (Q ^ >))℄ ^ [(P ! (Q ^ >))! (P _Q)℄)

)

Step 2

BCNF

:([:(P _Q) _ (P ! (Q ^ >))℄ ^ [(P ! (Q ^ >))! (P _Q)℄)

)

Step 2

BCNF

:([:(P _Q) _ (P ! (Q ^ >))℄ ^ [:(P ! (Q ^ >)) _ (P _Q)℄)

)

Step 2

BCNF

:([:(P _Q) _ (P ! (Q ^ >))℄ ^ [:(:P _ (Q ^ >)) _ (P _Q)℄)

)

Step 2

BCNF

:([:(P _Q) _ (:P _ (Q ^>))℄ ^ [:(:P _ (Q^ >)) _ (P _Q)℄)

)

Step 3

BCNF

:([:(P _Q) _ (:P _Q)℄ ^ [:(:P _Q) _ (P _Q)℄)

)

Step 4

BCNF

:([(:P ^ :Q) _ (:P _Q)℄ ^ [:(:P _Q) _ (P _Q)℄)

)

Step 4

BCNF

:([(:P ^ :Q) _ (:P _Q)℄ ^ [(::P ^ :Q) _ (P _Q)℄)

)

Step 4

BCNF

:([(:P ^ :Q) _ (:P _Q)℄ ^ [(::P ^ :Q) _ (P _Q)℄)

)

�;Step 4

BCNF

[(::P _::Q)^ (::P ^:Q)℄_ [(:::P _::Q)^ (:P ^:Q)℄

)

�;Step 4

BCNF

[(P _Q) ^ (P ^ :Q)℄ _ [(:P _Q) ^ (:P ^ :Q)℄

)

�;Step 5

BCNF

(P _Q_:P _Q)^ (P _Q_:P)^ (P _Q_:Q)^ (P _:P _

Q) ^ (P _ :P) ^ (P _ :Q) ^ (:Q _ :P _Q) ^ (:Q _ :P) ^ (:Q _ :Q)

Figure 2.8: Example Basi CNF Transformation

onnetives like _ or ^ with exible arity, to normalize nested ourrenes of

the onnetives, and �nally to sort the arguments using some total ordering.

Applying this to ((P _ Q) _ R) ^ (Q _ (R _ P) with ordering R > P > Q the

result is (Q _ P _ R) ^ (Q _ P _ R). Now omplete AC simpli�ation is bak

at the ost of heking for idential subformulas. Note that in an appropriate

implementation, the normalization and ordering proess is only done one at

the start and then normalization and argument ordering is kept as an invariant.

2.6.3 Advaned CNF Transformation

The simple algorithm for CNF transformation Algorithm 2 an be improved in

various ways: (i) more aggressive formula simpli�ation, (ii) renaming, (iii) po-

larity dependant transformations. The before studied Example 2.6.3 serves al-

ready as a nie motivation for (i) and (iii). Firstly, removing > from the formula

:((P _ Q) $ (P ! (Q ^ >))) �rst and not in the middle of the algorithm ob-

viously shortens the overall proess. Seondly, if the equivalene is replaed

polarity dependant, i.e., using the equivalene (�$)$ (� ^) _ (:� ^ :)

and not the one used in rule ElimEquiv applied before, a lot of redundany gen-

erated by)

BCNF

is prevented. In general, if [�

1

$ �

2

℄

p

and pol(; p) = �1

then for CNF transformation do [(�

1

^�

2

)_ (:�

1

^:�

2

)℄

p

and if pol(; p) = 1

do [(�

1

! �

2

) ^ (�

2

! �

1

)℄

p

Item (ii) an be motivated by a formula

P

1

$ (P

2

$ (P

3

$ (: : : (P

n�1

$ P

n

) : : :)))

where Algorithm 2 generates a CNF with 2

n

lauses out of this formula. The

way out of this problem is the introdution of additional fresh propositional

44 CHAPTER 2. PROPOSITIONAL LOGIC

variables that rename subformulas. The prie to pay is that a renamed formula

is not equivalent to the original formula due to the extra propositional variables,

but satis�ability preserving. A renamed formula for the above formula is

(P

1

$ (P

2

$ Q

1

)) ^ (Q

1

$ (P

3

$ Q

2

)) ^ : : :

where the Q

i

are additional, fresh propositional variables. The number of lauses

of the CNF of this formula is 4(n�1) where eah onjunt (Q

i

$ (P

j

$ Q

i+1

))

ontributes four lauses.

Proposition 2.6.4. Let P be a propositional variable not ourring in [�℄

p

.

1. If pol(; p) = 1, then [�℄

p

is satis�able if and only if [P ℄

p

^ (P ! �) is

satis�able.

2. If pol(; p) = �1, then [�℄

p

is satis�able if and only if [P ℄

p

^ (� ! P)

is satis�able.

3. If pol(; p) = 0, then [�℄

p

is satis�able if and only if [P ℄

p

^ (P $ �) is

satis�able.

Proof. Exerise.

So depending on the formula , the position p where the variable P is in-

trodued de�nition of P is given by

def(; p; P) :=

8

<

:

(P ! j

p

) if pol(; p) = 1

(j

p

! P) if pol(; p) = �1

(P $ j

p

) if pol(; p) = 0

For renaming there are several hoies whih subformula to hoose. Ob-

viously, sine a formula has only linearly many subformulas, renaming every

subformula works [35, 29℄. Basially this is what I show below. In the following

setion a renaming variant is introdued that produes smallest CNFs.

SimpleRenaming �)

SimpRen

�[P

1

℄

p

1

[P

2

℄

p

2

: : : [P

n

℄

p

n

^ def(�; p

1

; P

1

) ^

: : : ^ def(�[P

1

℄

p

1

[P

2

℄

p

2

: : : [P

n�1

℄

p

n�1

; p

n

; P

n

)

provided fp

1

; : : : ; p

n

g � pos(�) and for all i; i+ j either p

i

k p

i+j

or p

i

> p

i+j

and the P

i

are di�erent and new to �

Atually, the rule SimpleRenaming does not provide an e�etive way to

ompute the set fp

1

; : : : ; p

n

g of positions in � to be renamed. Where are several

hoies. Following Plaisted and Greenbaum [29℄, the set ontains all positions

from � that do not point to a propositional variable or a negation symbol. In

addition, renaming position � does not make sense beause it would generate the

formula P ^ (P ! �) whih results in more lauses than just �. Choosing the

set of Plaisted and Greenbaum prevents the explosion in the number of lauses

during CNF transformation. But not all renamings are needed to this end.

2.6. NORMAL FORMS 45

!

[1=�℄

:

[�1=1℄

_

[1=11℄

:

[1=111℄

P

[�1=1111℄

^

[1=112℄

Q

[1=1121℄

R

[1=1122℄

_

[1=2℄

P

[1=21℄

$

[1=22℄

:

[0=221℄

Q

[0=2211℄

:

[0=222℄

R

[0=2221℄

Figure 2.9: Tree representation of [:(:P _ (Q^R))℄! [P _ (:Q$:R)℄ where

eah node is annotated with its [polarity/position℄.

A smaller set of positions from �, let's all it the set of obvious positions, is

still preventing the explosion and given by the rules: (i) if �j

p

is an equivalene

and there is a position q < p suh that �j

q

is either an equivalene or disjuntive

in � then p is an obvious position (ii) if �j

pq

is a onjuntive formula in �, �j

p

is a disjuntive formula in � and for all positions r with p < r < pq the formula

�j

r

is not a onjuntive formula then pq is an obvious position. A formula �j

p

is onjuntive in � if �j

p

is a onjuntion and pol(�; p) 2 f0; 1g or �j

p

is a

disjuntion or impliation and pol(�; p) 2 f0;�1g. Analogously, a formula �j

p

is disjuntive in � if �j

p

is a disjuntion or impliation and pol(�; p) 2 f0; 1g or

�j

p

is a onjuntion and pol(�; p) 2 f0;�1g.

Consider as an example the formula

[:(:P _ (Q ^ R))℄! [P _ (:Q$:R)℄

. Its tree representation as well as the polarity and position of eah node is

shown in Figure 2.9.

The before mentioned polarity dependent transformations for equivalenes

are realized by the following two rules:

ElimEquiv1 �[(�$)℄

p

)

ACNF

�[(�!) ^ (! �)℄

p

provided pol(�; p) 2 f0; 1g

ElimEquiv2 �[(�$)℄

p

)

ACNF

�[(� ^) _ (:� ^ :)℄

p

provided pol(�; p) = �1

46 CHAPTER 2. PROPOSITIONAL LOGIC

Algorithm 3: anf(�)

Input : A formula �.

Output: A formula in CNF satis�ability preserving to �.

1 whilerule (ElimTB1(�),: : :,ElimTB6(�)) do ;

2 SimpleRenaming(�) on obvious positions;

3 whilerule (ElimEquiv1(�),ElimEquiv2(�)) do ;

4 whilerule (ElimImp(�)) do ;

5 whilerule (PushNeg1(�),: : :,PushNeg3(�)) do ;

6 whilerule (PushDisj(�)) do ;

7 return �;

:((P _Q)$ (P ! (Q ^ >)))

)

Step 1

ACNF

:((P _Q)$ (P ! Q))

)

Step 3

ACNF

:(((P _Q) ^ (P ! Q)) _ (:(P _Q) ^ :(P ! Q)))

)

�;Step 4

ACNF

:(((P _Q) ^ (:P _Q)) _ (:(P _Q) ^ :(:P _Q)))

)

�;Step 5

ACNF

((:P ^ :Q) _ (P ^ :Q)) ^ ((P _Q) _ (:P _Q))

)

�;Step 6

ACNF

(:P _P)^(:P _:Q)^(:Q_P)^(:Q_:Q)^(P _Q_:P _Q)

Figure 2.10: Example Advaned CNF Transformation

Proposition 2.6.5 (Models of Renamed Formulas). Let � be a formula and

�

0

a renamed CNF of � omputed by anf. Then any (partial) model A of �

0

is

also a model for �.

Proof. By an indutive argument it is suÆient to onsider one renaming appli-

ation, i.e., �

0

= �[P ℄

p

^def(�; p; P). There are three ases depending on the po-

larity. (i) if pol(�; p) = 1 then �

0

= �[P ℄

p

^P ! �j

p

. If A(P) = 1 thenA(�j

p

) = 1

and hene A(�) = 1. The interesting ase is A(P) = 0 and A(�j

p

) = 1. But

then beause pol(�; p) = 1 also A(�) = 1 by Lemma 2.2.7. (ii) if pol(�; p) = �1

the ase is symmetri to the previous one. Finally, (iii) if pol(�; p) = 0 for any

A satisfying �

0

it holds A(�j

p

) = A(P) and hene A(�) = 1.

2.6.4 Computing Small CNFs

In the previous hapter obvious positions are a suggestion for smaller CNFs

with respet to the renaming positions suggested by Plaisted and Greenbaum.

In this setion I develop a set of renaming positions that is in fat minimal with

respet to the resulting CNF. A subformula is renamed if the eventual number

of generated lauses by bnf dereases after renaming [10, 28℄. If formulas are

heked top-down for this ondition, and pro�table formulas in the above sense

are renamed, the resulting CNF is optimal in the number of lauses [10℄. The

below funtion a omputes the number of lauses generated by the algorithm

bnf, as long as the formula does not ontain > or ?.

2.6. NORMAL FORMS 47

CA state of the art CNF algorithm �rst tries to simplify a formula be-

fore doing the atual CNF transformation. Eliminating > or ? using

the ElimTB is a standard part of any suh simpli�ation proedure. Further

simpli�ations are disussed in Setion 2.13.

 a() b()

�

1

^ �

2

a(�

1

) + a(�

2

) b(�

1

) b(�

2

)

�

1

_ �

2

a(�

1

) a(�

2

) b(�

1

) + b(�

2

)

�

1

! �

2

b(�

1

) a(�

2

) a(�

1

) + b(�

2

)

�

1

$ �

2

a(�

1

) b(�

2

) + b(�

1

) a(�

2

) a(�

1

) a(�

2

) + b(�

1

) b(�

2

)

:�

1

b(�

1

) a(�

1

)

P 1 1

Let � be a formula that does not ontain ?, or >, then a(�) omputes ex-

atly the number of lauses generated by bnf(�). The proof is left as an exerise,

but as an example onsider the ase where � = L

1

: : : L

n

is a disjuntion of liter-

als. In this ase bnf does not hange � at all ad produes exatly the lause �.

Expanding the de�nition of a(�) produes a(�) = a(L

1

) a(L

2

) : : : a(L

n

) = 1

beause if some L

i

is a propositional variable, then a(L

i

) = 1. If some L

j

is

negative, i.e., L

j

= :P then a(L

j

) = a(:P) = b(P) = 1.

A renaming yields fewer lauses, if the di�erene between the number of

lauses generated without and with a renaming is positive. Consider the renam-

ing of a subformula at position p within a formula with fresh variable P . The

ondition to be heked is

a() � a([P ℄

p

) + a(def(; p; P)):

The inequality above is not strit. If some formula � = j

p

is replaed inside

 where a() = a([P ℄

p

) + a(def(; p; P)) then this equation turns into a

strit inequality as soon as we do another replaement inside �. In this ase

a(def(; p; P)) will stritly derease. Therefore, when searhing for a minimal

CNF it is mandatory to onsider the above inequality non-strit.

Example 2.6.6. For a formula P

1

$ P

2

renaming does not pay o�. If P

2

is

replaed by some fresh variable Q the result is P

1

$ Q ^ Q $ P

2

where the

original formula generates 2 lauses and the formula after replaement generates

4 lauses.

The break even point for nested equivalenes is the formula P

1

$ (P

2

$

(P

3

$ P

4

)) where replaement at position 22 using the fresh variable Q results

in P

1

$ (P

2

$ Q) ^ Q $ (P

3

$ P

4

). Both formulas eventually generate

8 lauses. So this is an example for the above inequality to be non-strit.

The obvious problem with this ondition is that the funtion a annot be

eÆiently omputed in general, for it grows exponentially in the size of the in-

put formula. Moreover, a straightforward, naive top-down implementation of a

following the above table results in an algorithm with exponential time om-

plexity, due to the dupliation of reursive alls. The exponential omplexity

48 CHAPTER 2. PROPOSITIONAL LOGIC

an be avoided using a dynami programming idea: simply store intermediate

results for subformulas. Nevertheless, beause a grows exponentially, omput-

ing a requires arbitrary preision integer arithmeti. It turns out that this an

hardly be a�orded in pratie. The rest of this setion is therefore onerned

with a solution to this problem, i.e., I show that it is not neessary to ompute

a at all for deiding the above inequation.

Obviously, the formulas and [P ℄

p

di�er only at position p, the other parts

of the formulas remain idential. We make use of this fat by an abstration of

those parts of that do not inuene the hanged position. To this end we

introdue the notion of a oeÆient as shown in Table 2.1.

p j

q

a

p

b

p

q:i �

1

^ �

2

a

q

b

q

Q

j 6=i

b(�

j

)

q:i �

1

_ �

2

a

q

Q

j 6=i

a(�

j

) b

q

q:1 �

1

! �

2

b

q

a

q

a(�

2

)

q:2 �

1

! �

2

a

q

b(�

1

) b

q

q:1 �

1

$ �

2

a

q

b(�

2

) + b

q

a(�

2

) a

q

a(�

2

) + b

q

b(�

2

)

q:2 �

1

$ �

2

a

q

b(�

1

) + b

q

a(�

1

) a

q

a(�

1

) + b

q

b(�

1

)

q:1 :�

1

b

q

a

q

� 1 0

Table 2.1: Calulating the CoeÆients

The oeÆients determine how often a partiular subformula and its negation

are dupliated in the ourse of a basi CNF translation. The oeÆient a

p

is the

fator of a(j

p

) in the reursive omputation whereas the fator b

p

is the fator

of b(j

p

). The �rst olumn of Table 2.1 shows the form of p, the seond olumn

the form of diretly above position p (itself if p = �). The next two olumns

demonstrate the orresponding reursive bottom-up alulations for a

p

and b

p

,

respetively. Applied to our starting example formula = �

1

_ 8x�

2

where we

renamed position 2:1, i.e., the subformula �

2

, the oeÆients are a

2:1

= a(�

1

)

(Table 2.1, eighth, seond and last row, �rst olumn) and b

2:1

= 0 (eighth, seond

and last row, seond olumn). Note that a

p

(b

p

) is always 0 if pol(; p) = �1

(pol(; p) = 1).

Using the notion of a oeÆient, the previously stated ondition an be

reformulated as

a

p

a(�) + b

p

b(�) � a

p

+ b

p

+ a(def(; p; P))

where we still assume that � = j

p

and P is a fresh propositional variable.

Note that, sine � is replaed by P in at position p, the oeÆients a

p

, b

p

are

multiplied by 1 in the renamed version, beause a(P) = b(P) = 1. Depending

on the polarity of j

p

the inequality is equivalent to one of the three inequalities:

2.6. NORMAL FORMS 49

a

p

a(�)� a

p

+ a(�) if pol(; p) = 1

b

p

b(�)� b

p

+ b(�) if pol(; p) = �1

a

p

a(�) + b

p

b(�)� a

p

+ b

p

+ a(�) + b(�) if pol(; p) = 0

By simple arithmetial transformations, we an group all ourrenes of fators

a

p

, b

p

and all ourrenes of a(�) and b(�), respetively:

(a

p

� 1)(a(�)� 1)� 1 if pol(; p) = 1

(b

p

� 1)(b(�)� 1)� 1 if pol(; p) = �1

(a

p

� 1)(a(�) � 1) + (b

p

� 1)(b(�)� 1)� 2 if pol(; p) = 0

Let us abbreviate the produt (a

p

�1)(a(�)�1) with p

a

and (b

p

�1)(b(�)�1)

with p

b

. Sine neither p

a

nor p

b

an beome negative, in any of the ases where

they appear, the �rst inequality holds if p

a

� 1, the seond inequality holds if

p

b

� 1 and the third inequality holds if (i) p

a

� 2 or (ii) p

b

� 2 or (iii) p

a

� 1

and p

b

� 1. In order to hek these onditions, it suÆes to test whether the

oeÆients a

p

, b

p

and the number of lauses a(�), b(�) are stritly greater

than 1, 2 or 3, respetively. This an always be heked in linear time with

respet to the size of . The ondition a(�) > 1 holds i� there exists a position

p suh that �[�

1

$ �

2

℄

p

or �[�

1

^ �

2

℄

p

and pol(�; p) = 1 or �[�

1

Æ �

2

℄

p

with

pol(�; p) = �1 and Æ 2 f_;!g. The omputations for the boolean onditions

a(�) > 2 and a(�) > 3 are depited in Table 2.2. The omputation of the

onditions for b works aordingly, see Table 2.3.

As for the fators, Table 2.4 shows how to ompute a

p

> 1 and, following

Table 2.1, this an be extended to the other ases for the a fator and the

orresponding onditions for the b fator.

Hene we turned a test that required the omputation of exponentially grow-

ing funtions into a boolean ondition that does not require any arithmeti

alulation at all.

Theorem 2.6.7 (Formula Renaming). Formula Renaming preserves satis�a-

bility and an be omputed in polynomial time.

In order to further redue the number of eventually generated lauses it may

still be useful to rename a formula, even if the above onsiderations do not apply.

For example, renaming the formula P

1

_ (Q

1

^Q

2

) at position 2 results in three

lauses, whereas a standard CNF translation of the original formula yields two

lauses. This alulation also applies if this situation is repeated, as in

[P

1

_ (Q

1

^Q

2

)℄ ^ [P

2

_ (Q

1

^Q

2

)℄ ^ : : : [P

n

_ (Q

1

^Q

2

)℄

where our renaming riterion does not apply. But now a simultaneous renaming

of all ourrenes (Q

1

^ Q

2

) may pay o�. It results in n + 2 lauses whereas

the standard CNF translation yields 2n lauses. Hene, it is useful to searh for

multiple ourrenes of the same subformula. The problem here is to �nd an

appropriate \equality" or \instane" relation between subformulas. In our ex-

ample syntati equality was suÆient to detet all suh ourrenes. In general,

a mathing proess { probably with respet to the ommutativity, assoiativity

50 CHAPTER 2. PROPOSITIONAL LOGIC

 a() > 1

�

1

^ �

2

true

�

1

_ �

2

a(�

1

) > 1 or a(�

2

) > 1

�

1

! �

2

b(�

1

) > 1 or a(�

2

) > 1

�

1

$ �

2

true

:�

b(�) > 1

 a() > 2

�

1

^ �

2

a(�

1

) > 1 or a(�

2

) > 1

�

1

_ �

2

a(�

i

) > 2 or [a(�

1

) > 1 and a(�

2

) > 1℄

�

1

! �

2

b(�

1

) > 2 or a(�

2

) > 2 or [b(�

1

) > 1 and a(�

2

) > 1℄

�

1

$ �

2

at least one out of �

1

; �

2

is not a literal

:�

b(�) > 2

 a() > 3

�

1

^ �

2

a(�

i

) > 2

�

1

_ �

2

a(�

i

) > 3 or [a(�

i

) > 2 and a(�

j

) > 1; i 6= j℄

�

1

! �

2

b(�

1

) > 2 or a(�

2

) > 2 or [b(�

1

) > 1 and a(�

2

) > 1℄

�

1

$ �

2

a(�

i

) > 3 or b(�

i

) > 3 or �

2

is not a literal

:�

b(�) > 3

Table 2.2: The Boolean Conditions for a

of some logial operators or even logial impliation { may be needed to obtain a

suitable renaming result. So we run here into a tradeo� between ompat CNFs

and omputational omplexity to ahieve these CNFs.

For the formulation of the optimized CNF algorithm I rely on the equiv-

alenes from ategories (I), (V) and (VII) from Figure 2.1. They are used to

transform the formula. The equivalenes are always applied from left to right.

So \applying" suh an equivalene means turning it into a rule. For example,

the equivalene (� _ (� ^))$ � from ategory (V) generates the rule

�[� _ (� ^)℄

p

)

OCNF

�[�℄

p

Applying this rule with respet to ommutativity of _ means, for example, that

both the formulas (�_ (�^)) and ((�^)_�) an be transformed by the rule

to � where in both ases p = �. Rules are always applied modulo assoiativity

and ommutativity of ^, _.

2.6. NORMAL FORMS 51

 b() > 1

�

1

^ �

2

b(�

1

) > 1 or b(�

2

) > 1

�

1

_ �

2

true

�

1

! �

2

true

�

1

$ �

2

true

:�

a(�) > 1

 b() > 2

�

1

_ �

2

b(�

1

) > 1 or b(�

2

) > 1

�

1

^ �

2

b(�

i

) > 2 or b(�

1

) > 1 and b(�

2

) > 1

:�

a(�) > 2

 b() > 3

�

1

_ �

2

b(�

i

) > 2

�

1

^ �

2

b(�

i

) > 3 or [b(�

i

) > 2 and b(�

j

) > 1; i 6= j℄

:�

a(�) > 3

Table 2.3: The Boolean Conditions for b

The proedure is depited in Algorithm 4. Although omputing a for Step 2

is not pratial in general, beause the funtion is exponentially growing, the

test a([�℄

p

) > a([P ℄

p

^def(; p; P)) an be omputed in onstant time after

a linear time proessing phase.

Applying Algorithm 4 to the formula :((P _ Q) $ (P ! (Q ^ >))) of

Example 2.6.3 results in the transformation depited in Figure 2.11. Looking

at the result it is already very lose to :Q, as it ontains the lause (:Q _

:Q). Removing dupliate literals in lauses and removing lauses ontaining

omplementary literals from the result yields

(:P _ :Q) ^ (:Q _ P) ^ :Q

whih is even loser to just :Q. The �rst two lauses an atually be removed

beause they are subsumed by :Q, i.e., onsidered as multisets, :Q is a subset

of these lauses. Subsumption will be introdued in the next setion. Logially,

they an be removed beause :Q has to be true for any satisfying assignment

of the formula and then the �rst two lauses are satis�ed anyway.

52 CHAPTER 2. PROPOSITIONAL LOGIC

Algorithm 4: onf(�)

Input : A formula �.

Output: A formula in CNF satis�ability preserving to �.

1 whilerule (ElimRedI(�),ElimRedV(�),ElimRedVII(�)) do ;

2 SimpleRenaming(�) on bene�ial positions;

3 whilerule (ElimEquiv1(�),ElimEquiv2(�)) do ;

4 whilerule (ElimImp(�)) do ;

5 whilerule (PushNeg1(�),: : :,PushNeg3(�)) do ;

6 whilerule (PushDisj(�)) do ;

7 return �;

:((P _Q)$ (P ! (Q ^ >)))

)

Step 1

OCNF

:([(P _Q)$ (P ! Q)℄)

)

Step 3

OCNF

:([(P _Q) ^ (P ! Q)℄ _ [:(P _Q) ^ :(P ! Q)℄)

)

Step 2

OCNF

:([(P _Q) ^ (:P _Q)℄ _ [:(P _Q) ^ :(:P _Q)℄)

)

�;Step 3

OCNF

(:[(P _Q) ^ (:P _Q)℄ ^ :[:(P _Q) ^ :(:P _Q)℄)

)

�;Step 3

OCNF

[:(P _Q) _ :(:P _Q)℄ ^ [(P _Q) _ (:P _Q)℄

)

�;Step 3

OCNF

[(:P ^ :Q) _ (P ^ :Q)℄ ^ [(P _Q) _ (:P _Q)℄

)

�;Step 4

OCNF

[(:P _P)^(:P_:Q)^(:Q_P)^(:Q_:Q)℄^[P_Q_:P_Q℄

Figure 2.11: Example Optimized CNF Transformation

2.7. PROPOSITIONAL RESOLUTION 53

p j

p

a

p

> 1

q:i �

1

^ �

2

a

p

> 1

q:i �

1

_ �

2

a

p

> 1 or a(�

i

) > 1 for some i

Table 2.4: The Boolean Conditions for a

2.7 Propositional Resolution

A alulus is a set of inferene and redution rules for a given logi (here

PROP(�)). We only onsider aluli operating on a set of lauses N . Infer-

ene rules add new lauses to N whereas redution rules remove lauses from

N or replae lauses by \simpler" ones.

We are only interested in unsatis�ability, i.e., the onsidered aluli test

whether a lause set N is unsatis�able. This is in partiular motivated by the

renaming step of CNF transformation, see Setion 2.6.3. So, in order to hek

validity of a formula � we hek unsatis�ability of the lauses generated from

:�.

For lauses we swith between the notation as a disjuntion, e.g., P _Q_P _

:R, and the notation as a multiset, e.g., fP;Q; P;:Rg. This makes no di�erene

as we onsider _ in the ontext of lauses always modulo AC. Note that ?, the

empty disjuntion, orresponds to ;, the empty multiset. Clauses are typially

denoted by letters C, D, possibly with subsript.

The resolution alulus onsists of the inferene rules Resolution and Fa-

toring. So, if we onsider lause sets N as states, ℄ is disjoint union, we get the

inferene rules

Resolution

(N℄fC

1

_P;C

2

_:Pg))

RES

(N[fC

1

_P;C

2

_:Pg[fC

1

_C

2

g)

Fatoring (N ℄ fC _ L _ Lg))

RES

(N [fC _ L _ Lg [fC _ Lg)

Theorem 2.7.1. The resolution alulus is sound and omplete:

N is unsatis�able i� N)

�

RES

f?g

Proof. (() Soundness means for all rules that N j= N

0

where N

0

is the lause

set obtained from N after applying Resolution or Fatoring. For Resolution it

is suÆient to show that C

1

_ P;C

2

_ :P j= C

1

_ C

2

. This is obvious by a ase

analysis of valuations satisfying C

1

_P;C

2

_:P : of P is true in suh a valuation

so must be C

2

, hene C

1

_ C

2

. If P is false in some valuation then C

1

must

be true and so C

1

_ C

2

. Soundness for Fatoring is obvious this way beause it

simply removes a dupliate literal in the respetive lause.

()) The traditional method of proving resolution ompleteness are semanti

trees. A semanti tree is a binary tree where the edges a labeled with literals

54 CHAPTER 2. PROPOSITIONAL LOGIC

suh that: (i) edges of hildren of the same parent are labeled with L and :L,

and (ii) any node has either no or two hildren, and (iii) for any path from the

root to a leave, eah propositional variable ours at most one. Therefore, eah

path orresponds to a partial valuation. Now for an unsatis�able lause set N

there is a semanti tree suh that for eah leaf of the tree there is a lause in N

that is false with respet to the partial valuation at that leaf. Let this tree be

minimal in the sense that there is no smaller tree with less nodes having this

property. Now onsider two sister leaves of the same parent of this tree, where

the edges are labeled with L and :L, respetively. Let C

1

and C

2

be the two

false lauses at the respetive leaves. Obviously, C

1

= C

0

1

_L and C

2

= C

0

2

_:L

as for otherwise the tree would not be minimal. If C

1

(or C

2

) ontains further

ourrenes of L (or C

2

of :L), then the rule Fatoring is applied to eventually

remove all additional ourrenes. Therefore, I an assume L 62 C

0

1

and :L 62 C

0

2

.

A resolution step between these two lauses on L yields C

0

1

_ C

0

2

whih is false

at the parent of the two leaves, beause the resolvent neither ontains L nor

:L. Furthermore, the resulting tree from utting the two leaves is minimal

for N [fC

0

1

_ C

0

2

g and stritly smaller. By an indutive argument this proves

ompleteness.

Example 2.7.2 (Resolution Completeness). Consider the lause set

P _Q; :P _Q; P _ :Q; :P _ :Q _ S; :P _ :Q _ :S

and the orresponding semanti tree as shown in Figure 2.12.

[:P;

:Q;

:S℄

S

[:P;

:Q;

S℄

:S

Q

[:P;

Q;

:S℄

S

[:P;

Q;

S℄

:S

:Q

P

[P;

:Q;

:S℄

S

[P;

:Q;

S℄

:S

Q

[P;

Q;

:S℄

S

[P;

Q;

S℄

:S

:Q

:P

Figure 2.12: Semanti tree representation of fP _ Q; :P _ Q; P _ :Q; :P _

:Q _ S; :P _ :Q _ :Sg where eah leaf is labeled with the literals that falsify

the partial valuation at that leaf.

The redution rules are

2.7. PROPOSITIONAL RESOLUTION 55

Subsumption (N ℄ fC

1

; C

2

g))

RES

(N [fC

1

g)

provided C

1

� C

2

Tautology

Deletion

(N ℄ fC _ P _ :Pg))

RES

(N)

Condensation

(N ℄ fC

1

_ L _ Lg))

RES

(N [fC

1

_ Lg)

Note the di�erent nature of inferene rules and redution rules. Resolution

and Fatorization only add lauses to the set whereas Subsumption, Tautology

Deletion and Condensation delete lauses or replae lauses by \simpler" ones.

In the next setion, Setion 2.8, I will show that \simpler" means.

C

At �rst, it looks strange to have the same rule both as a redution

rules and as an inferene rule, i.e., Fatorization and Condensation.

On the propositional level there is obviously no di�erene and it is

possible to get rid of one of the two. In Setion 3.13 the resolution alulus is

extended to �rst-order logi. In �rst-order logi Fatorization and Condensation

are atually di�erent. They are separated here to eventually obtain the same

set of resolution alulus rules for propositional and �rst-order logi.

Proposition 2.7.3. The redution rules Subsumption, Tautology Deletion and

Condensation are sound.

Proof. This is obvious for Tautology Deletion and Condensation. For Subsump-

tion we have to show that C

1

j= C

2

, beause this guarantees that if N[fC

1

g has

a model, N ℄ fC

1

; C

2

g has a model too. So assume A(C

1

) = 1 for an arbitrary

A. Then there is some literal L 2 C

1

with A(L) = 1. Sine C

1

� C

2

, also L 2 C

2

and therefore A(C

2

) = 1.

Theorem 2.7.4 (Resolution Termination). If redundany rules are preferred

over inferene rules and no inferene rule is applied twie to the same lause(s),

then)

+

RES

is well-founded.

Proof. For some given lause set N the redundany rules Subsumption, Tautol-

ogy Deletion and Condensation always terminate beause they all redue the

number of literals ourring in N . Furthermore, a lause set N where the re-

dundany rules have been exhaustively applied does not ontain any tautology,

no lause with dupliate literals and, in partiular, no dupliate lauses. The

number of suh lauses an be overestimated by 3

n

where n is the number of

propositional variables in N . Hene, there are at most 2

3

n

di�erent, �nite lause

sets with respet to lause sets where the redundany rules have been applied.

Obviously, for eah of suh lause sets there are only �nitely many di�erent

Resolution and Fatoring steps.

56 CHAPTER 2. PROPOSITIONAL LOGIC

C Of ourse, what needs to be shown is that the strategy employed in

Theorem 2.7.4 is still omplete. This is not ompletely trivial and

gets very nasty using semanti trees as the proof method of hoie. So let's wait

until superposition is established where this result beomes a partiular ase of

superposition ompleteness.

2.8 Propositional Superposition

Superposition was originally developed for �rst-order logi [5℄. Here I introdue

its projetion to propositional logi. Compared to the resolution alulus su-

perposition adds (i) ordering and seletion restritions on inferenes, (ii) an

abstrat redundany notion, (iii) the notion of a partial model for inferene

guidane, and (iv) a saturation onept.

De�nition 2.8.1 (Clause Ordering). Let � be a total strit ordering on �.

Then � an be lifted to a total ordering on literals by ���

L

and P �

L

:P and

:P �

L

Q, :P �

L

:Q for all P � Q. The ordering �

L

an be lifted to a total

ordering on lauses �

C

by onsidering the multiset extension of �

L

for lauses.

Proposition 2.8.2 (Properties of the Clause Ordering). (i) The orderings on

literals and lauses are total and well-founded.

(ii) Let C and D be lauses with P = jmax(C)j, Q = jmax(D)j, where max(C)

denotes the maximal literal in C.

1. If Q �

L

P then D �

C

C.

2. If P = Q, P ours negatively in C but only positively in D, then D �

C

C.

Eventually, I overload � with �

L

and �

C

. So if � is applied to literals it

denotes �

L

, if it is applied to lauses, it denotes �

C

. Note that � is a total

ordering on literals and lauses as well. Eventually we will restrit inferenes to

maximal literals with respet to �. For a lause set N , I de�ne N

�C

= fD 2

N j D � Cg.

De�nition 2.8.3 (Abstrat Redundany). A lause C is redundant with respet

to a lause set N if N

�C

j= C.

Tautologies are redundant. Subsumed lauses are redundant if � is strit.

Dupliate lauses are anyway eliminated quietly beause the alulus operates

on sets of lauses.

C

Note that for �nite N , and any C 2 N redundany N

�C

j= C an

be deided but is as hard as testing unsatis�ability for a lause set

N . So the goal is to invent redundany notions that an be eÆiently

deided and that are useful.

De�nition 2.8.4 (Seletion Funtion). The seletion funtion sel maps lauses

to one of its negative literals or ?. If sel(C) = :P then :P is alled seleted in

C. If sel(C) = ? then no literal in C is seleted.

2.8. PROPOSITIONAL SUPERPOSITION 57

The seletion funtion is, in addition to the ordering, a further means to

restrit superposition inferenes. If a negative literal is seleted on a lause, any

superposition inferene must be on the seleted literal.

De�nition 2.8.5 (Partial Model Constrution). Given a lause set N and an

ordering � we an onstrut a (partial) model N

I

for N indutively as follows:

N

C

:=

S

D�C

Æ

D

Æ

D

:=

8

>

<

>

:

fPg if D = D

0

_ P; P stritly maximal, no literal

seleted in D and N

D

6j= D

; otherwise

N

I

:=

S

C2N

Æ

C

Clauses C with Æ

C

6= ; are alled produtive.

Proposition 2.8.6. Some properties of the partial model onstrution.

1. For every D with (C _ :P) � D we have Æ

D

6= fPg.

2. If Æ

C

= fPg then N

C

[Æ

C

j= C.

3. If N

C

j= D and D � C then for all C

0

with C � C

0

we have N

C

0

j= D

and in partiular N

I

j= D.

4. There is no lause C with P _ P � C suh that Æ

C

= fPg.

T

Please properly distinguish: N is a set of lauses interpreted as the

onjuntion of all lauses. N

�C

is of set of lauses from N stritly

smaller than C with respet to �. N

I

, N

C

are sets of atoms, often

alled Herbrand Interpretations. N

I

is the overall (partial) model for N , whereas

N

C

is generated from all lauses from N stritly smaller than C. Validity is

de�ned by N

I

j= P if P 2 N

I

and N

I

j= :P if P 62 N

I

, aordingly for N

C

.

Given some lause setN the partial modelN

I

an be extended to a valuation

A by de�ning A(N

I

) := N

I

[f:P j P 62 N

I

g. So we an also de�ne for some

Herbrand interpretation N

I

(N

C

) that N

I

j= � i� A(N

I

)(�) = 1.

Superposition Left (N ℄ fC

1

_ P;C

2

_:Pg))

SUP

(N [fC

1

_ P;C

2

_

:Pg [fC

1

_ C

2

g)

where (i) P is stritly maximal in C

1

_ P (ii) no literal in C

1

_ P is seleted

(iii) :P is maximal and no literal seleted in C

2

_ :P , or :P is seleted in

C

2

_ :P

Fatoring (N℄fC_P _Pg))

SUP

(N[fC_P _Pg[fC_Pg)

where (i) P is maximal in C _ P _ P (ii) no literal is seleted in C _ P _ P

Note that the superposition fatoring rule di�ers from the resolution fator-

ing rule in that it only applies to positive literals.

58 CHAPTER 2. PROPOSITIONAL LOGIC

De�nition 2.8.7 (Saturation). A set N of lauses is alled saturated up to

redundany, if any inferene from non-redundant lauses inN yields a redundant

lause with respet to N .

Examples for spei� redundany rules that an be eÆiently deided are

Subsumption (N ℄ fC

1

; C

2

g))

SUP

(N [fC

1

g)

provided C

1

� C

2

Tautology Dele-

tion

(N ℄ fC _ P _ :Pg))

SUP

(N)

Condensation

(N ℄ fC

1

_ L _ Lg))

SUP

(N [fC

1

_ Lg)

Subsumption

Resolution

(N ℄ fC

1

_ L;C

2

_ :Lg))

SUP

(N [fC

1

_ L;C

2

g)

where C

1

� C

2

Proposition 2.8.8. All lauses removed by Subsumption, Tautology Deletion,

Condensation and Subsumption Resolution are redundant with respet to the

kept or added lauses.

Theorem 2.8.9. If N is saturated up to redundany and ? =2 N then N is

satis�able and N

I

j= N .

Proof. The proof is by ontradition. So I assume: (i) for any lause D derived

by Superposition Left or Fatoring from N that D is redundant, i.e., N

�D

j= D,

(ii) ? =2 N and (iii) N

I

6j= N . Then there is a minimal, with respet to �, lause

C_L 2 N suh that N

I

6j= C_L and L is a seleted literal in C_L or no literal

in C _ L is seleted and L is maximal. This lause must exist beause ? =2 N .

The lause C _ L is not redundant. For otherwise, N

�C_L

j= C _ L and

hene N

I

j= C _ L, beause N

I

j= N

�C_L

, a ontradition.

I distinguish the ase L is a positive and no literal seleted in C _L or L is a

negative literal. Firstly, assume L is positive, i.e., L = P for some propositional

variable P . Now if P is stritly maximal in C _ P then atually Æ

C_P

= fPg

and hene N

I

j= C _P , a ontradition. So P is not stritly maximal. But then

atually C _ P has the form C

0

1

_ P _ P and Fatoring derives C

0

1

_ P where

(C

0

1

_ P) � (C

0

1

_ P _ P). Now C

0

1

_ P is not redundant, stritly smaller than

C_L, we have C

0

1

_P 2 N and N

I

6j= C

0

1

_P , a ontradition against the hoie

that C _ L is minimal.

Seondly, let us assume L is negative, i.e., L = :P for some propositional

variable P . Then, sine N

I

6j= C _ :P we know P 2 N

I

. So there is a lause

D _ P 2 N where Æ

D_P

= fPg and P is stritly maximal in D _ P and

(D _ P) � (C _ :P). So Superposition Left derives C _ D where (C _ D) �

(C _:P). The derived lause C_D annot be redundant, beause for otherwise

either N

�D_P

j= D_P or N

�C_:P

j= C_:P . So C_D 2 N and N

I

6j= C_D,

a ontradition against the hoie that C _ L is the minimal false lause.

2.9. DAVIS PUTNAM LOGEMANN LOVELAND PROCEDURE (DPLL) 59

Propagate (M ;N))

DPLL

(ML;N)

provided C _ L 2 N , M j= :C, and L is unde�ned in M

Deide

(M ;N))

DPLL

(ML

>

;N)

provided L is unde�ned in M

Baktrak

(M

1

L

>

M

2

;N))

DPLL

(M

1

:L;N)

provided there is a D 2 N and M j= :D and no K

>

in M

2

Figure 2.13: The DPLL Calulus

So the proof atually tells us that at any point in time we need only to

onsider either a superposition left inferene between a minimal false lause and

a produtive lause or a fatoring inferene on a minimal false lause.

2.9 Davis Putnam Logemann Loveland Proe-

dure (DPLL)

A DPLL problem state is a pair (M ;N) whereM a sequene of partly annotated

literals, and N is a set of lauses. In partiular, the following states an be

distinguished:

(�;N) is the start state for some lause set N

(M ;N) is a �nal state, if M j= N

(M ;N) is a �nal state, ifM j= :N and there is no literal L

>

in M

(M ;N) is an intermediate state if M neither is a model for

N nor does it falsify a lause in N

The sequene M will, by onstrution, neither ontain dupliate nor om-

plementary literals. So it will always serve as a partial valuation for the lause

set N .

Here are the rules

Lemma 2.9.1. Let (M ;N) be a state reahed by the DPLL algorithm from

the initial state (�;N). If M = M

1

L

>

1

M

2

L

>

2

: : : L

>

m

M

m+1

and all M

i

have no

deision literals then for all 0 � i � m it holds: N;M

1

; : : : ; L

>

i

j=M

i+1

Proof. Proof by omplete indution on the number n of rule appliations.

Indution basis: n = 0. No rule has been applied so that M = � and M does

not ontain any deision literal. Therefore the statement holds.

Indution hypothesis: If (M ;N) is reahed via n or less rule appliations

where M =M

1

L

>

1

M

2

L

>

2

: : : L

>

m

M

m+1

and all M

i

have no deision literals then

for all 1 � i � m it holds: N;M

1

; : : : ; L

>

i

j=M

i+1

.

Indution step: n! n+1. Assume (M

0

;N) is reahed via n rule appliations.

Then by the use of the indution hypothesis it holds for all 1 � i < m that

60 CHAPTER 2. PROPOSITIONAL LOGIC

N;M

1

; : : : ; L

>

i

j= M

i+1

so that it remains to be shown that N;M

1

; : : : ; L

>

m

j=

M

m+1

1. Rule Propagate (M

0

;N))

DPLL

(M

0

L;N): IfM

0

=M

1

L

>

1

M

2

L

>

2

: : : L

>

m

M

m+1

and all M

i

have no deision literals then by de�nition there is a

lause C _ L 2 N with M

0

j= :C, i.e. C _ L;M

0

j= L and

N;M

1

L

>

1

M

2

L

>

2

: : : L

>

m

M

m+1

j= L. Using the indution hypothesis it fol-

lows N;M

1

L

>

1

M

2

L

>

2

: : : L

>

m

j=M

m+1

; L.

2. Rule Deide (M

0

;N))

DPLL

(M

0

L

>

;N): The statement holds beause of

M

0

; L

>

j= > and the indution hypothesis.

3. Rule Baktrak (M

0

1

L

>

M

0

2

;N))

DPLL

(M

0

1

:L;N): By de�nition M

0

2

has

no deision literals and there is a lause D 2 N with M

0

1

L

>

M

0

2

j=

:D. With the indution hypothesis M

0

1

L

>

j= M

0

2

holds. It follows

that M

0

1

L

>

j= :D whih is equivalent to M

0

1

L

>

; D j= ? and

M

0

1

; D j= :L

>

. Sine D 2 N it holds that N;M

0

1

j= :L. Let M

0

1

=

M

1

L

>

1

M

2

L

>

2

: : : L

>

m

M

m+1

where all M

i

have no deision literals then by

indution hypothesis N;M

1

L

>

1

M

2

L

>

2

: : : L

>

m

j=M

m+1

;:L.

Proposition 2.9.2. For a state (M ;N) that is reahed from the initial state

(�;N) where M ontains k deision literals L

1

: : : L

k

with k � 0 and for eah

valuation A with A j= N;L

1

; : : : ; L

k

it holds that A(K) = 1 for all K 2M .

Proof. LetM =M

1

L

>

1

: : : L

>

k

M

k+1

where allM

i

have no deision literals. With

Lemma 2.9.1 for all i it holds that N;M

1

L

>

1

: : : L

>

i�1

j=M

i

, i.e., for all i, literals

K 2 M

i

and eah valuation A with A j= N;L

1

; : : : ; L

k

it holds that A(K) =

1.

Lemma 2.9.3. If M ontains only propagated literals and M = L

1

: : : L

n

and

there is a D 2 N with M j= :D where D = K

1

: : :K

m

then N is unsatis�able.

Proof. Sine M j= :D it holds that :K

i

2 M for all 1 � i � m. With Propo-

sition 2.9.2 for eah valuation A with A j= N it holds that A(L

j

) = 1 for all

1 � j � n. Thus in partiular it holds that A(:K

i

) = 1 for all 1 � i � m.

Therefore D is always false under any valuation A and N is always unsatis�-

able.

Proposition 2.9.4 (DPLL Soundness). The rules Propagate, Deide, and

Baktrak are sound, i.e. whenever the algorithm terminates in state (M ;N)

starting from the initial state (�;N) then it holds: M j= N i� N is satis�able

Proof. ()) if M j= N then obviously N is satis�able.

(() Proof by ontradition. Assume N is satis�able and the algorithm termi-

nates in state (M ;N) starting from the initial state (�;N). Furthermore, assume

M j= N does not hold, i.e. either there is at least one literal that is not de�ned

in M or there is a lause D 2 N with M j= :D.

2.9. DAVIS PUTNAM LOGEMANN LOVELAND PROCEDURE (DPLL) 61

For the �rst ase the rule Deide is appliable. This ontradits that the

algorithm terminated.

For the seond ase either M only ontains propagated literals then N is

unsatis�able with Lemma 2.9.3. This is a ontradition to the assumption that

N is satis�able. If M does not only ontain propagated literals there must be at

least one deision literal in M . Then the rule Baktrak is appliable but this

ontradits that the algorithm terminated.

Therefore M j= N and the rules Propagate, Deide, and Baktrak are sound.

Proposition 2.9.5 (DPLL Strong Completeness). The rules Propagate, De-

ide, and Baktrak are strongly omplete: for any valuation M with M j= N ,

there is a sequene of rule appliation generating (M;N) as a �nal state.

Proof. Let M = L

1

L

2

: : : L

k

. Sine it is a valuation there are no dupliates in

M and k appliations of rule Deide yield (L

>

1

L

>

2

: : : L

>

k

; N) out of (�;N). This

is a �nal state beause baktrak is not appliable sine M j= N and Propagate

and Deide are no further appliable sine M is a valuation.

Proposition 2.9.6 (DPLL Termination). The rules Propagate, Deide, and

Baktrak terminate on any input state (�;N).

Proof. Let n be the number of propositional variables in N . As usual, termina-

tion is shown by assigning a well-founded measure and proving that it dereases

with eah rule appliation. The domain for the measure � are n-tuples over

f1; 2; 3g.

�((L

1

: : : L

k

;N)) = (m

1

; : : : ;m

k

; 3; : : : ; 3)

where m

i

= 2 if L

i

is annotated with > and m

i

= 1 otherwise. So �((�;N)) =

(3; : : : ; 3). The well-founded ordering is the lexiographi extension of < to n-

tuples. What remains to be shown is that eah rule appliation dereases �. I

do this by a ase analysis over the rules.

Propagate:

�((L

1

: : : L

k

;N)) = (m

1

; : : : ;m

k

; 3; 3; : : : ; 3)

> (m

1

; : : : ;m

k

; 1; 3; : : : ; 3)

= �((L

1

: : : L

k

L;N))

Deide:

�((L

1

: : : L

k

;N)) = (m

1

; : : : ;m

k

; 3; 3; : : : ; 3)

> (m

1

; : : : ;m

k

; 2; 3; : : : ; 3)

= �((L

1

: : : L

k

L

>

;N))

Baktrak:

�((L

1

: : : L

j

L

>

L

j+1

: : : L

k

;N)) = (m

1

; : : : ;m

j

; 2;m

j+1

; : : : ;m

k

; 3; : : : ; 3)

> (m

1

; : : : ;m

j

; 1; 3; : : : ; 3)

= �((L

1

: : : L

j

:L;N))

62 CHAPTER 2. PROPOSITIONAL LOGIC

2.10 Conit Driven Clause Learning (CDCL)

A CDCL problem state is a �ve-tuple (M ;N ;U ; k;C) where M a sequene of

annotated literals, N and U are sets of lauses, k 2 N, and C is a non-empty

lause or > or ?. In partiular, the following states an be distinguished:

(�;N ; ;; 0;>) is the start state for some lause set N

(M ;N ;U ; k;>) is a �nal state, if M j= N and all literals from N are

de�ned in M

(M ;N ;U ; k;?) is a �nal state, where N has no model

(M ;N ;U ; k;>) is an intermediate model searh state if M 6j= N

(M ;N ;U ; k;D) is a baktraking state if D 62 f>;?g

A literal L is of level k with respet to a problem state (M ;N ;U ; j;C) if

L or :L ours in M and the �rst deision literal left from L (:L) in M is

annotated with k or if there is no deision literal k = 0. A lause D is of level

k with respet to a problem state (M ;N ;U ; j;C) if k is the maximal level of a

literal in D. Reall C is a non-empty lause or > or ?. The rules are

Propagate (M ;N ;U ; k;>))

CDCL

(ML

C_L

;N ;U ; k;>)

provided C _ L 2 (N [U), M j= :C, and L is unde�ned in M

Deide

(M ;N ;U ; k;>))

CDCL

(ML

k+1

;N ;U ; k + 1;>)

provided L is unde�ned in M

Conit

(M ;N ;U ; k;>))

CDCL

(M ;N ;U ; k;D)

provided D 2 (N [U) and M j= :D

Skip (ML

C_L

;N ;U ; k;D))

CDCL

(M ;N ;U ; k;D)

provided D 62 f>;?g and :L does not our in D

Resolve

(ML

C_L

;N ;U ; k;D _ :L))

CDCL

(M ;N ;U ; k;D _ C)

provided D ontains a literal of level k or k = 0

For rule Resolve we assume that dupliate literals in D _ C are always re-

moved.

Baktrak

(M

1

K

i+1

M

2

;N ;U ; k;D _ L))

CDCL

(M

1

L

D_L

;N ;U [fD _

Lg; i;>)

provided L is of maximal level k in D _ L and D is of level i, where i < k.

Restart

(M ;N ;U ; k;>))

CDCL

(�;N ;U ; 0;>)

provided M 6j= N

2.10. CONFLICT DRIVEN CLAUSE LEARNING (CDCL) 63

Forget (M ;N ;U [fCg; k;>))

CDCL

(M ;N ;U ; k;>)

provided M 6j= N

Reall that ? denotes the empty lause, hene failure of searhing for a

model. The level of the empty lause ? is 0. The lause D _ L added in rule

Baktrak to U is alled a learned lause. The CDCL algorithm stops with a

model M if neither Propagate nor Deide nor Conit are appliable to a state

(M ;N ;U ; k;>), hene M j= N and all literals of N are de�ned in M . The only

possibility to generate a state (M ;N ;U ; k;?) is by the rule Resolve. So in ase

of deteting unsatis�ability the CDCL algorithm atually generates a resolution

proof as a erti�ate. I will disuss this aspet in more detail in Setion 2.12.

In the speial ase of a unit lause L, the rule Propagate atually annotates the

literal L with itself.

Obviously, the CDCL rule set does not terminate in general for a number of

reasons. For example, starting with (�;N ; ;; 0;>) a simple ombination Propa-

gate, Deide and eventually Restart yields the start state again. Even after a

suessful appliation of Baktrak, exhaustive appliation of Forget followed

by Restart again produes the start state. So why these rules? Atually, any

modern SAT solver is based on this rule set and the underlying mehanisms. I

will motivate the rules later on and how they are atually used in an eÆient

way.

Example 2.10.1 (CDCL Strategy I). Consider the lause setN = fP_Q;:P_

Q;:Qg whih is unsatis�able. The below is a CDCL derivation proving this fat.

The hosen strategy for CDCL rule seletion produes a lengthy proof.

(�;N ; ;; 0;>)

)

Deide

CDCL

(P

1

;N ; ;; 1;>)

)

Deide

CDCL

(P

1

:Q

2

;N ; ;; 2;>)

)

Conit

CDCL

(P

1

:Q

2

;N ; ;; 2;:P _Q)

)

Baktrak

CDCL

(P

1

Q

:P_Q

;N ; f:P _Qg; 1;>)

)

Conit

CDCL

(P

1

Q

:P_Q

;N ; f:P _Qg; 1;:Q)

)

Baktrak

CDCL

(:Q

:Q

;N ; f:P _Q;:Qg; 0;>)

)

Deide

CDCL

(:Q

:Q

P

1

;N ; f:P _Q;:Qg; 1;>)

)

Conit

CDCL

(:Q

:Q

P

1

;N ; f:P _Q;:Qg; 1;:P _Q)

)

Baktrak

CDCL

(:Q

:Q

:P

:P_Q

;N ; f:P _Q;:Qg; 0;>)

)

Conit

CDCL

(:Q

:Q

:P

:P_Q

;N ; f:P _Q;:Qg; 0;P _Q)

)

Resolve

CDCL

(:Q

:Q

;N ; f:P _Q;:Qg; 0;Q)

)

Resolve

CDCL

(�;N ; f:P _Q;:Qg; 0;?)

Example 2.10.2 (CDCL Strategy II). Consider again the lause set N =

fP _Q;:P _Q;:Qg from Example 2.10.1. For the following CDCL derivation

the rules Propagate and Conit are preferred over the other rules.

64 CHAPTER 2. PROPOSITIONAL LOGIC

(�;N ; ;; 0;>)

)

Propagate

CDCL

(:Q

:Q

;N ; ;; 0;>)

)

Propagate

CDCL

(:Q

:Q

P

Q_P

;N ; ;; 0;>)

)

Conit

CDCL

(:Q

:Q

P

Q_P

;N ; ;; 0;:P _Q)

)

Resolve

CDCL

(:Q

:Q

;N ; ;; 0;Q)

)

Resolve

CDCL

(�;N ; ;; 0;?)

I

In an implementation the rule Conit is preferred over the rule Prop-

agate and both over all other rules. Exatly this strategy has been

used in Example 2.10.2 and is alled reasonable below. A further in-

gredient is a dynami heuristi whih literal is atually used by the rule Deide.

This heuristi typially depends on the usage of literals by the rule Resolve, i.e.,

literals used in Resolve \get a bonus".

De�nition 2.10.3 (Reasonable CDCL Strategy). A CDCL strategy is reason-

able if Conit is always preferred over rule Propagate is always preferred over

all other rules.

Proposition 2.10.4 (CDCL Basi Properties). Consider a CDCL state

(M ;N ;U ; k;C) derived by a reasonable strategy from start state (�;N; ;; 0;>)

without using the rules Restart and Forget. Then the following properties hold:

1. M is onsistent.

2. All learned lauses are entailed by N .

3. If C 62 f>;?g then M j= :C.

4. If C = > and M ontains only propagated literals then for eah valuation

A with A j= N it holds that A j=M .

5. If C = >, M ontains only propagated literals and M j= :D for some

D 2 (N [U) then N is unsatis�able.

6. If C = ? then CDCL terminates and N is unsatis�able.

7. Eah in�nite derivation

(�;N ; ;; 0;>))

CDCL

(M

1

;N ;U

1

; k

1

;D

1

))

CDCL

: : :

ontains an in�nite number of Baktrak appliations.

8. CDCL never learns the same lause twie if Conit selets the smallest

lause out of N [U .

Proof. 1.M is onsistent if it does does not ontain L and :L at the same time.

The rules Propagate, Deide only add unde�ned literals to M . By an indutive

2.10. CONFLICT DRIVEN CLAUSE LEARNING (CDCL) 65

argument this holds also for Baktrak as it just removes literals from M and

ips one literal already ontained in M .

2. A learned lause is a always a resolvent of lauses from N [U and even-

tually added to U where U is initially empty. By soundness of resolution (The-

orem 2.7.1) and an indutive argument it is entailed by N .

3. A lause C 62 f>;?g an only our after Conit where M j= :C.

The rule Skip does not hange C and only deletes propagated literals from M

that are not ontained in C. By an indutive argument, if the rule Resolve is

applied to a state (M

0

L

D

0

_L

;N ;U ; k;D _ :L) where C = D _ :L resulting in

(M

0

;N ;U ; k;D_D

0

) thenM

0

j= :D beauseM

0

j= :C andM

0

j= :D

0

beause

L was propagated with respet to M

0

and D

0

_ L.

4. Proof by indution on the number n of propagated literals in M . Let

M = L

1

; : : : ; L

n

; L

n+1

. There are two rules that ould have added L

n+1

. (i) rule

Propagate: in this ase there is a lause C = D _ L

n+1

where L

n+1

was unde-

�ned in M and M j= :D. By indution hypothesis for eah valuation A with

A j= N it holds that A(L

i

) = 1 for all i 2 f1; : : : ; ng. Sine all literals in D

appear negated in M with the indution hypothesis it holds that all those liter-

als must have the truth value 1 in any valuation A. Therefore, for the lause C

to be true L

n+1

must be true as well in any valuation. It follows that for eah

valuation A it holds that A(L

i

) = 1 for all i 2 f1; : : : ; n + 1g. (ii) rule Bak-

trak: the state (M

1

K

i+1

M

2

;N ;U ; k;D_L

k

n+1

) whereM j= :(D_L

k

n+1

) (with

Proposition 2.10.4-3) andM

1

= L

1

: : : L

n

with only propagated literals beomes

(M

1

L

D_L

n+1

n+1

;N ;U ; i;>). With the indution hypothesis for eah valuation A

with A j= N it holds that A(L

i

) = 1 for all 1 � i � n i.e. in partiular it holds

that for eah literal L in D A(L) = 0 sine eah literal in D appears negated in

M

1

. Thus, for eah eah valuation A with A j= N A(L

n+1

) = 1 holds.

5. Sine M j= :D it holds that :K

i

2 M for all 1 � i � m. With Propo-

sition 2.10.4-4 for eah valuation A with A j= N it holds that A(L

j

) = 1 for

all 1 � j � n. Thus in partiular it holds that A(:K

i

) = 1 for all 1 � i � m.

ThereforeD is always false under any valuation A and N is always unsatis�able.

6. By the de�nition of the rules the state (M ;N ;U ; k;?) an only be reahed

if the rule Conit has been applied to set some onit lause C of a state

(M

0

;N ;U ; k;>) as the last omponent and Resolve is used in the last rule

appliation to derive?. Before the last all of Resolve the state had the following

form (ML

?_L

;N ;U ; k;:L) otherwise? ould not be derived.M annot ontain

any deision literal beause L is a propagated literal and due to the strategy

the rule Propagate is applied before the rule Deide. With Proposition 2.10.4-5

it follows that N is unsatis�able.

7. Proof by ontradition. Assume Baktrak is applied only �nitely often

in the in�nite trae. Then there exists an i 2 N

+

with R

j

6= Baktrak for all

j > i. Propagate and Deide an only be applied as long as there are unde�ned

literals in M . Sine there is only a �nite number of propositional variables they

an only be applied �nitely often.

66 CHAPTER 2. PROPOSITIONAL LOGIC

By de�nition the appliation of the rules Skip, Resolve and Baktrak is

preeded by an appliation of the rule Conit sine the initial state has a

> as the last omponent and Conit is the only rule that replaes the last

omponent by a lause. For the rule Conit to be applied in�nitely often the

last omponent has to hange to >. By de�nition that an only be performed

by the rules Resolve and Baktrak (a ontradition to the assumption). For

Resolve assume the following rule appliation (ML

C_L

;N ;U ; k;D_:L))

CDCL

(M ;N ;U ; k;D _ C). For D _ C = > there must be a literal K with K;:K 2

(D _ C). With Proposition 2.10.4-3 M j= :(D _ C) holds whih is equivalent

to M j= ?,a ontradition beause of Proposition 2.10.4-1. Therefore Conit

is applied �nitely often.

Skip and Resolve are also applied �nitely often sine Conit is applied

�nitely often and they annot be applied in�nitely often interhangeably. Oth-

erwise the �rst omponent M has to be of in�nite length, a ontradition.

8. By Proposition 2.12.4.

Lemma 2.10.5. Assume the algorithm CDCL with all rules is applied us-

ing the strategy eager appliation of Conit and Propagate where Conit is

applied before Propagate. The CDCL algorithm has only 2 termination states:

(M ;N ;U ; k;>) where M j= N and (M ;N ;U ; k;?) where N is unsatis�able.

Proof. Let the CDCL algorithm terminate in a state (M ;N ;U ; k;�) starting

from the initial state (�;N ; ;; 0;>).

1. Let � = ?. No rule an be applied and (M ;N ;U ; k;?) is indeed a termina-

tion state. With Proposition 2.10.4-6 it also holds that N is unsatis�able.

2. Let � = > and M j= N . Then the algorithm found a total valuation M

for N and no literal in N is unde�ned in M (otherwise we ould apply

Deide, ontraditing that the algorithm terminated). SineM j= N there

an also be no onit lause D. Hene, no further rule an be applied and

the state (M ;N ;U ; k;>) where M j= N is a termination state.

3. Let � = > andM j= N does not hold. SineM j= N does not hold there is

either a lauseD 2 N withM j= :D or there is no suh lauseD but there

is a literal in N that is unde�ned in M . For the �rst ase the rule Conit

is appliable and for the seond ase the rule Deide is appliable. Thus,

for both ases it holds that (M ;N ;U ; k;>) is not a termination state, a

ontradition.

4. Let � be a lause C = D_L. With Proposition 2.10.4-3 the lause C must

be a oniting lause where M j= :C.

If the rightmost literal in M is a propagated literal then the rules Skip or

Resolve are appliable if their onditions are satis�ed. This would ontra-

dit that the algorithm terminated. The ase that the onditions are not

satis�ed is handled in a similar way as the deided literal ase.

2.10. CONFLICT DRIVEN CLAUSE LEARNING (CDCL) 67

If the rightmost literal is a deision literal L then L is ontained in C. This

is due to the fat that with the assumed strategy before deiding literal L

(via the rule Deide) neither Propagate nor Conit were appliable. Thus,

L is of maximal level k and the remaining part of C an only be of a level

i with i < k. The same holds for the ase that the rightmost literal is a

propagated literal butD does not ontain a literal of level k and Skip is also

not appliable. Then D must again be of a level i with i < k and L must be

the literal of level k in C (otherwise, due to the strategy, the rule Conit

would have been alled before the rule Propagate and the rightmost literal

in M ould not be the propagated literal L). Therefore, in both ases the

rule Baktrak is appliable, ontraditing that the algorithm terminated.

Proposition 2.10.6 (CDCL Soundness). Assume the algorithm CDCL with

all rules is applied using the strategy eager appliation of Conit and Propagate

where Conit is applied before Propagate. The rules of the CDCL algorithm are

sound, i.e. whenever the algorithm terminates in state (M ;N ;U ; k;�) starting

from the initial state (�;N ; ;; 0;>) then it holds thatM j= N i� N is satis�able.

Proof. ()) if M j= N and M is onsistent with Proposition 2.10.4-1 then N is

satis�able.

(() Proof by ontradition. Assume N is satis�able and the algorithm ter-

minates in state (M ;N ;U ; k;�) starting from the initial state (�;N ; ;; 0;>).

Furthermore, assumeM j= N does not hold. With Lemma 2.10.5 there are only

2 termination states, i.e. � an only be > or ?.

Case � = > then by Lemma 2.10.5 M j= N . This is a ontradition to the

assumption that M j= N does not hold.

Case � = ? then by Lemma 2.10.5 N is unsatis�able. This is a ontradition

to N being satis�able.

Therefore all rules of the CDCL algorithm are sound.

Proposition 2.10.7 (CDCL Completeness). The CDCL rule set is omplete:

for any valuation M with M j= N there is a sequene of rule appliation gener-

ating (M ;N ;U ; k;>) as a �nal state.

Proof. Let M = L

1

L

2

: : : L

k

. Sine M is a valuation there are no dupliates

in M and k appliations of rule Deide yield (L

1

1

L

2

2

: : : L

k

k

;N ; ;; k;>) out of

(�;N ; ;; 0;>). Sine M j= N this is a �nal state and all literals from N are

de�ned in M . The rules Propagate and Deide annot be applied anymore and

there is no onit beause M j= N . Therefore Conit, Skip, Resolve and

Baktrak are not appliable. The rule Forget is not appliable sine U = ; and

there is no need to restart.

68 CHAPTER 2. PROPOSITIONAL LOGIC

C As an alternative proof of Proposition 2.10.7 the strategy of an alter-

nation of an exhaustive appliation of Propagate and one appliation

of Deide produes (M ;N ; ;; i;>) as a �nal state where M j= N . As in the

proof of Proposition 2.10.7 letM = L

1

L

2

: : : L

k

. First apply Propagatem-times

exhaustively resulting in (L

1

: : : L

m

;N ; ;; 0;>) where m � k. With Proposi-

tion 2.10.4-4 the literals L

1

: : : L

m

must be true in any valuation A with A j= N .

Thus, if m = k then (L

1

: : : L

m

;N ; ;; 0;>) is a �nal state andM j= N . If m < k

then apply Deide one on a literal fromM resulting in (L

1

: : : L

m

L

1

;N ; ;; 1;>).

Sine L

1

is ontained in M it must be true. This strategy an be applied equiv-

alently to all further literals in M resulting in the desired state.

Proposition 2.10.8 (CDCL Termination). Assume the algorithm CDCL with

all rules exept Restart and Forget is applied using the strategy eager appliation

of Conit and Propagate where Conit is applied before Propagate. Then it

terminates in a state (M ;N ;U ; k;D) with D 2 f>;?g.

Proof. Proof by ontradition. Assume there is an in�nite trae that starts in

a state (M

0

;N ;U

0

; k

0

;D

0

). With Proposition 2.10.4-?? and 2.10.4-8 there an

only be a �nite number of lauses that are learned during the in�nite run. By

de�nition of the rules only the rule Baktrak auses that a lause is learned so

that the rule Baktrak an only be applied �nitely often. But with Proposition

2.10.4-7 the rule Baktrak must be applied in�nitely often, a ontradition.

Therefore there does not exist an in�nite trae, i.e. the algorithm always termi-

nates under the given assumptions.

The CDCL rule set does not in general terminate. This is due to the rules

Restart and Forget. If they are applied only �nitely often then the algorithm

terminates. At some point the last appliation of Restart and Forget was reahed

sine they are only applied �nitely often. From this point onwards Proposition

2.10.8 an be applied and the algorithm eventually terminates.

Example 2.10.9 (CDCL Termination I). Consider the lause set N = fP _

Q;:P _ Q;:Qg. The CDCL algorithm does not terminate due to the rule

Restart.

(�;N ; ;; 0;>)

)

Propagate

CDCL

(:Q

:Q

;N ; ;; 0;>)

)

Propagate

CDCL

(:Q

:Q

P

Q_P

;N ; ;; 0;>)

)

Restart

CDCL

(�;N ; ;; 0;>)

)

Propagate

CDCL

(:Q

:Q

;N ; ;; 0;>)

)

Propagate

CDCL

(:Q

:Q

P

Q_P

;N ; ;; 0;>)

)

Restart

CDCL

(�;N ; ;; 0;>)

)

CDCL

: : :

Example 2.10.10 (CDCL Termination II). Consider the lause set N = f:P _

Q_:R;:P _Q_Rg. The CDCL algorithm does not terminate due to the rule

Forget.

2.10. CONFLICT DRIVEN CLAUSE LEARNING (CDCL) 69

(�;N ; ;; 0;>)

)

Deide

CDCL

(P

1

;N ; ;; 1;>)

)

Deide

CDCL

(P

1

:Q

2

;N ; ;; 2;>)

)

Propagate

CDCL

(P

1

:Q

2

:R

:P_Q_:R

;N ; ;; 2;>)

)

Conit

CDCL

(P

1

:Q

2

:R

:P_Q_:R

;N ; ;; 2;:P _Q _R)

)

Resolve

CDCL

(P

1

:Q

2

;N ; ;; 2;:P _Q)

)

Baktrak

CDCL

(P

1

;N ; f:P _Qg; 1;>)

)

Forget

CDCL

(P

1

;N ; ;; 1;>)

)

Deide

CDCL

(P

1

:Q

2

;N ; ;; 2;>)

)

Propagate

CDCL

(P

1

:Q

2

:R

:P_Q_:R

;N ; ;; 2;>)

)

Conit

CDCL

(P

1

:Q

2

:R

:P_Q_:R

;N ; ;; 2;:P _Q _R)

)

CDCL

: : :

C

As an alternative for the proof of Proposition 2.10.8 the termination

an be shown by assigning a well-founded measure � and proving that

it dereases with eah rule appliation exept for the rules Restart and

Forget. Let n be the number of propositional variables in N . The domain for

the measure � is N � f0; 1g� N.

�((M ;N ;U ; k;D)) =

�

(3

n

� 1� jU j; 1; n� jM j) ; D = >

(3

n

� 1� jU j; 0; jM j) ; else

The well-founded ordering is the lexiographi extension of < to triples.

What remains to be shown is that eah rule appliation exept Restart and

Forget dereases �. This is done via a ase analysis over the rules:

Propagate:

�((M ;N ;U ; k;>)) = (3

n

� 1� jU j; 1; n� jM j)

> (3

n

� 1� jU j; 1; n� jML

C_L

j)

= �((ML

C_L

;N ;U ; k;>))

Deide:

�((M ;N ;U ; k;>)) = (3

n

� 1� jU j; 1; n� jM j)

> (3

n

� 1� jU j; 1; n� jML

k+1

j)

= �((ML

k+1

;N ;U ; k;>))

Conit:

�((M ;N ;U ; k;>)) = (3

n

� 1� jU j; 1; n� jM j)

> (3

n

� 1� jU j; 0; jM j)

= �((M ;N ;U ; k;D))

Skip:

�((ML

C_L

;N ;U ; k;D)) = (3

n

� 1� jU j; 0; jML

C_L

j)

> (3

n

� 1� jU j; 0; jM j)

= �((M ;N ;U ; k;D))

70 CHAPTER 2. PROPOSITIONAL LOGIC

Resolve:

�((ML

C_L

;N ;U ; k;D _ :L)) = (3

n

� 1� jU j; 0; jML

C_L

j)

> (3

n

� 1� jU j; 0; jM j)

= �((M ;N ;U ; k;D _ C))

Baktrak: with Proposition 2.10.4-8 it holds that D _ L 62 U so that the

�rst omponent dereases.

�((M

1

K

i+1

M

2

;N ;U ; k;D _ L)) = (3

n

� 1� jU j; 0; jM

1

K

i+1

M

2

j)

> (3

n

� 1� jU [fD _ Lgj; 1; n� jM

1

L

D_L

j

= �((M

1

L

D_L

;N ;U [fD _ Lg; i;>))

2.11 Implementing CDCL

For an e�etive CDCL implementation the underlying data struture of the im-

plementation plays a ruial part. The tehnique that proved to be very suess-

ful in modern SAT solvers and that is also used in a CDCL implementation is the

2-wathed literals data struture. For hoosing the deision variables a speial

heuristi plays an important role in the implementation as well. This heuris-

ti is alled VSIDS (Variable State Independent Deaying Sum) that works on

natural numbers. Furthermore, the deision for hoosing the most reasonable

lause to be learned after a disovered onit is handled by the notion of UIPs

(Unique Impliation Points). In the following these main onepts (2-wathed

literals, VSIDS and 1UIP sheme) will be introdued in aordane with the

CDCL rule set.

2.11.1 Lazy Data Struture: 2-Wathed Literals (2WL)

For applying the rule Propagate, the number of literals in eah lause that are

not false need to be known. Maintaining this number is expensive, however,

sine it has to be updated whenever Baktrak is applied. Therefore, the better

approah is to use a more eÆient representation alled 2-wathed literals. A

list as represented in Figure 2.14 has referenes for eah variable P to lauses

where P ours positive and referenes to lauses where P ours negative. A

variable is either unassigned, true or false. For eah lause within the lause list

2 wathed (unassigned) variables are maintained. The way of working with the

wathed literals is as follows:

1. Let an unassigned variable P be set to false (or true).

2. Visit all lauses in whih P (or :P) is wathed.

3. In every lause where P (or :P) is wathed �nd an unwathed and non-

falsi�ed variable to be wathed. If there is no other unassigned or true

variable then this lause is either a unit lause and the rule Propagate an

be applied or there is a onit and the rule Baktrak is applied or the

lause set is already satis�ed.

2.11. IMPLEMENTING CDCL 71

.

.

.

P

.

.

.

P R

. . .

Q

:P

. . .

lause

lauses with P

lauses with :P

lause

Figure 2.14: The wathed literals list with the variables P;Q;R and the wathed

literals P , R and :P , Q.

An advantage of the data struture as shown in the example below is no

extra ost for variables that are not wathed (but assigned false).

As an example onsider the formula � = f:P _Q_ :R _ :S _ T;:P _Q_

:T;R_T; S_Tg. Figure 2.17 shows how to derive unit lauses and �nally satisfy

the formula within the wathed literals data struture. The wathed literals are

the �rst two entries in a lause. The trail (see next setion on Baktraking)

represents the assigned literals for the urrent state.

2.11.2 Baktraking

Another main advantage of the 2-wathed literals data struture is disovered

when onsidering baktraking. For this purpose a trail, a deision level and a

ontrol stak are maintained together with the wathed literals data struture.

The trail is a stak of variables that stores the order in whih the variables

are assigned. The deision level ounts the number of alls of the rule Deide.

The ontrol stak stores the trail height for eah deision level, i.e. one Deide

is applied the ontrol stak inreases by one entry and saves the height of the

previous trail stak.

If the rule Baktrak is applied the trail height entry from the ontrol stak is

taken and every variable from that trail height on will be unassigned, i.e. every

assignment value that was made sine the last appliation of the rule Deide is

deleted. A detailed example is shown in Figure 2.18. Again, the advantage with

the wathed literals data struture is that the wathed variables stay unhanged

and will not be onsidered by this baktraking step.

72 CHAPTER 2. PROPOSITIONAL LOGIC

.

.

.

P

.

.

.

NULL

:P

Q

:T

:P

Q

:R :S T

(a) Initialized 2WL data struture for the literal P and the urrent

trail is empty.

.

.

.

P

.

.

.

NULL

:T

Q

:P

:R

Q

:P :S T

(b) After deiding P the wathed literals have hanged and the ur-

rent trail is: P .

.

.

.

P

.

.

.

NULL

:T

Q

:P

:R T :P :S

Q

() After deiding :Q the unit lause f:P _Q_:Tg is ahieved and

the urrent trail is: P;:Q.

2.11. IMPLEMENTING CDCL 73

.

.

.

P

.

.

.

NULL

:T

Q

:P

:R :S :P T

Q

(d) After propagating :T; R and S the urrent trail is:

P;:Q;:T;R; S and the lause f:P _Q_:R_:S _ Tg evaluates to

false, a onit.

.

.

.

P

.

.

.

NULL

:T

Q

:P

:R :S :P T

Q

(e) After baktraking S;R; T;Q the urrent trail is: P .

.

.

.

P

.

.

.

NULL

:T

Q

:P

:R T :P :S

Q

(f) After propagating Q and deiding S the trail is: P;Q;S.

74 CHAPTER 2. PROPOSITIONAL LOGIC

.

.

.

P

.

.

.

NULL

:T

Q

:P

:R

Q

:P :S T

(g) After deiding :T and propagating R the trail is: P;Q; S;:T;R.

Figure 2.17: The wathed literals list for the formula � = f:P _Q_:R_:S _

T;:P _Q_:T;R_T; S _Tg before and after deiding / propagating variables

with a fous on the literal P .

0

deision

level

0

ontrol

stak

trail

(a) The initial entries.

1

deision

level

0

ontrol

stak

trail

0

P

(b) After deiding P.

2

deision

level

0

ontrol

stak

trail

0

1

P

:Q

() After deiding :Q.

2

deision

level

0

ontrol

stak

trail

0

1

P

:Q

:T

S

:R

(d) After propagating :T, S and :R.

1

deision

level

0

ontrol

stak

trail

0

P

(e) After baktraking.

Figure 2.18: The entries for deision level, ontrol stak and trail for the formula

� = fS _Q;P _Q;:P _ R _ :S;:P _ :R _ T;:P _Q _ :Tg.

2.11. IMPLEMENTING CDCL 75

2.11.3 Dynami Deision Heuristi: VSIDS

Choosing the right unassigned variable to deide is important for eÆieny, but

the heuristi may be expensive itself. Therefore, the aim is to use a heuristi

that needs not to be reomputed too often, that for example hooses variables

whih our frequently and prefers variables from reent onits.

The VSIDS (Variable State Independent Deaying Sum) is suh a heuristi.

The strategy is as follows:

1. Initially assign eah variable a sore e.g. its number of ourrenes in the

formula.

2. Adjust the sores during a CDCL run: whenever a onit lause is re-

solved with another lause the resolved variable gets its sore inreased by

a bonus d, initially d = 1 and d inreases with every onit: d = d

6

5

de.

3. Furthermore, whenever a lause is learned the sore of the variables of this

lause is additionally inreased by adding d to its sore.

4. As soon as a variable sore s or d reahes a ertain limit k, e.g. k = 2

60

,

all variables get their sore resaled by a onstant, e.g. s = ds � 2

60

e. At

this point d is also resaled: d = dd � 2

�50

e.

5. At a deision point with probability

1

50

hoose a variable at random. In

the other ases hoose an unassigned variable with the highest sore.

The heuristi has very low overhead sine it is independent of variable as-

signments whih makes it a fast strategy. Furthermore, it favors variables that

satisfy the most possible number of lauses and prefers variables that are more

involved in onits.

2.11.4 Conit Analysis and Learning: 1UIP sheme

If a oniting lause is found, the algorithm needs to derive a new lause from

the onit and add it to the urrent set of lauses. But the problem is that this

may produe a large number of new lauses, therefore it beomes neessary to

hoose a lause that is most reasonable.

This setion examines how to derive suh a onit lause one a onit

is deteted. The key idea is to �nd an asserting lause that inludes the �rst

UIP (Unique Impliation Point). For this purpose the onept of impliation

graphs is required and hene de�ned �rst. An impliation graph G = (V;E) is

a direted graph with a node set V and an edge set E. Eah node has the form

l=L, whih means that the variable L was set to a value (either true or false)

at the deision level l either via the rule Propagate or Deide. If a variable L

of a node n was set via the rule Propagate with lause C = D _ L then there

must be an edge from every node of the variables in D to n. This means that

the variables from D imply L. In partiular, deision variable nodes have no

inoming edges. A ut of an impliation graph is a partition of the graph into

76 CHAPTER 2. PROPOSITIONAL LOGIC

two nonempty sets suh that the deision variable nodes will be in a di�erent

set than the onit node. Every edge that rosses a spei� ut will be part

of a onit set, i.e. the number of uts denotes the number of onit sets.

There is a total of 2

n�k

possible uts, where n = # variables and k = level of

onit lause (= # deision variables). A UIP in the graph is a variable of the

onit level l that lies on every path from the deision variable of level l and

the onit. The �rst UIP (1UIP) is a UIP that lies losest to the onit in

the impliation graph. The strategy for deriving the most useful onit lause

is as follows:

1. Construt the impliation graph aording to a given set of lauses, a for-

mula �. As an example onsider Figure 2.19 that depits an impliation

graph of the formula � = fS_Q;P _Q;:P _R_:S;:P _:R_T;:P _Q_

:Tg where the node 1=; denotes a onit. The orresponding trail, on-

trol stak and deision level are shown in Figure 2.18. The orresponding

wathed literals list is shown in Figure 2.23.

2. Identify the onit sets by means of the impliation graph, i.e. the uts

of the graph need to be onsidered. In Figure 2.19 there are three uts

depited representing the following onit sets: fP;:Qg; fP;:T; Sg and

fP;:R;Sg.

3. Choose the most useful lause from the set of all onits. It proved to be

most e�etive to hoose a lause that has exatly one variable that was

assigned at the same deision level in whih the onit arose. This is why

the lause is also alled asserting lause. If there is more than one asserting

lause for a onit as in Figure 2.19, then take the asserting lause that

ontains the 1UIP. In Figure 2.20 there is only one UIP whih is also the

1UIP that is :Q. Therefore, the most useful lause from the onit set

is fP;:Qg.

4. Learn the lause: After determining the asserting lause C with the 1UIP

the atual onit lause is obtained by negating all assignments of the

variables within lause C. This onit lause will eventually be learned

by adding it to the set of lauses of the original formula �. In the example

from Figure 2.19 the lause :P _Q will be learned.

The ombination of onit analysis and non-hronologial baktraking en-

sures that the learned lause beomes a unit lause and thereby preventing the

solver from making the same mistakes over again.

2.11.5 Restart and Forget

As mentioned in the setion on VSIDS (see 2.11.3) the runtime of the CDCL

implementation depends on the hoie of the deision variable. In ase no suit-

able variable is found within a ertain time limit it might be useful to apply

a restart, another important tehnique applied in the CDCL implementation.

With the rule Restart all urrently assigned variables will beome unassigned

2.11. IMPLEMENTING CDCL 77

2/:Q

1/P

2/:T

2/S

2/:R 2/;

ut 1 ut 2 ut 3

Figure 2.19: An impliation graph for the formula � with uts.

2/:Q

1UIP

1/P

2/:T

2/S

2/:R 2/;

Figure 2.20: The impliation graph denoted with the 1UIP.

78 CHAPTER 2. PROPOSITIONAL LOGIC

P

Q

R

S

T :P

Q

:T

S

Q

:P R :S

:P :R T

P

Q

NULL

(a) The initial state and the urrent trail is empty.

P

Q

R

S

T :T

Q

:P

S

Q

:S R :P

T :R :P

P

Q

NULL

(b) After deiding P wathed literals are swapped, the trail is: P .

P

Q

R

S

T :T

Q

:P

S

Q

:S R :P

T :R :P

P

Q

NULL

() After deiding :Q, no hange in the wathed literals, the trail is: P;:Q.

2.11. IMPLEMENTING CDCL 79

P

Q

R

S

T :T

Q

:P

S

Q

:S R :P

T :R :P

P

Q

NULL

(d) After propagating :T; S and :R, no hange of wathed literals but a onit ours

in :P _R _ S, the trail is: P;:Q;:T; S;:R.

P

Q

R

S

T :T

Q

:P

S

Q

:S R :P

T :R :P

P

Q

NULL

(e) After baktraking the literals :Q;:T; S;:R, the trail is: P .

80 CHAPTER 2. PROPOSITIONAL LOGIC

P

Q

R

S

T :T

Q

:P

S

Q

:S R :P

T :R :P

P

Q

NULL

:P

Q

(f) After learning the lause :P _Q, the trail is still P .

Figure 2.23: The wathed literals list aording to the impliation graph from

Figures 2.19 and 2.20 as well as the ontrol stak, trail and deision level of

Figure 2.18.

while learned lauses will be maintained. The motivation for this tehnique has

to do with the fat that the solver an reah a point where inorret variable

assignments were made and the solver is not able to resolve within a reasonable

amount of time the literals that are needed to �nd a onit. In that ase a

restart is performed intending to make better variable assignments earlier on

with the previous learned information.

A further tehnique that ontributes to the performane of the CDCL solver

is the rule Forget. With every onit lause the number of learned lauses

inreases. Reording all learned lauses an be very expensive espeially if some

lauses are repeatedly stored or if some lauses are subsumed by others. As a

result, this an lead to an exhaustion of available memory and to an additional

overhead. Therefore deleting suitable lauses from the learned lause set an be

useful. The riteria by whih the rule Forget is applied are the following: either

if the number of learned lauses is 4 times the number of original lauses or

if a spei� maximum number of learned lauses is reahed that is previously

given. In both ases the minimum of the following 2 ases is exeuted: either

half of the learned lauses are deleted or all learned lauses are deleted until a

lause is reahed that implies or has implied a urrent assignment. Furthermore,

an implementation ould also hek the subsumption of learned lauses over

existing lauses but this hek is often omitted due to performane reasons.

2.12. SUPERPOSITION AND CDCL 81

2.11.6 Algorithm and Strategy

As shown in the examples 2.10.1 and 2.10.2 a ertain CDCL rule appliation

order an improve the performane of the rule-based CDCL algorithm. The

algorithm 5 depits the strategy where Conit is preferred over Propagate and

Propagate over any other rule. In general the rules Deide and Propagate should

not be applied when a onit already exists. For otherwise, the additional

literals that are added via Deide or Propagate beome useless and will be

deleted again when baktraking. Therefore the appliation of the rule Conit

is heked before any other rule. The statements from line 1 onwards desribe

the atual strategy, i.e. Conit is always preferred over any other rule and

Propagate is preferred over Deide. The reason why the rules Skip and Resolve

are always applied exessively one a onit was found is due to �nding the

lause with the 1UIP of the onit level. The rule Skip is applied to those

literals that are not involved in the onit. Via the rule Resolve the onit

lause is resolved with lauses that implied the onit and thereby yielding

a new potentially learned lause. One both rules annot be applied anymore

the state is either a fail state, Baktrak annot be applied and the algorithm

returns the fail state (M ;N ;U ; k;?) or the state is not a fail state and the

onit lause with the 1UIP was found. In the latter ase the urrent onit

lause will be learned via the rule Baktrak. At this point it is heked whether

the total number of approahed onits reahed a ertain limit, i.e. a restart is

neessary, indiating that the solver needs too muh time deteting an inorret

value assignment that was previously made. Sine the number of learned lauses

inreases with every onit it is also heked whether previously learned lauses

an be deleted, i.e. forget is neessary. In ase the urrent state has no onit,

the rule Propagate is preferred over the rule Deide in line 15 sine the hanes

of taking wrong deisions when deiding a literal's truth value dereases. The

rule Deide takes the value of the VSIDS heuristi for the urrent state into

aount.

2.12 Superposition and CDCL

At the time of this writing it is often believed that the superposition (resolution)

alulus is not suessful in pratie whereas most of the suessful SAT solvers

implemented in 2012 are based on CDCL. In this setion I will develop some

relationships between superposition and CDCL.

The start is a modi�ation of the superposition model operator, De�ni-

tion 2.8.5. The goal of the original model operator is to reate minimal models

with respet to positive literals, i.e., if N

I

j= N for some N , then there is no

M

0

� N

I

suh that M

0

j= N . However, if the goal generating minimal models

is dropped, then there is more freedom to onstrut the model while preserving

the general properties of the superposition alulus. So, let's assume a heuristi

H that selets whether a literal should be produtive or not.

82 CHAPTER 2. PROPOSITIONAL LOGIC

Algorithm 5: CDCL(S)

Input : An initial state (�;N ; ;; 0;>).

Output: A �nal state S = (M ;N ;U ; k;>) or S = (M ;N ;U ; k;?)

1 while (any rule appliable) do

2 ifrule (Conit(S)) then

3 while (Skip(S) k Resolve(S)) do

4 update VSIDS sores on resolved literals;

5 end

6 update VSIDS sores on learned lause;

7 Baktrak(S);

8 sale VSIDS sores;

9 if (forget heuristi) then

10 Forget(S) redundant lauses ;

11 Restart(S);

12 else

13 ifrule (!Propagate(S)) then

14 Deide(S);

15

16

17 end

18 return(S);

De�nition 2.12.1 (Heuristi-Based Partial Model Constrution). Given a

lause set N , an ordering� and a variable heuristiH : �! f0; 1g, the (partial)

model N

H

�

for N and signature �, with P;Q 2 � is indutively onstruted as

follows:

N

H

P

:=

S

Q�P

Æ

H

Q

Æ

H

P

:=

8

>

>

<

>

>

:

fPg if (D _ P) 2 N;P stritly maximal and N

H

P

6j= D or

H(P) = 1 and for all lauses (C _ :P) 2 N;C � :P

it holds N

H

P

j= C

; otherwise

N

H

�

:=

S

P2�

Æ

H

P

T

Please note that N

I

is de�ned indutively over the lause ordering �

whereas N

H

�

is de�ned indutively over the atom ordering �.

Proposition 2.12.2. If H(P) = 0 for all P 2 � then N

I

= N

H

�

for

any N .

Proof. The proof is by ontradition. Assume N

I

6= N

H

�

, i.e., there is a minimal

P 2 � suh that P ours only in one set out of N

I

and N

H

�

.

2.12. SUPERPOSITION AND CDCL 83

Case 1: P 2 N

I

but P 62 N

H

�

.

Then there is a produtive lause D = D

0

_ P 2 N suh that P is stritly

maximal in this lause andN

D

6j= D

0

. Sine P is stritly maximal in D the lause

D

0

only ontains literals stritly smaller than P . Sine both interpretations agree

on all literals smaller than P from N

D

6j= D

0

it follows N

H

P

6j= D

0

and therefore

Æ

H

P

= fPg ontraditing P 62 N

H

�

.

Case 2: P 62 N

I

but P 2 N

H

�

.

Then there is a produtive lause D = D

0

_ P 2 N suh that P is stritly

maximal in this lause and N

H

P

6j= D

0

beause H(P) = 0. Sine P is stritly

maximal in D the lause D

0

only ontains literals stritly smaller than P . Sine

both interpretations agree on all literals smaller than P fromN

H

P

6j= D

0

it follows

N

D

6j= D

0

and therefore Æ

D

= fPg ontraditing P 62 N

I

.

So the new model operator N

H

�

is a generalization of N

I

. Next, I will show

that with the help of N

H

�

a lose relationship between the model operator run

by the CDCL alulus and the superposition model operator an be established.

This result an then further be used to relate the abstrat superposition redun-

dany riteria to CDCL. But before going into the relationship I �rst show that

the generalized superposition partial model operator N

H

�

supports the standard

superposition ompleteness result, analogous to Theorem 2.8.9. Reall that the

same notion of redundany, De�nition 2.8.3, is used.

Theorem 2.12.3. If N is saturated up to redundany and ? =2 N then N is

satis�able and N

H

�

j= N .

Proof. The proof is by ontradition. So I assume (i) any lause C derived by

Superposition Left or Fatoring from N that C is redundant, i.e., N

�C

j= C,

(ii) ? =2 N and (iii) N

H

�

6j= N . Then there is a minimal, with respet to �,

lause C

1

_L 2 N suh that N

I

6j= C

1

_L and L is a maximal literal in C

1

_L.

This lause must exist beause ? =2 N .

The lause C

1

_ L is not redundant. For otherwise, N

�C

1

_L

j= C

1

_ L and

hene N

H

�

j= C

1

_ L, beause N

H

�

j= N

�C

1

_L

, a ontradition.

I distinguish the ase whether L is a positive or a negative literal. Firstly,

assume L is positive, i.e., L = P for some propositional variable P . Now if P is

stritly maximal in C

1

_ P then atually Æ

H

P

= fPg and hene N

H

P

j= C

1

_ P , a

ontradition. So P is not stritly maximal. But then atually C

1

_ P has the

form C

0

1

_ P _ P and Fatoring derives C

0

1

_ P where (C

0

1

_ P) � (C

0

1

_ P _ P).

Now C

0

1

_P is not redundant, stritly smaller than C

1

_L, we have C

0

1

_P 2 N

and N

H

�

6j= C

0

1

_ P , a ontradition against the hoie that C

1

_ L is minimal.

Seondly, assume L is negative, i.e., L = :P for some propositional variable

P . Then, sine N

H

�

6j= C

1

_:P we know P 2 N

I

, i.e., Æ

H

P

= fPg. There are two

ases to distinguish. Firstly, there is a lause C

2

_ P 2 N where P is stritly

maximal and by de�nition (C

2

_ P) � (C

1

_ :P). So a Superposition Left

inferene derives C

1

_ C

2

where (C

1

_ C

2

) � (C

1

_ :P). The derived lause

C

1

_ C

2

annot be redundant, beause for otherwise either N

�C

2

_P

j= C

2

_ P

or N

�C

1

_:P

j= C

1

_ :P . So C

1

_ C

2

2 N and N

H

�

6j= C

1

_ C

2

, a ontradition

84 CHAPTER 2. PROPOSITIONAL LOGIC

against the hoie that C

1

_L is minimal. Seondly, there is no lause C

2

_P 2 N

where P is stritly maximal but H(P) = 1. But a further ondition for this ase

is that there is no lause (C

1

_ :P) 2 N suh that N

H

P

6j= C

1

ontraditing the

above hoie of C

1

_ :P .

Realling Setion 2.8 Superposition is based on an ordering �. It relies

on a model assumption N

I

, De�nition 2.8.5 or its generalization N

H

�

, De�-

nition 2.12.1. Given a set N of lauses, either N

I

(N

H

�

) is a model for N , N

ontains the empty lause, or there is an inferene on the minimal false lause

with respet to �, see the proof of Theorem 2.8.9 or Theorem 2.12.3, respe-

tively.

CDCL is based on a variable seletion heuristi. It omputes a model as-

sumption via deision variables and propagation. Either this assumption is a

model of N , N ontains the empty lause, or there is a bakjump lause that is

learned.

For a CDCL state (M;N;U; k;D) generated by an appliation of the rule

Conit, whereM = L

1

; : : : ; L

n

any following Resolve step atually orresponds

to a superposition step between a minimal false lause and its produtive oun-

terpart, where atom(L

1

) � atom(L

2

) � : : : � atom(L

n

). Furthermore, for a

positive deision literal L

>

m

ourring in M the heuristi H(atom(L

m

)) = 1 and

H(atom(L

m

)) = 0 otherwise. Then the learned lause is in fat generated by su-

perposition with respet to the model operator N

H

�

. The following propositions

present this relationship between Superposition and CDCL in full detail.

Proposition 2.12.4. Let (M;N;U; k;D) be a CDCL state generated by a

strategy with eager appliation of Conit and Propagate, in this order. LetM =

L

1

; : : : ; L

n

, H(atom(L

m

)) = 1 for any positive deision literal L

>

m

ourring in

M and H(atom(L

m

)) = 0 otherwise. The superposition ordering is atom(L

1

) �

atom(L

2

) � : : : � atom(L

n

). Then

1. L

n

is a propagated literal.

2. The resolvent between C _ :L

k

and the lause C

0

_L

k

propagating L

k

is

a superposition inferene and the onlusion is not redundant.

Proof. 1. Assume L

n

is a deision literal. Then, sine Conit and Propagation

are applied eagerly,D has the formD = D

0

_:L

n

. But then at trail L

1

; : : : ; L

n�1

the lause D

0

_ :L

n

propagates :L

n

with respet to L

1

: : : L

n�1

, so with ea-

ger propagation, the literal L

n

annot be deision literal but its negation was

propagated by a lause D

0

_ :L

n

2 N .

2. Both C and C

0

only ontain literals with variables from atom(L

1

);

: : : ; atom(L

k�1

). Sine we assume dupliate literals to be removed and tau-

tologies to be deleted, the literal :L

k

is stritly maximal in C _ :L

k

and L

k

is stritly maximal in C

0

_ L

k

. So resolving on L

k

is a superposition inferene

with respet to the variable ordering atom(L

1

) � atom(L

2

) : : : � atom(L

k

).

Now assume C_C

0

is redundant, i.e., there are lauses D

1

; : : : ; D

n

from N with

D

i

� C _C

0

and D

1

; : : : ; D

n

j= C _C

0

. Sine C _C

0

is false in L

1

: : : L

k�1

there

is at least one D

i

that is also false in L

1

: : : L

k�1

. A ontradition against the

2.13. REDUNDANCY 85

assumption that L

1

: : : L

k�1

does not falsify any lause in N , i.e., rule Conit

was applied eagerly.

Proposition 2.12.4 is atually a nie explanation for the eÆieny of the

CDCL proedure: a learned lause is never redundant. Reall that redundany

here means that the learned lause C is not entailed by smaller lauses in N[U .

Furthermore, the ordering underlying Proposition 2.12.4 is based on the trail,

i.e., it hanges during a CDCL run. For superposition it is well known that

hanging the ordering is not ompatible with the notion of redundany, i.e.,

superposition is inomplete when the ordering may be hanged in�nitely often

and the superposition redundany notion is applied.

Example 2.12.5. Consider the superposition left inferene between the lauses

P _Q and R _ :Q with ordering P < R < Q resulting in P _R. Changing the

ordering to Q < P < R the inferene P _ R beomes redundant. So ipping

in�nitely often between P < R < Q and Q < P < R is already suÆient to

prevent any saturation progress.

Although Example 2.12.5 shows that hanging the ordering is not ompati-

ble with redundany and superposition ompleteness, Proposition 2.12.4 proves

that any CDCL learned lause is not redundant in the superposition sense and

the CDCL proedure hanges the ordering and is omplete. This relationship

shows the power of reasoning with respet to a model assumption. The model

assumption atually prevents the generation of redundant lauses. Nevertheless,

also in the CDCL framework ompleteness would be lost if redundant lauses

are eagerly removed in general. So either the ordering is not hanged and the

superposition redundany notion an be eagerly applied or only a weaker notion

of redundany is possible while keeping ompleteness.

The ruial point is that for the superposition alulus the ordering is also

the bases for termination and ompleteness. If the ompleteness proof an be

deoupled from the ordering, then the ordering might be hanged in�nitely often

and other notions of redundany beome available. However, these new notions

of redundany need to be ompatible with the ompleteness, termination proof.

De�nition 2.12.6 (Abstrat Length Redundany). A lause C is length redun-

dant with respet to a lause set N if N

�jCj

j= C, where N

�jCj

= fD j jDj �

jCjg.

Theorem 2.12.7 (Length Redundany and Superposition). Arbitrary Order-

ing Changes plus fairness plus length redundany preserves ompleteness.

Theorem 2.12.8 (Length Redundany and CDCL). At any time length re-

dundant lauses may be removed.

2.13 Redundany

One of the most suessful and robust heuristis is to keep the formula, lause

set \small". This heuristi is already the motivation for the spei� renaming

86 CHAPTER 2. PROPOSITIONAL LOGIC

algorithm presented in Setion 2.6.3. So getting rid of superuous, i.e., redun-

dant formulas or lauses is typially bene�ial to any eÆient reasoning. The

setion on normal form transformation (Setion 2.6) and the setions on CDCL

and superposition already introdued some redundany riteria. In this setion

they are extended for the ase of lause sets.

There is an important di�erene between lause redundany before a CDCL

or superposition alulus starts reasoning and lause redundany while the al-

ulus (superposition, CDCL) is operating on a set of lauses. For the former

it is suÆient that the redundany proedure is sound and terminating. For

the latter the proedure has in addition to respet the redundany notion of

the respetive alulus in order to preserve ompleteness, see De�nition 2.8.3,

Example 2.12.5, and Theorem 2.12.8, Theorem 2.12.7.

2.13.1 Redundany before Superposition and CDCL

Here are some standard rules for removing redundant lauses before superposi-

tion or CDCL starts. Subsumption, Tautology Deletion and Subsumption Res-

olution have already been introdued in Setion 2.8. Purity and Bloked Clause

Deletion are new.

Subsumption Deletion

(N ℄ fC

1

; C

2

g))

RBSC

(N [fC

1

g)

provided C

1

� C

2

Tautology Deletion

(N ℄ fC _ P _ :Pg))

RBSC

(N)

Subsumption Resolution

(N ℄ fC

1

_ L;C

2

_ Lg))

RBSC

(N [fC

1

_ L;C

2

g)

where C

1

� C

2

Purity

(N ℄ fC

1

_ L; : : : ; C

k

_ Lg))

RBSC

(N)

where L, L do not our in N

Bloked Clause Elimination

(N ℄ fC

1

_ L; : : : ; C

k

_ L;C

0

1

_ L; : : : ; C

0

l

_ Lg))

RBSC

(N)

where L, L do not our in N and all resolvents on L between any C

i

_ L and

C

0

j

_ L result in tautologies

Example 2.13.1. Consider a lause set onsisting of the �ve lauses

(1) P _Q

(2) P _Q _R _ S

(3) :R _ S

(4) R _ :S

(5) :Q _ S

Clause (1) subsumes lause (2). Subsumption resolution is appliable to

2.14. COMPLEXITY 87

lause (2) and lause (5) resulting in P _ R _ S. Purity is appliable to P .

Bloked lause elimination is not appliable.

Applying �rst subsumption deletion results in the lauses

(1) P _Q

(3) :R _ S

(4) R _ :S

(5) :Q _ S

Now subsumption resolution is no longer appliable, but bloked lause elimina-

tion is to R and lauses (3), (4). After appliation of bloked lause elimination

the resulting lauses are

(1) P _Q

(5) :Q _ S

Now P and S are pure and after applying purity the result is the empty set of

lauses indiating satis�ability.

For the above Example 2.13.1 other rule appliation orderings are possible,

e.g., starting with purity on P . Nevertheless, any appliation ordering results in

an empty set of lauses. However,)

RBSC

is not onuent.

Lemma 2.13.2 ()

RBSC

terminates).

Proof. Exerise

Lemma 2.13.3 ()

RBSC

is sound). If (N))

RBSC

(N

0

) then N is satis�able i�

N

0

is.

Proof.): All rules remove lauses exept subsumption resolution. Removing

lauses obviously preservers satis�ability. For subsumption resolution any model

satisfying C

1

_ L and C

2

_ L has to satisfy C

1

or C

2

. Sine C

1

� C

2

it satis�es

C

2

.

(: The diretion is obvious for Subsumption Deletion, Tautology Deletion, and

Subsumption Resolution. Sine, atually, Purity is a speial ase of Bloked

Clause Elimination, it suÆes to show the ase of Bloked Clause Elimination.

In this ase N = N

0

℄ fC

1

_L; : : : ; C

k

_L;C

0

1

_L; : : : ; C

0

l

_Lg and L, L do not

our in N

0

and all resolvents on L between any C

i

_ L and C

0

j

_ L result in

tautologies. Let A be a model for N

0

. Obviously, being A a model for N does

not depend on the truth value of L, beause neither L nor L ours in N . If A

does not satisfy some lause C

i

_ L (analogously C

0

j

_ L), then A(L) = 0 and

A(C

i

) = 0. Sine all ombinations C

i

_C

0

j

, for any j are tautologies, A(C

0

j

) = 1

for all j. Hene A

0

whih is like A exept that A

0

(L) = 1 is a model for N .

2.13.2 Redundany while Superposition and CDCL

2.14 Complexity

This book does not fous on omplexity but on how to build systems that are

useful for seleted appliations. Nevertheless, any system, alulus presented in

88 CHAPTER 2. PROPOSITIONAL LOGIC

this hapter on SAT has a worst ase exponential running time. So it annot run

eÆiently on any SAT instane. So some bakground knowledge about relevant

omplexity results is useful. Here I onentrate on a personal seletion of \las-

sis", omplexity results everybody interested in propositional logi reasoning

should know.

The pigeon hole formulas are suh a lassi, beause they were among the

�rst deteted formulas that don't have polynomial length resolution proofs. In

addition, they explain why the renaming tehniques introdued in Setion 2.6.3

are not only useful to prevent an explosion in the number of generated lauses

out of a formula, but also for the afterwards reasoning proess.

De�nition 2.14.1 (Pigeon Hole Formulas ph(n)). For some given n and propo-

sitional variables P

i;j

, where 1 � j � n, 1 � i � n+1, the orresponding pigeon

hole formula (lause set) ph(n) is

ph(n) =

^

1�i�n+1

P

i;1

_ : : : _ P

i;n

^

^

1�j�n

^

1 � i; k � n+ 1

i < k

:P

i;j

_ :P

k;j

The intuition behind a variable P

i;j

is that it is true i� pigeon i sits in hole

j. Then the formulas P

i;1

_ : : :_P

i;n

express that every pigeon has to sit in some

hole and the formulas :P

i;j

_ :P

k;j

that a hole an host at most one pigeon.

Sine there is one more pigeon than holes, the formula is unsatis�able.

Note that the number of lauses of a pigeon hole formula ph(n) grows ubi

in n. The famous theorem on the pigeon whole formulas says that any resolution

proof showing unsatis�ability of ph(n) has a length at least exponential in n,

i.e., no resolution-based system an eÆiently show unsatis�ability of a pigeon

hole formula.

Theorem 2.14.2 (Haken [22℄). The length of any resolution refutation of ph(n)

is exponential in n.

Reall that any refutation of a CDCL proedure orresponds to a resolution

refutation, where eah onit generates some new resolvents. Now, a CDCL

proedure solves the pigeon hole problem by an enumeration of all possible

ombinations how to put the n + 1 pigeons into the n holes. It guesses some

pigeon in some whole, potentially propagates the onsequenes of the deision,

guesses the next one and so on until a onit for the partiular guess shows that

there is one hole missing for the �nal pigeon. Then it baktraks by remembering

that for the partiular guess, i.e., ombination pigeons, holes, there is no solution.

The CDCL proedure never \reognizes" the fat that the problem is ompletely

symmetri in pigeons and holes, e.g., one it has shown that there is no solution

with pigeon 1 in hole 1 (P

1;1

true) then the problem annot be solved at all. It

is not neessary anymore to test the holes 2 to n for pigeon 1, beause these

ases are symmetri. This is an informal explanation for the above theorem.

The pigeon hole problem an be easily solved by an indutive argument. For

ph(n) we put pigeon n+1 in hole n. Then the problem is solvable i� ph(n� 1)

has a solution. Repeating this argument n � 1 times it remains to show that

2.14. COMPLEXITY 89

there is no solution for ph(1), i.e., the lause set P

1;1

, P

2;1

, :P

1;1

_ :P

2;1

is

unsatis�able.

This reasoning an be perfetly simulated by resolution if additional lauses

over extra variables are added to ph(n). Let B

k

i;j

be fresh propositional variables

where 2 � k � n, 1 � j < k, 1 � i � k, where we add the lauses resulting from

B

n

i;j

$ (P

i;j

_ (P

i;n

^ P

n+1;j

)) for the �rst step

B

k

i;j

$ (B

k+1

i;j

_ (B

k+1

i;k

^ B

k+1

k+1;j

)) for all subsequent steps

to ph(n), where 2 � k � n � 1 and the i; j run in the limits orresponding to

B

k

i:j

or B

n

i:j

, respetively. Sine the B

k

i;j

are fresh and there is only one de�ning

equivalene for eah B

k

i;j

, the resulting problem is unsatis�able i� the original

is. Eah equivalene results in four lauses, e.g., the �rst equivalene generates

the lauses B

n

i;j

_:P

i;j

, B

n

i;j

_:P

i;n

_:P

n+1;j

, :B

n

i;j

_P

i;j

_P

i;n

, :B

n

i;j

_P

i;j

_

P

n+1;j

. Thus there are only polynomially many lauses added to ph(n). Now the

additional lauses enable to reprodue via resolution the indutive argument,

where for eah \indution step" only polynomially many resolution steps are

needed. Thus the extended pigeon hole problem an be refuted by resolution in

polynomially many steps [13℄.

For example, for the ase n = 2 the pigeon hole lauses are

(1) P

1;1

_ P

1;2

(2) P

2;1

_ P

2;2

(3) P

3;1

_ P

3;2

(4) :P

1;1

_ :P

2;1

(5) :P

1;1

_ :P

3;1

(6) :P

2;1

_ :P

3;1

(7) :P

1;2

_ :P

2;2

(8) :P

1;2

_ :P

3;2

(9) :P

2;2

_ :P

3;2

and the additional equivalenes de�ning the B

2

i;j

are

B

2

1;1

$ (P

1;1

_ (P

1;2

^ P

3;1

))

B

2

2;1

$ (P

2;1

_ (P

2;2

^ P

3;1

))

Now from :B

2

1;1

_ P

1;1

_ P

3;1

, :B

2

2;1

_ P

2;1

_ P

3;1

with (1), (2), (4), (5), (6), (7)

via resolution the lause

(10) :B

2

1;1

_ :B

2

2;1

an be derived. From B

2

1;1

_ :P

1;1

, B

2

1;1

_ :P

1;2

_ :P

3;1

with (1), (3), (8) via

resolution the lause

(11) B

2

1;1

an be derived. Analogously, from B

2

2;1

_ :P

2;1

, B

2

2;1

_ :P

2;2

_ :P

3;1

with (2),

(3), (9) via resolution the lause

(12) B

2

2;1

90 CHAPTER 2. PROPOSITIONAL LOGIC

an be derived. Now, (10), (11), (12) onstitute ph(1), i.e., the above resolution

steps suessfully perform the redution from ph(2) to ph(1).

C

There are two reasons why I disuss the pigeon hole problem in suh

detail. First, it shows that the invention of new names (propositional

variables) for subformulas, an lead to an exponential redution in

proof size. So it onstitutes a further justi�ation for renaming during CNF

transformation (see Setion 2.6.3). However, in general, there is no easy answer

when additional names help in proof length redution or in proof searh. Seond,

and in my opinion even more important, the pigeon hole problem example niely

shows that \indutive reasoning" an be done in propositional logi and that it

an pay o�. For many real world problems, e.g., hardware veri�ation, indutive

reasoning is key to solve the problems. At the time of this writing, researh

in how to automatially detet and make use of indutive properties has just

started for propositional logi. This holds as well and gets even more diÆult

for more expressive logis, suh as �rst-order logi.

For the rest of this setion I will study some well-known lasses for whih

SAT an be solved in polynomial time, namely, Horn-SAT and 2-SAT. Horn SAT

is the lass of lauses where eah lause has at most one positive literal, 2-SAT

the lass of lauses where eah lause has at most two literals. For both lauses

SAT is deidable in polynomial time. Atually, the 2-SAT lass onstitutes a

sharp border between polynomially solvable and NP-omplete, beause the 3-

SAT lass is already NP-omplete.

De�nition 2.14.3 (Horn-SAT). A propositional lause set N belongs to the

lass of Horn-SAT problems if every lause ontains at most one positive literal.

De�nition 2.14.4 (k-SAT). A propositional lause set N belongs to the lass

of k-SAT problems if every lause ontains at most k literals.

Proposition 2.14.5. Any Horn-SAT lause set N an be deided in time linear

in the size of N .

Proof. Superposition with seletion is omplete for SAT (Theorem 2.12.3). So

onsider a superposition saturation for N where in every lause ontaining a

negative literal it is seleted. Then the saturation proess has two nie properties.

First, any superposition inferene is an inferene between a positive unit lause

and a lause ontaining at least one negative literal. Seond, there is always a

lause where all negative literals an be resolved away by positive unit lauses

or the lause set N is satis�able. Combining the two properties results in a

linear-time algorithm for Horn-SAT.

Atually, the proof of the above proposition implies that the CDCL rules

Propagate and Conit (see Setion 2.10) are omplete for Horn-SAT. Another

onsequene is that unit superposition, a restrition to superposition where for

all inferenes one parent lause must be a unit lause, is also omplete for Horn-

SAT. For unit superposition the result an even be reversed. If for some lause

set N there is a unit superposition refutation, then the subset of lauses involved

2.15. APPLICATIONS 91

in the unit refutation an be transformed into a Horn lause set by ipping signs

of literals.

The lause set P _Q, :P _R, :R_Q, :Q is unsatis�able and refutable by

unit superposition. It is not Horn beause of the lause P _Q. Now by ipping

the sign of Q in all lauses results in the lause set P _ :Q, :P _R, :R _ :Q,

Q whih is Horn, equisatis�able, and still unit refutable.

Proposition 2.14.6. Any 2-SAT lause set N an be deided in time polyno-

mial in the size of N .

Proof. (Idea) Firstly, all unit lauses an be eliminated by reursively resolv-

ing away the respetive literals, following the algorithm of Proposition 2.14.5.

For a lause set N ontaining only lauses of length two a direted graph is

onstruted. The nodes are the propositional literals from N . For eah lause

L_K 2 N , the graph ontains the two direted edges (L;K) and (K;L). Then

N is unsatis�able i� there is a yle in the graph ontaining two nodes L, L.

This an be deided in time at most quadrati in N .

Interestingly, 2-SAT onstitutes the border to NP-ompleteness, beause 3-

SAT is already NP-omplete. This an be seen by reduing any lause set to a

satis�ability equivalent 3-SAT lause set via the following transformation. For

any lause

L

1

_ : : : _ L

n

onsisting of more than three literals (n > 3) replae the lause by the lauses

L

1

_ : : : _ L

bn=2

_ P

L

bn=2+1

_ : : : _ L

n

_ :P

where P is a fresh propositional variable. Obviously, L

1

_ : : : _ L

n

is satis�able

i� L

1

_ : : : _ L

bn=2

_ P , L

bn=2+1

_ : : : _ L

n

_ :P are.

Proposition 2.14.7. 3-SAT is NP-omplete.

2.15 Appliations

For the appliation of propositional logi on an arbitrary problem it needs to

be enoded into a propositional formula �. The satis�ability of � an then be

heked via one of the aluli developed in this hapter, e.g. Resolution or DPLL.

In ase � is satis�able the orresponding alulus derives a model whih has to

be interpreted as a solution to the original problem. The unsatis�ability of �

must be interpreted orrespondingly.

2.15.1 Sudoku

As a suitable appliation of propositional logi serves the Sudoku puzzle. In

hapter 1.1 a spei� 4� 4 Sudoku puzzle was solved using a spei� alulus.

In this setion a general n

2

� n

2

Sudoku puzzle is enoded into propositional

92 CHAPTER 2. PROPOSITIONAL LOGIC

logi and exemplarily the Resolution alulus from this hapter is applied to a

4� 4 Sudoku puzzle.

For the enoding propositional variables P

d

i;j

are de�ned where P

d

i;j

is true

i� the value of square (i; j) is d. Square boxes are denoted by Q

i;j

where Q

i;j

in-

ludes the squares (i; j); : : : ; (i+n�1; j+n�1). The orresponding propositional

lauses are onstruted as follows:

1. For every initially assigned square (i; j) with value d generate P

d

i;j

2. For every square (i; j) generate P

1

i;j

_ : : : _ P

n

2

i;j

3. For every square (i; j) and pair of values d < d

0

generate :P

d

i;j

_ :P

d

0

i;j

4. For every value d and olumn i generate P

d

i;1

_ : : :_P

d

i;n

2

(analogously for

rows)

5. For every value d and square box Q

i;j

generate P

d

i;j

_ : : : _ P

d

i+n�1;j+n�1

6. For every value d, olumn i and pair of rows j < j

0

generate :P

d

i;j

_:P

d

i;j

0

(analogously for rows)

7. For every value d, square box Q

i;j

and pair of squares (k; l) <

lex

(k

0

; l

0

)

where i � k; k

0

< i+ n and j � l; l

0

< j + n generate :P

d

k;l

_ :P

d

k

0

;l

0

The orresponding formula � is the onjuntion of eah subformula generated

by the steps 1 to 7. This makes a total of m + n

4

+

1

2

n

6

(n

2

� 1) + 2n

4

+ n

4

+

1

2

n

6

(n

2

� 1) +

1

2

n

6

(n

2

� 1) = m + 4n

4

+

3

2

n

6

(n

2

� 1) lauses where m is the

number of initially assigned squares.

After the appliation of a propositional logi alulus the remaining unit

lauses P

d

i;j

, i.e. the missing numbers to the initial Sudoku puzzle, are derived if

the enoded formula is satis�able. Otherwise there is no solution to the Sudoku

puzzle.

1 2 3 4

1 1

2 1

3 2

4 4

Figure 2.24: A 4� 4 Sudoku

The appliation of this enoding on the puzzle from Figure 2.24 yields for

example the lauses P

1

3;4

_ P

2

3;4

_ P

3

3;4

_ P

4

3;4

, :P

2

2;3

_ :P

2

3;3

, :P

2

2;3

_ :P

2

4;3

and

P

2

2;3

. Applying the rule Resolution from the Resolution alulus from hapter 2.7

results in:

(N ℄ f:P

2

2;3

_ :P

2

3;3

; P

2

2;3

g)

RES

(N [f:P

2

2;3

_ :P

2

3;3

; P

2

2;3

g [f:P

2

3;3

g) and

(N

0

℄fP

1

3;4

_P

2

3;4

_P

3

3;4

_P

4

3;4

;:P

2

3;3

g))

RES

(N

0

[fP

1

3;4

_P

2

3;4

_P

3

3;4

_P

4

3;4

;:P

2

3;3

g[

2.15. APPLICATIONS 93

fP

1

3;4

_ P

3

3;4

_ P

4

3;4

g))

�

RES

(N

00

[fP

2

3;4

g) see Figure 2.25. After exhaustive

appliation of the Resolution alulus the remaining unit onstraints are derived

and the solution is found.

1 2 3 4

1 1

2 1

3 2

4 2 4

Figure 2.25: A 4� 4 Sudoku after generating the unit onstraint P

2

3;4

2.15.2 Hardware Veri�ation

Another example for the appliation of propositional logi is the veri�ation of

logi hardware iruits. Sine spei� logi hardware iruits an be transformed

into CNF the satis�ability of small logi iruits as well as ertain properties of

logi iruits an be heked with a propositional alulus from this hapter. This

hapter shows how to enode spei� logi iruits into propositional logi and

how to apply the enoding on an exemplary logi iruit as shown in Figure 2.26.

This hapter onsiders logi iruits with three di�erent types of gates G

i

:

AND-, OR- and NOT-gates. Eah gate has one output, AND- and OR-gates

have two inputs whereas the NOT-gate has only one input. For the enoding of

the logi iruits a propositional variable Q

i

is de�ned for eah gate G

i

where

Q

i

is true i� the gate G

i

has output value 1. The propositional lauses are

onstruted as follows:

1. For every AND-gate G

i

with inputs Q

j

and Q

k

we have Q

i

$ (Q

j

^Q

k

)

whih is equivalent to (:Q

i

_Q

j

) ^ (:Q

i

_Q

k

) ^ (:Q

j

_ :Q

k

_Q

i

)

2. For every OR-gate G

i

with inputs Q

j

and Q

k

we have Q

i

$ (Q

j

_ Q

k

)

whih is equivalent to (:Q

i

_Q

j

_Q

k

) ^ (:Q

j

_Q

i

) ^ (:Q

k

_Q

i

)

3. For every NOT-gate G

i

with input Q

j

we have Q

i

$:Q

j

whih is equiv-

alent to (:Q

i

_ :Q

j

) ^ (Q

j

_Q

i

).

The orresponding formula � is the onjuntion of all lauses generated by

the steps 1 to 3. After generating this enoding a propositional alulus from

hapter 2 an be applied in order to hek ertain properties of logi iruits

(note that the aluli presented in hapter 2 are ineÆient on larger logi iruit

onstrutions). Some of the properties that an be heked are for example the

satis�ability of logi iruits given a partial truth assignment � (whih assigns

boolean values to outputs), the satis�ability of logi iruits in ase of a reursive

onstrution, the equivalene of two logi iruits or to hek if ertain properties

for example Q

0

! Q

5

for the logi iruit in Figure 2.26 hold.

94 CHAPTER 2. PROPOSITIONAL LOGIC

As an example the satis�ability of the logi iruit in Figure 2.26 under a

given partial truth assignment �(Q

0

) = 1 and �(Q

5

) = 1 an be heked using

the DPLL alulus:

Q

0

G

2

G

4

G

5

Q

1

G

3

Figure 2.26: A logi iruit with two NOT-gates (G

2

and G

3

), an OR-gate G

4

and an AND-gate G

5

The appliation of the enoding to the logi iruit of Figure 2.26 to-

gether with the partial truth assignment � yields a total of 12 lauses:

N = fQ

0

; Q

5

;:Q

4

_ Q

2

_ Q

1

;:Q

2

_ Q

4

;:Q

1

_ Q

4

;:Q

2

_ :Q

0

; Q

2

_

Q

0

;:Q

3

_ :Q

1

; Q

3

_ Q

1

;:Q

5

_ Q

4

;:Q

5

_ Q

3

;:Q

4

_ :Q

3

_ Q

5

g. Apply-

ing the DPLL alulus we ahieve: (�;N))

Propagate

DPLL

(Q

0

;N))

Propagate

DPLL

(Q

0

Q

5

;N))

Propagate

DPLL

(Q

0

Q

5

Q

4

;N))

Propagate

DPLL

(Q

0

Q

5

Q

4

Q

3

;N))

Propagate

DPLL

(Q

0

Q

5

Q

4

Q

3

:Q

1

;N))

Propagate

DPLL

(Q

0

Q

5

Q

4

Q

3

:Q

1

Q

2

;N). LetM = (Q

0

Q

5

Q

4

Q

3

:Q

1

Q

2

)

then the logi iruit is unsatis�able under the given truth assignment sine

M j= :N and there is no deision literal in M .

If the logi iruit of Figure 2.26 is onsidered without a partial truth as-

signment then the onstrution is satis�able for example with M = (:Q

0

:Q

1

).

If the gate G

4

of Figure 2.26 is replaed by an AND-gate instead of an OR-

gate then the onstrution will always be unsatis�able independent of any truth

assignment.

Histori and Bibliographi Remarks

Although already Greek philosophers like Aristotle (384 BC { 322 BC) were

interested in \truth of propositions" the syntax and semantis of propositional

logi goes bak to the modern logiians, mathematiians and philosophers Au-

gustus de Morgan (1806 { 1871), George Boole (1815 { 1864), Charles Sanders

Peire (1839 { 1914), and Gottlob Frege (1848 { 1925). In partiular, today

Boole's alulus [9℄ is known as \propositional logi". For a nie histori per-

spetive see Martin Davis's book [15℄.

Chapter 3

First-Order Logi

First-Order logi is a generalization of propositional logi. Propositional logi

an represent propositions, whereas �rst-order logi an represent individuals

and propositions about individuals. For example, in propositional logi from

\Sorates is a man" and \If Sorates is a man then Sorates is mortal" the

onlusion \Sorates is mortal" an be drawn. In �rst-order logi this an be

represented muh more �ne-grained. From \Sorates is a man" and \All man

are mortal" the onlusion \Sorates is mortal" an be drawn.

This hapter introdues �rst-order logi with equality. However, all aluli

presented here, namely Tableaux (Setion 3.6) and Superposition (Setion ??)

are presented only for its restrition without equality. Purely equational logi

and �rst-order logi with equality are presented separately in Chapter ?? and

Chapter ??, respetively.

3.1 Syntax

De�nition 3.1.1 (Many-Sorted Signature). A many-sorted signature � =

(S;
;�) is a triple onsisting of a �nite non-empty set S of sort symbols, a

non-empty set
 of operator symbols (also alled funtion symbols) over S and

a set � of prediate symbols. Every operator symbol f 2
 has a unique sort

delaration f : S

1

� : : :�S

n

! S, indiating the sorts of arguments (also alled

domain sorts) and the range sort of f , respetively, for some S

1

; : : : ; S

n

; S 2 S

where n � 0 is alled the arity of f , also denoted with arity(f). An operator

symbol f 2
 with arity 0 is alled a onstant. Every prediate symbol P 2 �

has a unique sort delaration P � S

1

� : : : � S

n

. A prediate symbol P 2 �

with arity 0 is alled a propositional variable. For every sort S 2 S there must

be at least one onstant a 2
 with range sort S.

In addition to the signature �, a variable set X , disjoint from
 is assumed, so

that for every sort S 2 S there exists a ountably in�nite subset of X onsisting

of variables of the sort S. A variable x of sort S is denoted by x

S

.

De�nition 3.1.2 (Term). Given a signature � = (S;
;�), a sort S 2 S and

95

96 CHAPTER 3. FIRST-ORDER LOGIC

a variable set X , the set T

S

(�;X) of all terms of sort S is reursively de�ned

by (i) x

S

2 T

S

(�;X) if x

S

2 X , (ii) f(t

1

; : : : ; t

n

) 2 T

S

(�;X) if f 2
 and

f : S

1

� : : :� S

n

! S and t

i

2 T

S

i

(�;X) for every i 2 f1; : : : ; ng.

The sort of a term t is denoted by sort(t), i.e., if t 2 T

S

(�;X) then sort(t) =

S. A term not ontaining a variable is alled ground.

For the sake of simpliity it is often written: T (�;X) for

S

S2S

T

S

(�;X), the

set of all terms, T

S

(�) for the set of all ground terms of sort S 2 S, and T (�)

for

S

S2S

T

S

(�), the set of all ground terms over �.

De�nition 3.1.3 (Equation, Atom, Literal). If s; t 2 T

S

(�;X) then s � t is an

equation over the signature �. Any equation is an atom (also alled atomi for-

mula) as well as every P (t

1

; : : : ; t

n

) where t

i

2 T

S

i

(�;X) for every i 2 f1; : : : ; ng

and P 2 �, arity(P) = n, P � S

1

� : : : � S

n

. An atom or its negation of an

atom is alled a literal.

The literal s

.

� t denotes either s � t or t � s. A literal is positive if it is an

atom and negative otherwise. A negative equational literal :(s � t) is written

as s 6� t.

C

Non equational atoms an be transformed into equations: For this a

given signature is extended for every prediate symbol P as follows:

(i) add a distint sort B to S, (ii) introdue a fresh onstant true of

the sort B to
, (iii) for every prediate P , P � S

1

� : : : � S

n

add a fresh

funtion f

P

: S

1

; : : : ; S

n

! B to
, and (iv) enode every atom P (t

1

; : : : ; t

n

) as

a funtion f

P

: S

1

; : : : ; S

n

! B. Thus, prediate atoms are turned into equations

f

P

(t

1

; : : : ; t

n

) � true. are overloaded here.

De�nition 3.1.4 (Formulas). The set FOL(�;X) of many-sorted �rst-order

formulas with equality over the signature � is de�ned as follows for formulas

�; 2 F

�

(X) and a variable x 2 X :

FOL(�;X) Comment

? falsum

> verum

P (t

1

; : : : ; t

n

); s � t atom

(:�) negation

(� ^) onjuntion

(� _) disjuntion

(�!) impliation

(�$) equivalene

8x:� universal quanti�ation

9x:� existential quanti�ation

A onsequene of the above de�nition is that PROP(�) � FOL(�

0

;X) if

the propositional variables of � are ontained in �

0

as prediates of arity 0. A

formula not ontaining a quanti�er is alled quanti�er-free.

3.1. SYNTAX 97

De�nition 3.1.5 (Positions). It follows from the de�nitions of terms and for-

mulas that they have tree-like struture. For referring to a ertain subtree,

alled subterm or subformula, respetively, sequenes of natural numbers are

used, alled positions (as introdued in Chapter 2.1.3). The set of positions of

a term, formula is indutively de�ned by:

pos(x) := f�g if x 2 X

pos(�) := f�g if � 2 f>;?g

pos(:�) := f�g [f1p j p 2 pos(�)g

pos(� Æ) := f�g [f1p j p 2 pos(�)g [f2p j p 2 pos()g

pos(s � t) := f�g [f1p j p 2 pos(s)g [f2p j p 2 pos(t)g

pos(f(t

1

; : : : ; t

n

)) := f�g [

S

n

i=1

fip j p 2 pos(t

i

)g

pos(P (t

1

; : : : ; t

n

)) := f�g [

S

n

i=1

fip j p 2 pos(t

i

)g

pos(8x:�) := f�g [f1p j p 2 pos(�)g

pos(9x:�) := f�g [f1p j p 2 pos(�)g

where Æ 2 f^;_;!;$g and t

i

2 T (�;X) for all i 2 f1; : : : ; ng.

The pre�x orders (above, stritly above and parallel), the seletion and re-

plaement with respet to positions are de�ned exatly as in Chapter 2.1.3.

An term t (formula �) is said to ontain another term s (formula) if t

p

= s

(�

p

=). It is alled a strit subexpression if p 6= �. The term t (formula �)

is alled an immediate subexpression of s (formula) if jpj = 1. For terms a

subexpression is alled a subterm and for formulas a subformula, respetively.

The size of a term t (formula �), written jtj (j�j), is the ardinality of pos(t),

i.e., jtj := j pos(t)j (j�j := j pos(�)j). The depth of a term, formula is the maximal

length of a position in the term, formula: depth(t) := maxfjpj j p 2 pos(t)g

(depth(�) := maxfjpj j p 2 pos(�)g). The set of all variables ourring in a

term t (formula �) is denoted by vars(t) (vars(phi)) and formally de�ned as

vars(t) := fx 2 X j x = tj

p

; p 2 pos(t)g (vars(�) := fx 2 X j x = �j

p

; p 2

pos(�)g). A term t (formula �) is ground if vars(t) = ; (vars(�) = ;).

Note that vars(8x:a � b) = ; where a; b are onstants. This is justi�ed by the

fat that the formula does not depend on the quanti�er, see semantis below. The

set of free variables of a formula � (term t) is given by fvars(�; ;) (fvars(t; ;)) and

reursively de�ned by fvars(

1

Æ

2

; B) := fvars(

1

; B)[fvars(

2

; B) where Æ 2

f^;_;!;$g, fvars(8x: ;B) := fvars(;B[fxg), fvars(9x: ;B) := fvars(;B[

fxg), fvars(: ;B) := fvars(;B), fvars(L;B) := vars(L) n B (fvars(t; B) :=

vars(t) nB. For fvars(�; ;) I also write fvars(�)

In 8x:� (9x:�) the formula � is alled the sope of the quanti�er. An o-

urrene q of a variable x in a formula � (�j

q

= x) is alled bound if there is

some p < q with �j

p

= 8x:�

0

or �j

p

= 9x:�

0

. Any other ourrene of a vari-

able is alled free. A formula not ontaining a free ourrene of a variable is

alled losed. If fx

1

; : : : ; x

n

g are the variables freely ourring in a formula

� then 8x

1

; : : : ; x

n

:� and 9x

1

; : : : ; x

n

:� (abbreviations for 8x

1

:8x

2

: : :8x

n

:�,

9x

1

:8x

2

: : :8x

n

:�, respetively) are the universal and the existential losure of

�.

98 CHAPTER 3. FIRST-ORDER LOGIC

Example 3.1.6. For the literal :P (f(x; g(a))) the atom P (f(x; g(a))) is an

immediate subformula of ourring at position 1. The terms x and g(a) are

strit subterms ourring at positions 111 and 112, respetively. The for-

mula :P (f(x; g(a)))[b℄

111

= :P (f(b; g(a))) is obtained by replaing x with b.

pos(:P (f(x; g(a)))) = f�; 1; 11; 111; 112; 1121gmeaning its size is 6, its depth 4

and vars(:P (f(x; g(a)))) = fxg.

The polarity of a subformula = �j

p

at position p is pol(�; p) where pol is

reursively de�ned by

pol(�; �) := 1

pol(:�; 1p) := � pol(�; p)

pol(�

1

Æ �

2

; ip) := pol(�

i

; p) if Æ 2 f^;_g

pol(�

1

! �

2

; 1p) := � pol(�

1

; p)

pol(�

1

! �

2

; 2p) := pol(�

2

; p)

pol(�

1

$ �

2

; ip) := 0

pol(P (t

1

; : : : ; t

n

); p) := 1

pol(t � s; p) := 1

pol(8x:�; 1p) := pol(�; p)

pol(9x:�; 1p) := pol(�; p)

3.2 Semantis

De�nition 3.2.1 (�-algebra). Let � = (S;
;�) be a signature with set of

sorts S, operator set
 and prediate set �. A �-algebra A, also alled �-

interpretation, is a mapping that assigns (i) a non-empty arrier set S

A

to every

sort S 2 S, so that (S

1

)

A

\(S

2

)

A

= ; for any distint sorts S

1

; S

2

2 S, (ii) a total

funtion f

A

: (S

1

)

A

� : : :�(S

n

)

A

! (S)

A

to every operator f 2
, arity(f) = n

where f : S

1

� : : : � S

n

! S, (iii) a relation P

A

� ((S

1

)

A

� : : : � (S

m

)

A

) to

every prediate symbol P 2 �, arity(P) = m. (iv) the equality relation beomes

�

A

= f(e; e) j e 2 U

A

g where the set U

A

:=

S

S2S

(S)

A

is alled the universe of

A.

A (variable) assignment, also alled a valuation for an algebraA is a funtion

� : X ! U

A

so that �(x) 2 S

A

for every variable x 2 X , where S = sort(x). A

modi�ation �[x 7! e℄ of an assignment � at a variable x 2 X , where e 2 S

A

and S = sort(x), is the assignment de�ned as follows:

�[x 7! e℄(y) =

(

e if x = y

�(y) otherwise.

Informally speaking, the assignment �[x 7! e℄ is idential to � for every variable

exept x, whih is mapped by �[x 7! e℄ to e.

The homomorphi extension A(�) of � onto terms is a mapping T (�;X)!

U

A

de�ned as (i) A(�)(x) = �(x), where x 2 X and (ii) A(�)(f(t

1

; : : : ; t

n

)) =

f

A

(A(�)(t

1

); : : : ;A(�)(t

n

)), where f 2
, arity(f) = n.

3.2. SEMANTICS 99

Given a term t 2 T (�;X), the value A(�)(t) is alled the interpretation of

t under A and �. If the term t is ground, the value A(�)(t) does not depend

on a partiular hoie of �, for whih reason the interpretation of t under A is

denoted by A(t).

An algebra A is alled term-generated, if every element e of the universe U

A

of A is the image of some ground term t, i.e., A(t) = e.

De�nition 3.2.2 (Semantis). An algebra A and an assignment � are extended

to formulas � 2 FOL(�;X) by

A(�)(?) := 0

A(�)(>) := 1

A(�)(s � t) := 1 if A(�)(s) = A(�)(t) and 0 otherwise

A(�)(P (t

1

; : : : ; t

n

)) := 1 if (A(�)(t

1

); : : : ;A(�)(t

n

)) 2 P

A

and 0 otherwise

A(�)(:�) := 1�A(�)(�)

A(�)(� ^) := min(fA(�)(�);A(�)()g)

A(�)(� _) := max(fA(�)(�);A(�)()g)

A(�)(� !) := max(f(1�A(�)(�));A(�)()g)

A(�)(� $) := if A(�)(�) = A(�)() then 1 else 0

A(�)(9x

S

:�) := 1 if A(�[x 7! e℄)(�) = 1 for some e 2 S

A

and 0 otherwise

A(�)(8x

S

:�) := 1 if A(�[x 7! e℄)(�) = 1 for all e 2 S

A

and 0 otherwise

A formula � is alled satis�able by A under � (or valid in A under �) if

A; � j= �; in this ase, � is also alled onsistent ; satis�able by A if A; � j= �

for some assignment �; satis�able if A; � j= � for some algebra A and some

assignment �; valid in A, written A j= �, if A; � j= � for any assignment �; in

this ase, A is alled a model of �; valid, written j= �, if A; � j= � for any algebra

A and any assignment �; in this ase, � is also alled a tautology ; unsatis�able

if A; � 6j= � for any algebra A and any assignment �; in this ase � is also alled

inonsistent.

Note that ? is inonsistent whereas > is valid. If � is a sentene that is

a formula not ontaining a free variable, it is valid in A if and only if it is

satis�able by A. This means the truth of a sentene does not depend on the

hoie of an assignment.

Given two formulas � and , � entails , or is a onsequene of �, written

� j= , if for any algebra A and assignment �, if A; � j= � then A; � j= . The

formulas � and are alled equivalent, written � j=j , if � j= and j= �. Two

formulas � and are alled equisatis�able, if � is satis�able i� is satis�able (not

neessarily in the same models). Note that if � and are equivalent then they

are equisatis�able, but not the other way around. The notions of \entailment",

\equivalene" and \equisatis�ability" are naturally extended to sets of formulas,

that are treated as onjuntions of single formulas. Thus, given formula setsM

1

and M

2

, the set M

1

entails M

2

, written M

1

j= M

2

, if for any algebra A and

assignment �, if A; � j= � for every � 2M

1

then A; � j= for every 2M

2

. The

sets M

1

and M

2

are equivalent, written M

1

j=jM

2

, if M

1

j=M

2

and M

2

j=M

1

.

Given an arbitrary formula � and formula set M , M j= � is written to denote

M j= f�g; analogously, � j=M stands for f�g j=M .

100 CHAPTER 3. FIRST-ORDER LOGIC

Sine lauses are impliitly universally quanti�ed disjuntions of literals, a

lause C is satis�able by an algebra A if for every assignment � there is a literal

L 2 C with A; � j= L. Note that if C = fL

1

; : : : ; L

k

g is a ground lause, i.e.,

every L

i

is a ground literal, then A j= C if and only if there is a literal L

j

in C

so that A j= L

j

. A lause set N is satis�able i� all lauses C 2 N are satis�able

by the same algebra A. Aordingly, if N and M are two lause sets, N j= M

i� every model A of N is also a model of M .

3.3 Equality

The equality prediate is build into the �rst-order language in Setion 3.1 and

not part of the signature. It is a �rst lass itizen. This is the ase although

it an be atually axiomatized in the language. The motivation is that �rstly,

many real world problems naturally ontain equations. They are a means to

de�ne funtions. Then prediates over terms model properties of the funtions.

Seondly, without speial treatment in a alulus, it is almost impossible to

automatially prove non-trivial properties of a formula ontaining equations.

In this setion I �rstly show that any formula an be transformed into a

formula where all atoms are equations. Seondly, that any formula ontaining

equations an be transformed into a formula where the equality prediate is

replaed by a fresh prediate together with some axioms. In the �rst ase the

respetive lause sets are equivalent, in the seond ase the transformation is

satis�ability preserving. For the replaement of any prediate R by equations

over a fresh funtion f

R

we assume an additional fresh sort Bool with two fresh

onstants true and false.

InjEq �[R(t

1;1

; : : : ; t

1;n

)℄

p

1

: : : [R(t

m;1

; : : : ; t

m;n

)℄

p

m

)

IE

�[f

R

(t

1;1

; : : : ; t

1;n

) �

true℄

p

1

: : : [f

R

(t

m;1

; : : : ; t

m;n

) � true℄

p

m

provided R is a prediate ourring in �, fp

1

; : : : ; p

m

g are all positions of atoms

with prediate R in � and f

R

is new with appropriate sorting

Proposition 3.3.1. Let �)

�

IE

�

0

then � is satis�able (valid) i� �

0

is satis�able

(valid).

Proof. (Sketh) The basi proof idea is to establish the relation (t

A

1

; : : : ; t

A

n

) 2

R

A

i� f

A

R

(t

A

1

; : : : ; t

A

n

) = true

A

. Furthermore, the sort of true is fresh to � and

the equations f

R

(t

1

; : : : ; t

n

) � true do not interfere with any term t

i

beause

the f

R

are all fresh and only our on top level of the equations.

When removing equality from a formula it needs to be axiomatized. For

simpliity, I assume here that the onsidered formula � is one-sorted, i.e., there

is only one sort ourring for funtions, relations in �. The extension to formulas

with many sorts is straightforward and disussed below.

RemEq �[l

1

� r

1

℄

p

1

: : : [l

m

� r

m

℄

p

m

)

RE

�[E(l

1

; r

1

)℄

p

1

: : : [E(l

m

; r

m

)℄

p

m

^

def(�;E)

3.4. SUBSTITUTION AND UNIFIER 101

provided fp

1

; : : : ; p

m

g are all positions of equations l

i

= r

i

in � and E is a new

binary prediate

The formula def(�;E) is the axiomatization of equality for � and it onsists

of a onjuntion of the equivalene relation axioms for E

8x:E(x; x)

8x; y:(E(x; y)! E(y; x))

8x; y; z:((E(x; y) ^ E(x; z))! E(x; z))

plus the ongruene axioms for E for every n-ary funtion symbol f

8x

1

; y

1

; : : : ; x

n

; y

n

:((E(x

1

; y

1

) ^ : : : ^E(x

n

; y

n

))! E(f(x

1

; : : : ; x

n

); f(y

1

; : : : ; y

n

)))

plus the ongruene axioms for E for every m-ary prediate symbol P

8x

1

; y

1

; : : : ; x

m

; y

m

:((E(x

1

; y

1

) ^ : : : ^ E(x

m

; y

m

) ^ P (x

1

; : : : ; x

m

))! P (y

1

; : : : ; y

m

)

Proposition 3.3.2. Let �)

RE

�

0

then � is satis�able i� �

0

is satis�able.

Proof. (Sketh) The identity on an algebra (see De�nition 3.2.2) is a ongruene

relation proving the diretion from left to right. The diretion from right to left

is more involved.

Note that)

RE

is not validity preserving. Consider the simple example for-

mula a � a whih is valid for any onstant a. Its translation E(a; a) ^ def(a �

a;E) is not valid, e.g., onsider an algebra with E

A

= ;.

Now in ase � has many di�erent sorts then for eah sort S one new fresh

prediate E

S

is needed for the translation. For eah of these prediates equiv-

alene relation and ongruene axioms need to be generated where for every

funtion f only one axiom using E

S

is needed, where S is the range sort of S.

Similar for the domain sorts of f and aordingly for prediates.

3.4 Substitution and Uni�er

De�nition 3.4.1 (Substitution). A substitution is a mapping � : X ! T (�;X)

so that

1. �(x) 6= x for only �nitely many variables x and

2. sort(x) = sort(t) for every variable x 2 X that is mapped to a term

t 2 T

S

(�;X).

The appliation �(x) of a substitution � to a variable x is often written in

post�x notation as x�. The variable set dom(�) := fx 2 X j x� 6= xg is alled

the domain of �. The term set odom(�) := fx� j x 2 dom(�)g is alled the

odomain of �. From the above de�nition of substitution it follows that dom(�)

is �nite for any substitution �. The omposition of two substitutions � and �

is written as a juxtaposition �� , i.e., t�� = (t�)� . A substitution � is alled

idempotent if �� = �. � is idempotent i� dom(�) \ vars(odom(�)) = ;.

Substitutions are often written as fx

1

7! t

1

; : : : ; x

n

7! t

n

g if dom(�) =

fx

1

; : : : ; x

n

g and x

i

� = t

i

for every i 2 f1; : : : ; ng. The modi�ationof a substi-

tution � at a variable x is de�ned as follows:

102 CHAPTER 3. FIRST-ORDER LOGIC

�[x 7! t℄(y) =

�

t if y = x

�(y) otherwise

A substitution � is identi�ed with its extension to expression and de�ned as

following:

1. ?� = ?,

2. >� = >,

3. (f(t

1

; : : : ; t

n

))� = f(t

1

�; : : : ; t

n

�),

4. (P (t

1

; : : : ; t

n

))� = P (t

1

�; : : : ; t

n

�),

5. (s � t)� = (s� � t�),

6. (:�)� = :(��),

7. (� Æ)� = �� Æ � where Æ 2 f_;^g,

8. (Qx�)� = Qz(��[x 7! z℄) where Q 2 f8; 9g, z and x are of the same sort

and z is a fresh variable.

The result e� of applying a substitution � to an expression e is alled an

instane of e. The substitution � is alled ground if it maps every domain

variable to a ground term. If the appliation of a substitution � to an expression

e produes a ground expression e� then e� is alled ground instane of e. A

ground substitution � is alled grounding for an expression e if e� is ground. A

substitution � is alled variable renaming if im(�) � X and for any x; y 2 X , if

x 6= y then x� 6= y�.

De�nition 3.4.2 (Uni�er). Two terms s and t are said to be uni�able if there

exists a substitution � so that s� = t�, the substitution � is then alled a uni�er

of s and t. The uni�er � is alled most general uni�er, written � = mgu(s; t), if

any other uni�er � of s and t an be represented as � = ��

0

, for some substitution

�

0

.

3.5 Uni�ation Caluli

The �rst alulus is the naive standard uni�ation alulus that is typially

found in the (old) literature on automated reasoning. A state of the naive stan-

dard uni�ation alulus is a set of equations E or ?, where ? denotes that

no uni�er exists. The set E is also alled a uni�ation problem. The start state

for heking whether two terms s, t with sort(s) = sort(t) (or atoms A, B) are

uni�able is the set E = fs = tg. A variable x is solved in E if E = fx = tg℄E

0

,

x 62 vars(t) and x 62 vars(E).

Tautology E ℄ ft = tg)

SU

E

3.5. UNIFICATION CALCULI 103

Deomposition E ℄ ff(s

1

; : : : ; s

n

) = f(t

1

; : : : ; t

n

)g)

SU

E [fs

1

=

t

1

; : : : ; s

n

= t

n

g

Clash

E ℄ ff(s

1

; : : : ; s

n

) = g(s

1

; : : : ; s

m

)g)

SU

?

if f 6= g

Substitution

E ℄ fx = tg)

SU

Efx 7! tg [fx = tg

if x 2 vars(E) and x 62 vars(t)

Ours Chek

E ℄ fx = tg)

SU

?

if x 6= t and x 2 vars(t)

Orient

E ℄ ft = xg)

SU

E [fx = tg

if t 62 X

Theorem 3.5.1 (Soundness, Completeness and Termination of)

SU

). If s; t

are two terms with sort(s) = sort(t) then

1. if fs = tg)

�

SU

E then any equation (s

0

= t

0

) 2 E is well-sorted, i.e.,

sort(s

0

) = sort(t

0

).

2.)

SU

terminates on fs = tg.

3. if fs = tg)

�

SU

E then � is a uni�er (mgu) of E i� � is a uni�er (mgu) of

fs = tg.

4. if fs = tg)

�

SU

? then s and t are not uni�able.

5. if fs = tg)

�

SU

fx

1

= t

1

; : : : ; x

n

= t

n

g and this is a normal form, then

fx

1

7! t

1

; : : : ; x

n

7! t

n

g is an mgu of s, t.

Proof. 1. by indution on the length of the derivation and a ase analysis for

the di�erent rules.

2. for a state E = fs

1

= t

1

; : : : ; s

n

= t

n

g take the measure �(E) := (n;M; k)

where n is the number of unsolved variables,M the multiset of all term depths of

the s

i

, t

i

and k the number of equations t = x in E where t is not a variable. The

state ? is mapped to (0; ;; 0). Then the lexiographi ombination of > on the

naturals and its multiset extension shows that any rule appliation derements

the measure.

3. by indution on the length of the derivation and a ase analysis for the

di�erent rules. Clearly, for any state where Clash, or Ours Chek generate ?

the respetive equation is not uni�able.

4. a diret onsequene of 3.

5. if E = fx

1

= t

1

; : : : ; x

n

= t

n

g is a normal form, then for all x

i

= t

i

we have

x

i

62 vars(t

i

) and x

i

62 vars(E n fx

i

= t

i

g), so fx

1

= t

1

; : : : ; x

n

= t

n

gfx

1

7!

t

1

; : : : ; x

n

7! t

n

g = ft

1

= t

1

; : : : ; t

n

= t

n

g and hene fx

1

7! t

1

; : : : ; x

n

7! t

n

g is

an mgu of fx

1

= t

1

; : : : ; x

n

= t

n

g. By 3. it is also an mgu of s, t.

104 CHAPTER 3. FIRST-ORDER LOGIC

Example 3.5.2 (Size of Standard Uni�ation Problems). Any normal form of

the uni�ation problem E given by

ff(x

1

; g(x

1

; x

1

); x

3

; : : : ; g(x

n

; x

n

)) = f(g(x

0

; x

0

); x

2

; g(x

2

; x

2

); : : : ; x

n+1

)g

with respet to)

SU

is exponentially larger than E.

The seond alulus, polynomial uni�ation, prevents the problem of expo-

nential growth by introduing an impliit representation for the mgu. For this

alulus the size of a normal form is always polynomial in the size of the input

uni�ation problem.

Tautology E ℄ ft = tg)

PU

E

Deomposition E ℄ ff(s

1

; : : : ; s

n

) = f(t

1

; : : : ; t

n

)g)

PU

E ℄ fs

1

=

t

1

; : : : ; s

n

= t

n

g

Clash

E ℄ ff(t

1

; : : : ; t

n

) = g(s

1

; : : : ; s

m

)g)

PU

?

if f 6= g

Ours Chek

E ℄ fx = tg)

PU

?

if x 6= t and x 2 vars(t)

Orient

E ℄ ft = xg)

PU

E ℄ fx = tg

if t 62 X

Substitution

E ℄ fx = yg)

PU

Efx 7! yg ℄ fx = yg

if x 2 vars(E) and x 6= y

Cyle E ℄ fx

1

= t

1

; : : : ; x

n

= t

n

g)

PU

?

if there are positions p

i

with t

i

j

p

i

= x

i+1

; t

n

j

p

n

= x

1

and some p

i

6= �

Merge E ℄ fx = t; x = sg)

PU

E ℄ fx = t; t = sg

if t; s 62 X and jtj � jsj

Theorem 3.5.3 (Soundness, Completeness and Termination of)

PU

). If s; t

are two terms with sort(s) = sort(t) then

1. if fs = tg)

�

PU

E then any equation (s

0

= t

0

) 2 E is well-sorted, i.e.,

sort(s

0

) = sort(t

0

).

2.)

PU

terminates on fs = tg.

3. if fs = tg)

�

PU

E then � is a uni�er (mgu) of E i� � is a uni�er (mgu) of

fs = tg.

4. if fs = tg)

�

PU

? then s and t are not uni�able.

Theorem 3.5.4 (Uni�er generated by)

PU

). Let fs = tg)

�

PU

fx

1

=

t

1

; : : : ; x

n

= t

n

g. Then

3.6. FIRST-ORDER TABLEAUX 105

 Desendant (t)

8x

S

: fx

S

7! tg

:9x

S

: : fx

S

7! tg

for any ground term t 2 T

S

(�)

Æ Desendant Æ()

9x

S

: fx

S

7! g

:8x

S

: : fx

S

7! g

for some fresh Skolem onstant 2 T

S

(�)

Figure 3.1: - and Æ-Formulas

1. x

i

6= x

j

for all i 6= j and without loss of generality x

i

=2 vars(t

i+k

) for all

i; k, 1 � i < n, i+ k � n.

2. the substitution fx

1

7! t

1

gfx

2

7! t

2

g : : : fx

n

7! t

n

g is an mgu of s = t.

Proof. 1. If x

i

= x

j

for some i 6= j then Merge is appliable. If x

i

2 vars(t

i

)

for some i then Ours Chek is appliable. If the x

i

annot be ordered in the

desribed way, then either Substitution or Cyle is appliable.

2. Sine x

i

=2 vars(t

i+k

the omposition yields the mgu.

3.6 First-Order Tableaux

The di�erent versions of tableaux for �rst-order logi di�er in partiular in the

treatment of variables by the tableaux rules. The �rst variant is standard �rst-

order tableaux where variables are instantiated by ground terms.

De�nition 3.6.1 (-,Æ-Formulas). A formula � is alled a -formula if � is a

formula 8x

S

: or :9x

S

: . A formula � is alled a Æ-formula if � is a formula

9x

S

: or :8x

S

: .

De�nition 3.6.2 (Diret Standard Tableaux Desendant). Given a - or Æ-

formula �, Figure 3.1 shows its diret desendants.

For the standard �rst-order tableaux rules to make sense \enough" Skolem

onstants are needed in the signature, e.g., ountably in�nitely many for eah

sort. A Æ formula � ourring in some sequene is alled open if no diret de-

sendant of it is part of the sequene. In general, the number of desendants

annot be limited for a suessful tableaux proof.

-Expansion N℄f(�

1

; : : : ; ; : : : ; �

n

)g)

FT

N℄f(�

1

; : : : ; ; : : : ; �

n

;

0

)g

provided is a -formula,

0

a (t) desendant where t is an arbitrary ground

term in the signature of the sequene (branh) and the sequene is not losed.

Æ-Expansion N℄f(�

1

; : : : ; ; : : : ; �

n

)g)

FT

N℄f(�

1

; : : : ; ; : : : ; �

n

;

0

)g

106 CHAPTER 3. FIRST-ORDER LOGIC

provided is an open Æ-formula,

0

a Æ() desendant where is fresh to the

sequene and the sequene is not losed.

The standard �rst-order tableaux alulus onsists of the rules �-, and

�-expansion (see Setion 2.5) and the above two rules -Expansion and Æ-

Expansion.

Theorem 3.6.3 (Standard First-Order Tableaux is Sound and Complete). A

formula � (without equality) is valid i� standard tableaux omputes a losed

state out of f(:�)g.

Skolem onstants are suÆient: In a Æ-formula 9x�, 9 is the outermost quan-

ti�er and x is the only free variable in �. The rule has to be applied several

times to the same formula for tableaux to be omplete. For instane, onstrut-

ing a losed tableau for

f8x (P (x)! P (f(x))); P (b); :P (f(f(b)))g

is impossible without applying -expansion twie on one path.

The main disadvantage of standard �rst-order tableau is that the ground

term instanes need to be guessed. The whole omplexity of the problem lies in

this guessing as for otherwise tableaux terminates. A natural idea is to guess

ground terms that an eventually be used to lose a branh. This is the idea

of free-variable �rst-order tableaux. Instead of guessing a ground term for a

 formula the variable remains, the instantiation is delayed until a branh is

losed for two literals via uni�ation. As a onsequene, for Æ formulas no longer

onstants are introdued but Skolem terms in the formerly universally quanti�ed

variables that had the Æ formula in their sope.

The new alulus suggests to keep trak of sopes of variables, so I move

from a state as a set of sequenes of formulas to a set of sequenes of pairs

l

i

= (�

i

; X

i

) where X

i

is a set of variables.

De�nition 3.6.4 (Diret Free-Variable Tableaux Desendant). Given a - or

Æ-formula �, Figure 3.2 shows its diret desendants.

-Expansion N℄f(l

1

; : : : ; (;X); : : : ; l

n

)g)

FT

N℄f(l

1

; : : : ; (;X); : : : ; l

n

; (

0

; X[

fyg))g

provided is a -formula,

0

a (y) desendant where y is fresh to the sequene

(branh) and the sequene is not losed.

Æ-Expansion N℄f(l

1

; : : : ; (;X); : : : ; l

n

)g)

FT

N℄f(l

1

; : : : ; (;X); : : : ; l

n

; (

0

; X))g

provided is an open Æ-formula,

0

a Æ(f(y

1

; : : : ; y

n

)) desendant where f is

fresh to the sequene, X = fy

1

; : : : ; y

n

g and the sequene is not losed.

Branh-Closing N ℄ f(l

1

; : : : ; (L;X); : : : ; (K;X

0

); : : : ; l

n

)g)

FT

N� ℄

f(l

1

; : : : ; (L;X); : : : ; (K;X

0

); : : : ; l

n

; g�

3.6. FIRST-ORDER TABLEAUX 107

 Desendant (y)

8x

S

: fx

S

7! yg

:9x

S

: : fx

S

7! yg

for a fresh variable y; sort(y) = S

Æ Desendant Æ(f(y

1

; : : : ; y

n

))

9x

S

: fx

S

7! f(y

1

; : : : ; y

n

)g

:8x

S

: : fx

S

7! f(y

1

; : : : ; y

n

)g

for some fresh Skolem funtion f

where f(y

1

; : : : ; y

n

) 2 T

S

(�;X)

Figure 3.2: - and Æ-Formulas

provided K and L are literals and there is an mgu � suh that K� = :L� and

the sequene is not losed.

The standard �rst-order tableaux alulus onsists of the rules �-, and �-

expansion (see Setion 2.5) whih are adapted to pairs and the above three rules

-Expansion, Æ-Expansion and Branh-Closing.

Theorem 3.6.5 (Free-variable First-Order Tableaux is Sound and Complete).

A formula � (without equality) is valid i� free-variable tableaux omputes a

losed state out of f(:�)g.

Example 3.6.6.

1: :[9w8xR(x;w; f(x;w)) ! 9w8x9yR(x;w; y)℄

2: 9w8x R(x;w; f(x;w)) 1

1

[�℄

3: :9w8x9y R(x;w; y) 1

2

[�℄

4: 8x R(x; ; f(x;)) 2() [Æ℄

5: :8x9y R(x; v

1

; y) 3(v

1

) [℄

6: :9y R(g(v

1

); v

1

; y) 5(g(v

1

)) [Æ℄

7: R(v

2

; ; f(v

2

;)) 4(v

2

) [℄

8: :R(g(v

1

); v

1

; v

3

) 6(v

3

) [℄

7. and 8. are omplementary (modulo uni�ation):

v

2

= g(v

1

); = v

1

; f(v

2

;) = v

3

is solvable with an mgu � = fv

1

7! ; v

2

7! g(); v

3

7! f(g();)g, and hene,

T� is a losed (linear) tableau for the formula in 1.

Problem: Stritness for is still inomplete. For instane, onstruting a

losed tableau for

f8x (P (x)! P (f(x))); P (b); :P (f(f(b)))g

is impossible without applying -expansion twie on one path.

Semanti Tableau vs. Resolution

108 CHAPTER 3. FIRST-ORDER LOGIC

1. Tableau: global, goal-oriented, \bakward".

2. Resolution: loal, \forward".

3. Goal-orientation is a lear advantage if only a small subset of a large set

of formulas is neessary for a proof. (Note that resolution provers saturate

also those parts of the lause set that are irrelevant for proving the goal.)

4. Resolution an be ombined with more powerful redundany elimination

methods; beause of its global nature this is more diÆult for the tableau

method.

5. Resolution an be re�ned to work well with equality; for tableau this seems

to be impossible.

6. On the other hand tableau aluli an be easily extended to other logis;

in partiular tableau provers are very suessful in modal and desription

logis.

3.7 First-Order CNF Transformation

Similar to the propositional ase, �rst-order superposition operates on lauses.

In this setion I show how any �rst-order sentene an be eÆiently transformed

into a CNF, preserving satis�ability. To this end all existentially quanti�ed

variables are replaed with so alled Skolem funtions. Similar to renaming this

replaement only preserves satis�ability. Eventually, all variables in lauses are

impliitly universally quanti�ed.

As usual, the CNF transformation is done by a set of rules. All rules known

from the propositional ase apply. Further rules deal with the quanti�es 8, 9

and some of the propositional rules need an extension in order to ope with

�rst-order variables.

The �rst set of rules eliminates > and ? from a �rst-order formula.

ElimTB1

�[(� ^ >)℄

p

)

CNF

�[�℄

p

ElimTB2

�[(� ^ ?)℄

p

)

CNF

�[?℄

p

ElimTB3

�[(� _ >)℄

p

)

CNF

�[>℄

p

ElimTB4

�[(� _ ?)℄

p

)

CNF

�[�℄

p

ElimTB5

�[:?℄

p

)

CNF

�[>℄

p

ElimTB6

�[:>℄

p

)

CNF

�[?℄

p

3.7. FIRST-ORDER CNF TRANSFORMATION 109

ElimTB7

�[�$?℄

p

)

CNF

�[:�℄

p

ElimTB8

�[�$ >℄

p

)

CNF

�[�℄

p

ElimTB9

�[�! ?℄

p

)

CNF

�[:�℄

p

ElimTB10

�[�! >℄

p

)

CNF

�[>℄

p

ElimTB11

�[? ! �℄

p

)

CNF

�[>℄

p

ElimTB12

�[> ! �℄

p

)

CNF

�[�℄

p

ElimTB13

�[f8; 9gx:>℄

p

)

CNF

�[>℄

p

ElimTB14

�[f8; 9gx:?℄

p

)

CNF

�[?℄

p

where the expression f8; 9gx:� overs both ases 8x:� and 9x:�. The next

step is to rename all variable suh that di�erent quanti�ers bind di�erent vari-

ables. This step is neessary to prevent a later on onfusion of variables.

RenVar

�)

CNF

��

for � = fg

One the variable renaming is done, renaming of bene�ial subformulas is

the next step. The mehanism of renaming and the onept of a bene�ial sub-

formula is exatly the same as in propositional logi. The only di�erene is

that renaming does introdue an atom in the free variables of the respetive

subformula. When some formula is renamed at position p an atom P (~x

n

),

~x

n

= x

1

; : : : ; x

n

replaes j

p

where fvars(j

p

) = fx

1

: : : ; x

n

g. The respetive

de�nition of P (~x

n

) beomes

def(; p; P (~x

n

)) :=

8

<

:

8 ~x

n

:(P (~x

n

)! j

p

) if pol(; p) = 1

8 ~x

n

:(j

p

! P (~x

n

)) if pol(; p) = �1

8 ~x

n

:(P (~x

n

)$ j

p

) if pol(; p) = 0

and the rule SimpleRenaming is hanged aordingly.

SimpleRenaming �)

CNF

�[A

1

℄

p

1

[A

2

℄

p

2

: : : [A

n

℄

p

n

^ def(�; p

1

; A

1

) ^

: : : ^ def(�[A

1

℄

p

1

[A

2

℄

p

2

: : : [A

n�1

℄

p

n�1

; p

n

; A

n

)

provided fp

1

; : : : ; p

n

g � pos(�) and for all i; i+ j either p

i

k p

i+j

or p

i

> p

i+j

and the A

i

= P

i

(x

i;1

; : : : ; x

i;k

i

) where fvars(�j

p

i

) = fx

i;1

; : : : ; x

i;k

i

g and all P

i

are di�erent and new to �

110 CHAPTER 3. FIRST-ORDER LOGIC

Negation normal form is again done as in the propositional ase with addi-

tional rules for the quanti�ers.

ElimEquiv1 �[(�$)℄

p

)

CNF

�[(�!) ^ (! �)℄

p

provided pol(�; p) 2 f0; 1g

ElimEquiv2 �[(�$)℄

p

)

CNF

�[(� ^) _ (:� ^ :)℄

p

provided pol(�; p) = �1

ElimImp �[(�!)℄

p

)

CNF

�[(:� _)℄

p

PushNeg1 �[:(� _)℄

p

)

CNF

�[(:� ^ :)℄

p

PushNeg2 �[:(� ^)℄

p

)

CNF

�[(:� _ :)℄

p

PushNeg3 �[::�℄

p

)

CNF

�[�℄

p

PushNeg4 �[:8x:�℄

p

)

CNF

�[9x::�℄

p

PushNeg5 �[:9x:�℄

p

)

CNF

�[8x::�℄

p

In propositional logi after NNF, the CNF an be generated using distribu-

tivity. In �rst-order logi the existential quanti�ers are eliminated �rst by the

introdution of Skolem funtions. In order to reeive Skolem funtions with few

arguments, the quanti�ers are �rst moved inwards as far as passible. This step

is alled mini-soping.

MiniSope1 �[8x:(

1

Æ

2

)℄

p

)

CNF

�[(8x:

1

) Æ

2

℄

p

provided Æ 2 f^;_g, x 62 fvars(

2

)

MiniSope2 �[9x:(

1

Æ

2

)℄

p

)

CNF

�[(9x:

1

) Æ

2

℄

p

provided Æ 2 f^;_g, x 62 fvars(

2

)

MiniSope3 �[8x:(

1

^

2

)℄

p

)

CNF

�[(8x:

1

) ^ (8x:

2

)�℄

p

where � = fg, x 2 (fvars(

1

) \ fvars(

2

))

MiniSope4 �[9x:(

1

_

2

)℄

p

)

CNF

�[(9x:

1

) _ (9x:

2

)�℄

p

where � = fg; x 2 (fvars(

1

) \ fvars(

2

))

3.7. FIRST-ORDER CNF TRANSFORMATION 111

The rules MiniSope1, MiniSope2 are applied modulo the ommutativity

of ^, _. One the quanti�ers are moved inwards Skolemization an take plae.

Skolemization

�[9x; ℄

p

)

CNF

�[fx 7! f(y

1

; : : : ; y

n

)g℄

p

provided there is no q, q < p with �j

q

= 9x

0

:

0

, fvars(9x:) = fy

1

; : : : ; y

n

g,

arity(f) = n is a new funtion symbol to � mathing the respetive sorts of the

y

i

with range sort sort(x)

Example 3.7.1 (Mini-Soping and Skolemization). Consider the simple for-

mula 8x:9y:(R(x; x) ^ P (y). Applying Skolemization diretly to this formula,

without mini-soping results in

8x:9y:(R(x; x) ^ P (y)))

CNF,Skolemization

8x:(R(x; x) ^ P (g(x))

for a unary Skolem funtion g beause fvars(9y:(R(x; x)^P (y))) = fxg. Apply-

ing mini-soping and then Skolemization generates

8x:9y:(R(x; x) ^ P (y)))

�

CNF,MiniSope2,1

8x:R(x; x) ^ 9y:P (y)

)

CNF,Skolemization

8x:R(x; x) ^ P (a)

for some Skolem onstant a beause fvars(9y:P (y)) = ;. Now the former for-

mula after Skolemization is seriously more omplex than the latter. The former

belongs to an undeidable fragment of �rst-order logi while the latter belongs

to a deidable one (see Setion 3.14).

Finally, the universal quanti�ers are removed. In a �rst-order logi CNF any

variable is universally quanti�ed by default. Furthermore, the variables of two

di�erent lauses are always assumed to be di�erent.

RemForall

�[8x: ℄

p

)

CNF

�[℄

p

The atual CNF is then done by distributivity.

PushDisj �[(�

1

^ �

2

) _ ℄

p

)

CNF

�[(�

1

_) ^ (�

2

_)℄

p

Theorem 3.7.2 (Properties of the CNF Transformation). Let � be a �rst-order

sentene, then

1. nf(�) terminates

2. � is satis�able i� nf(�) is satis�able

Proof. (Idea) 1. is a straightforward extension of the propositional ase. It is

easy to de�ne a measure for any line of Algorithm 6.

2. an also be established separately for all rule appliations. The rules SimpleR-

enaming and Skolemization need separate proofs, the rest is straightforward or

opied from the propositional ase.

112 CHAPTER 3. FIRST-ORDER LOGIC

Algorithm 6: nf(�)

Input : A �rst-order formula �.

Output: A formula in CNF satis�ability preserving to �.

1 whilerule (ElimTB1(�),: : :,ElimTB14(�)) do ;

2 RenVar(�);

3 SimpleRenaming(�) on obvious positions;

4 whilerule (ElimEquiv1(�),ElimEquiv2(�)) do ;

5 whilerule (ElimImp(�)) do ;

6 whilerule (PushNeg1(�),: : :,PushNeg5(�)) do ;

7 whilerule (MiniSope1(�),: : :,MiniSope4(�)) do ;

8 whilerule (Skolemization(�)) do ;

9 whilerule (RemForall(�)) do ;

10 whilerule (PushDisj(�)) do ;

11 return �;

C In addition to the onsideration of repeated subformulas, disussed

in Setion 2.6, for �rst-order renaming another tehnique an pay o�:

generalization. Consider the formula [�

1

_ (Q

1

(a

1

) ^Q

2

(a

1

))℄ ^ [�

2

_ (Q

1

(a

2

) ^

Q

2

(a

2

))℄^ : : :^ [�

n

_ (Q

1

(a

n

)^Q

2

(a

n

)℄. SimpleRenaming on obvious renamings

applied to this formula will independently rename any ourrenes of a formula

(Q

1

(a

i

)^Q

2

(a

i

)). However generalization pays o� here. By adding the de�nition

8x; y (R(x; y) ! (Q

1

(x) ^ Q

2

(y))) and replaing the i

th

ourrene of the on-

junt by R(x; y)fx 7! a

i

; y 7! a

i

g one de�nition for all subformula ourrenes

suÆes.

3.8 Herbrand Interpretations

For propositional logi the existene of a anonial model is straightforward

beause the de�nition of the semantis leads to an e�etive representation. A

propositional variable an be either true or false. For �rst-order logi this is no

longer straightforward beause an interpretation an assign any non-empty set

to a sort, any funtion to a funtion symbol and any relation to a prediate

symbol. A giant step forward towards the mehanization of �rst-order logi

was the disovery of a anonial model onstrution by Herbrand. A �rst-order

formula has a model i� it has suh a anonial model whih is build out of the

syntax.

For this and the following setion I restrit the fous to �rst-order logi

without equality. Equality is then onsidered and added to the onepts of this

hapter in Chapters ??, ??.

De�nition 3.8.1 (Herbrand Interpretation). A Herbrand Interpretation (over

�) is a �-algebra A so that

1. S

A

= T

S

(�) for every sort S 2 S

3.8. HERBRAND INTERPRETATIONS 113

2. f

A

: (s

1

; : : : ; s

n

) 7! f(s

1

; : : : ; s

n

) where f 2
, arity(f) = n, s

i

2 T

S

i

(�)

and f : S

1

� : : :� S

n

! S is the sort delaration for f

3. P

A

� (T

S

1

(�) � : : : � T

S

m

(�)) where P 2 �, arity(P) = m and P �

S

1

� : : :� S

m

is the sort delaration for P

In other words, values are �xed to be ground terms and funtions are �xed

to be the term onstrutors. Only prediate symbols may be freely interpreted

as relations over ground terms.

Proposition 3.8.2. Every set of ground atoms I uniquely determines a Her-

brand interpretation A via

(s

1

; : : : ; s

n

) 2 P

A

i� P (s

1

; : : : ; s

n

) 2 I

Thus Herbrand interpretations (over �) an be identi�ed with sets of �-

ground atoms. A Herbrand interpretation I is alled a Herbrand model of �, if

I j= �.

Example 3.8.3. Consider the signature � = (fSg; fa; bg; fP;Qg), where a; b

are onstants, arity(P) = 1, arity(Q) = 2, and all onstants, prediates are

de�ned over the sort S. Then the following are examples of Herbrand interpre-

tations over �, where for all interpretations S

A

= fa; bg.

I

1

: = ;

I

2

: = fP (a); Q(a; a); Q(b; b)g

I

3

: = fP (a); P (b); Q(a; a); Q(b; b); Q(a; b); Q(b; a)g

Now onsider the extension �

0

of � by one unary funtion symbol g : S ! S.

Then the following are examples of Herbrand interpretations over �

0

, where for

all interpretations S

A

= fa; b; g(a); g(b); g(g(a)); : : :g.

I

0

1

: = ;

I

0

2

: = fP (a); Q(a; g(a)); Q(b; b)g

I

0

3

: = fP (a); P (g(a)); P (g(g(a))); : : : ; Q(a; a); Q(b; b); Q(b; g(b)); Q(b; g(g(b))); : : :g

Theorem 3.8.4 (Herbrand). Let N be a set of �-lauses. Then N is satis�able

i� N has a Herbrand model over � i� ground(�; N) has a Herbrand model

over �, where ground(�; N) = fC� j C 2 N; dom(�) = vars(C); and x� 2

T

sort(x)

(�) for all x 2 dom(�)g is the set of ground instanes of N .

Example 3.8.5 (Example of a ground(�; N)). Consider �

0

from Example 3.8.3

and the lause set N = fQ(x; x) _ :P (x);:P (x) _ P (g(x))g. Then the set of

ground instanes ground(�

0

; N) = f

Q(a; a) _ :P (a)

Q(b; b) _ :P (b)

Q(g(a); g(a)) _ :P (g(a))

: : :

:P (a) _ P (g(a))

:P (b) _ P (g(b))

:P (g(a)) _ P (g(g(a)))

: : :g

114 CHAPTER 3. FIRST-ORDER LOGIC

is satis�able. For example by the Herbrand models

I

1

: = ;

I

2

: = fP (b); Q(b; b); P (g(b)); Q(g(b); g(b)); : : :g

3.9 Orderings

De�nition 3.9.1 (�-Operation Compatible Relation). A binary relation

A over T (�;X) is alled ompatible with �-operations, if s A s

0

implies

f(t

1

; : : : ; s; : : : ; t

n

) A f(t

1

; : : : ; s

0

; : : : ; t

n

) for all f 2
 and s; s

0

; t

i

2 T (�;X).

Lemma 3.9.2. A relation A is ompatible with �-operations i� s A s

0

implies

t[s℄

p

A t[s

0

℄

p

for all s; s

0

; t 2 T (�;X) and p 2 pos(t).

In the literature ompatible with �-operations is sometimes also alled om-

patible with ontexts.

De�nition 3.9.3 (Substitution Stable Relation, Rewrite Relation). A binary

relation A over T (�;X) is alled stable under substitutions, if s A s

0

implies

s� A s

0

� for all s; s

0

2 T (�;X) and substitutions �. A binary relation A is

alled a rewrite relation, if it is ompatible with �-operations and stable under

substitutions.

De�nition 3.9.4 (Lexiographial Path Ordering (LPO)). Let � = (S;
;�)

be a signature and let � be a strit partial ordering on operator symbols in
,

alled preedene. The lexiographial path ordering �

lpo

on T (�;X) is de�ned

as follows: if s; t are terms in T

S

(�;X) then s �

lpo

t i�

1. t = x 2 X , x 2 vars(s) and s 6= t or

2. s = f(s

1

; : : : ; s

n

), t = g(t

1

; : : : ; t

m

) and

(a) s

i

�

lpo

t for some i 2 f1; : : : ; ng or

(b) f � g and s �

lpo

t

j

for every j 2 f1; : : : ;mg or

() f = g, s �

lpo

t

j

for every j 2 f1; : : : ;mg and (s

1

; : : : ; s

n

)(�

lpo

)

lex

(t

1

; : : : ; t

m

).

Theorem 3.9.5. 1. The LPO is a rewrite ordering.

2. If the preedene � is total on
 then �

lpo

is total on the set of ground

terms T (�).

3. If
 is �nite then �

lpo

is well-founded.

Example 3.9.6. Consider the terms g(x), g(y), g(g(a)), g(b), g(a), b, a. With

respet to the preedene g � b � a the ordering on the ground terms is

g(g(a)) �

lpo

g(b) �

lpo

g(a) �

lpo

b �

lpo

a. The terms g(x) and g(y) are not

omparable. Note that the terms g(g(a)), g(b), g(a) are all instanes of both

g(x) and g(y).

With respet to the preedene b � a � g the ordering on the ground terms

is g(b) �

lpo

b �

lpo

g(g(a)) �

lpo

g(a) �

lpo

a.

3.9. ORDERINGS 115

De�nition 3.9.7 (The Knuth-Bendix Ordering). Let � = (S;
;�) be a �nite

signature, let � be a strit partial ordering (\preedene") on
, let w :
 [

X ! R

+

0

be a weight funtion, so that the following admissibility onditions are

satis�ed:

1. w(x) = w

0

2 R

+

for all variables x 2 X ; w() � w

0

for all onstants 2
.

2. If w(f) = 0 for some f 2
 with arity(f) = 1, then f � g for all g 2
.

Then, the weight funtion w an be extended to terms reursively:

w(f(t

1

; : : : ; t

n

)) = w(f) +

X

1�i�n

w(t

i

)

or alternatively

X

w(t) =

X

x2vars(t)

w(x) �#(x; t) +

X

f2

w(f) �#(f; t)

where #(a; t) is the number of ourrenes of a in t.

The Knuth-Bendix ordering �

kbo

on T (�;X) indued by � and admissible

w is de�ned by: s �

kbo

t i�

1. #(x; s) � #(x; t) for all variables x and w(s) > w(t), or

2. #(x; s) � #(x; t) for all variables x, w(s) = w(t), and

(a) t = x, s = f

n

(x) for some n � 1, or

(b) s = f(s

1

; : : : ; s

m

), t = g(t

1

; : : : ; t

n

), and f � g, or

() s = f(s

1

; : : : ; s

m

), t = f(t

1

; : : : ; t

m

), and (s

1

; : : : ; s

m

)(�

kbo

)

lex

(t

1

; : : : ; t

m

).

Theorem 3.9.8. 1. The KBO is a rewrite ordering.

2. If the preedene � is total on
 then �

kbo

is total on the set of ground

terms T (�).

3. If
 is �nite then �

kbo

is well-founded.

The LPO ordering as well as the KBO ordering an be extended to atoms in

a straightforward way. The preedene � is extended to �. For LPO atoms are

then ompared aording to De�nition 3.9.4-2. For KBO the weight funtion w

is also extended to atoms by giving prediates a non-zero positive weight and

then atoms are ompared aording to terms.

Atually, sine atoms are never substituted for variables in �rst-order logi,

an alternative to the above would be to �rst ompare the prediate symbols and

let � deide the ordering. Only if the atoms share the same prediate symbol,

the argument terms are onsidered, e.g., in a lexiographi way and are then

ompared with respet to KBO or LPO, respetively.

116 CHAPTER 3. FIRST-ORDER LOGIC

3.10 Ground Superposition

Propositional lauses and ground lauses are essentially the same, as long as

equational atoms are not onsidered. This setion deals only with ground lauses

and realls mostly the material from Setion 2.7 for �rst-order ground lauses.

Let N be a set of ground lauses.

De�nition 3.10.1 (Clause Ordering). Let � be a total strit rewrite ordering

on terms and atoms. Then � an be lifted to a total ordering �

L

on literals

by its multiset extension �

mul

where a positive literal P (t

1

; : : : ; t

n

) is mapped

to the multiset fP (t

1

; : : : ; t

n

)g and a negative literal :P (t

1

; : : : ; t

n

) to the mul-

tiset fP (t

1

; : : : ; t

n

); P (t

1

; : : : ; t

n

)g. The ordering �

L

is further lifted to a total

ordering on lauses �

C

by onsidering the multiset extension of �

L

for lauses.

Proposition 3.10.2 (Properties of the Clause Ordering). (i) The orderings on

literals and lauses are total and well-founded.

(ii) Let C and D be lauses with P (t

1

; : : : ; t

n

) = jmax(C)j, Q(s

1

; : : : ; s

m

) =

jmax(D)j, where max(C) denotes the maximal literal in C.

1. If Q(s

1

; : : : ; s

m

) �

L

P (t

1

; : : : ; t

n

) then D �

C

C.

2. If P (t

1

; : : : ; t

n

) = Q(s

1

; : : : ; s

m

), P (t

1

; : : : ; t

n

) ours negatively in C but

only positively in D, then D �

C

C.

Eventually, as I did for propositional logi, I overload � with �

L

and �

C

. So

if � is applied to literals it denotes �

L

, if it is applied to lauses, it denotes �

C

.

Note that � is a total ordering on literals and lauses as well. For superposition,

inferenes are restrited to maximal literals with respet to �. For a lause set

N , I de�ne N

�C

= fD 2 N j D � Cg.

De�nition 3.10.3 (Abstrat Redundany). A ground lause C is redundant

with respet to a ground lause set N if N

�C

j= C.

Tautologies are redundant. Subsumed lauses are redundant if � is strit.

Dupliate lauses are anyway eliminated quietly beause the alulus operates

on sets of lauses.

C

Note that for �nite N , and any C 2 N redundany N

�C

j= C an

be deided but is as hard as testing unsatis�ability for a lause set

N . So the goal is to invent redundany notions that an be eÆiently

deided and that are useful.

De�nition 3.10.4 (Seletion Funtion). The seletion funtion sel maps lauses

to one of its negative literals or ?. If sel(C) = :P (t

1

; : : : ; t

n

) then :P (t

1

; : : : ; t

n

)

is alled seleted in C. If sel(C) = ? then no literal in C is seleted.

The seletion funtion is, in addition to the ordering, a further means to

restrit superposition inferenes. If a negative literal is seleted on a lause, any

superposition inferene must be on the seleted literal.

3.10. GROUND SUPERPOSITION 117

De�nition 3.10.5 (Partial Model Constrution). Given a lause set N and an

ordering � we an onstrut a (partial) model N

I

for N indutively as follows:

N

C

:=

S

D�C

Æ

D

Æ

D

:=

8

>

<

>

:

fP (t

1

; : : : ; t

n

)g if D = D

0

_ P (t

1

; : : : ; t

n

); P (t

1

; : : : ; t

n

) stritly maximal, no literal

seleted in D and N

D

6j= D

; otherwise

N

I

:=

S

C2N

Æ

C

Clauses C with Æ

C

6= ; are alled produtive.

Proposition 3.10.6. Some properties of the partial model onstrution.

1. For every D with (C _:P (t

1

; : : : ; t

n

)) � D we have Æ

D

6= fP (t

1

; : : : ; t

n

)g.

2. If Æ

C

= fP (t

1

; : : : ; t

n

)g then N

C

[Æ

C

j= C.

3. If N

C

j= D and D � C then for all C

0

with C � C

0

we have N

C

0

j= D

and in partiular N

I

j= D.

4. There is no lause C with P (t

1

; : : : ; t

n

) _ P (t

1

; : : : ; t

n

) � C suh that

Æ

C

= fPg.

T

Please properly distinguish: N is a set of lauses interpreted as the

onjuntion of all lauses. N

�C

is of set of lauses from N stritly

smaller than C with respet to �. N

I

, N

C

are Herbrand interpreta-

tions (see Proposition 3.8.2). N

I

is the overall (partial) model for N , whereas

N

C

is generated from all lauses from N stritly smaller than C.

Superposition Left (N℄fC

1

_P (t

1

; : : : ; t

n

); C

2

_:P (t

1

; : : : ; t

n

)g))

SUP

(N [fC

1

_ P (t

1

; : : : ; t

n

); C

2

_ :P (t

1

; : : : ; t

n

)g [fC

1

_ C

2

g)

where (i) P (t

1

; : : : ; t

n

) is stritly maximal in C

1

_ P (t

1

; : : : ; t

n

) (ii) no literal in

C

1

_P (t

1

; : : : ; t

n

) is seleted (iii) :P (t

1

; : : : ; t

n

) is maximal and no literal seleted

in C

2

_ :P (t

1

; : : : ; t

n

), or :P (t

1

; : : : ; t

n

) is seleted in C

2

_ :P (t

1

; : : : ; t

n

)

Fatoring (N ℄ fC _ P (t

1

; : : : ; t

n

) _ P (t

1

; : : : ; t

n

)g))

SUP

(N [fC _ P (t

1

; : : : ; t

n

) _ P (t

1

; : : : ; t

n

)g [fC _ P (t

1

; : : : ; t

n

)g)

where (i) P (t

1

; : : : ; t

n

) is maximal in C _ P (t

1

; : : : ; t

n

) _ P (t

1

; : : : ; t

n

) (ii) no

literal is seleted in C _ P (t

1

; : : : ; t

n

) _ P (t

1

; : : : ; t

n

)

Note that the superposition fatoring rule di�ers from the resolution fator-

ing rule in that it only applies to positive literals.

De�nition 3.10.7 (Saturation). A set N of lauses is alled saturated up to

redundany, if any inferene from non-redundant lauses in N yields a redundant

lause with respet to N .

118 CHAPTER 3. FIRST-ORDER LOGIC

Examples for spei� redundany rules that an be eÆiently deided are

Subsumption (N ℄ fC

1

; C

2

g))

SUP

(N [fC

1

g)

provided C

1

� C

2

Tautology Dele-

tion

(N ℄ fC _ P (t

1

; : : : ; t

n

) _ :P (t

1

; : : : ; t

n

)g))

SUP

(N)

Condensation

(N ℄ fC

1

_ L _ Lg))

SUP

(N [fC

1

_ Lg)

Subsumption

Resolution

(N ℄ fC

1

_ L;C

2

_ :Lg))

SUP

(N [fC

1

_ L;C

2

g)

where C

1

� C

2

Proposition 3.10.8. All lauses removed by Subsumption, Tautology Deletion,

Condensation and Subsumption Resolution are redundant with respet to the

kept or added lauses.

Theorem 3.10.9. LetN be a, possibly ountably in�nite, set of ground lauses.

If N is saturated up to redundany and ? =2 N then N is satis�able and N

I

j=

N .

Proof. The proof is by ontradition. So I assume: (i) for any lause D derived

by Superposition Left or Fatoring from N that D is redundant, i.e., N

�D

j= D,

(ii) ? =2 N and (iii) N

I

6j= N . Then there is a minimal, with respet to �, lause

C_L 2 N suh that N

I

6j= C_L and L is a seleted literal in C_L or no literal

in C _ L is seleted and L is maximal. This lause must exist beause ? =2 N .

The lause C _ L is not redundant. For otherwise, N

�C_L

j= C _ L and

hene N

I

j= C _ L, beause N

I

j= N

�C_L

, a ontradition.

I distinguish the ase L is a positive and no literal seleted in C _ L or L

is a negative literal. Firstly, assume L is positive, i.e., L = P (t

1

; : : : ; t

n

) for

some ground atom P (t

1

; : : : ; t

n

). Now if P (t

1

; : : : ; t

n

) is stritly maximal in

C _ P (t

1

; : : : ; t

n

) then atually Æ

C_P

= fP (t

1

; : : : ; t

n

)g and hene N

I

j= C _ P ,

a ontradition. So P (t

1

; : : : ; t

n

) is not stritly maximal. But then atually C _

P (t

1

; : : : ; t

n

) has the form C

0

1

_P (t

1

; : : : ; t

n

)_P (t

1

; : : : ; t

n

) and Fatoring derives

C

0

1

_P (t

1

; : : : ; t

n

) where (C

0

1

_P (t

1

; : : : ; t

n

)) � (C

0

1

_P (t

1

; : : : ; t

n

)_P (t

1

; : : : ; t

n

)).

Now C

0

1

_ P (t

1

; : : : ; t

n

) is not redundant, stritly smaller than C _ L, we have

C

0

1

_P (t

1

; : : : ; t

n

) 2 N and N

I

6j= C

0

1

_P (t

1

; : : : ; t

n

), a ontradition against the

hoie that C _ L is minimal.

Seondly, let us assume L is negative, i.e., L = :P (t

1

; : : : ; t

n

) for some

ground atom P (t

1

; : : : ; t

n

). Then, sine N

I

6j= C _ :P (t

1

; : : : ; t

n

) we know

P (t

1

; : : : ; t

n

) 2 N

I

. So there is a lause D _ P (t

1

; : : : ; t

n

) 2 N where

Æ

D_P (t

1

;:::;t

n

)

= fP (t

1

; : : : ; t

n

)g and P (t

1

; : : : ; t

n

) is stritly maximal in D _

P (t

1

; : : : ; t

n

) and (D _ P (t

1

; : : : ; t

n

)) � (C _ :P (t

1

; : : : ; t

n

)). So Superposition

Left derives C _ D where (C _ D) � (C _ :P (t

1

; : : : ; t

n

)). The derived lause

C _ D annot be redundant, beause for otherwise either N

�D_P (t

1

;:::;t

n

)

j=

3.10. GROUND SUPERPOSITION 119

D _ P (t

1

; : : : ; t

n

) or N

�C_:P (t

1

;:::;t

n

)

j= C _ :P (t

1

; : : : ; t

n

). So C _D 2 N and

N

I

6j= C _D, a ontradition against the hoie that C _L is the minimal false

lause.

So the proof atually tells us that at any point in time we need only to

onsider either a superposition left inferene between a minimal false lause and

a produtive lause or a fatoring inferene on a minimal false lause.

Theorem 3.10.10 (Compatness of First-Order Logi). Let N be a, possibly

in�nite, set of �rst-order logi ground lauses. Then N is unsatis�able i� there

is a �nite subset N

0

� N suh that N

0

is unsatis�able.

Proof. If N is unsatis�able, saturation via superposition generates ?. So there

is an i suh that N)

i

SUP

N

0

and ? 2 N

0

. The lause ? is the result of at

most i many superposition inferenes, redutions on lauses fC

1

; : : : ; C

n

g � N .

Superposition is sound, so fC

1

; : : : ; C

n

g is a �nite, unsatis�able subset of N .

Corollary 3.10.11 (Compatness of First-Order Logi: Classial). A set N of

lauses is satis�able i� all �nite subsets of N are satis�able

Theorem 3.10.12 (Soundness and Completeness of Ground Superposition). A

�rst-order �-sentene � is valid i� there exists a ground superposition refutation

for ground(�; nf(:�)).

Proof. A �rst-order sentene � is valid i� :� is unsatis�able i� nf(:�) is unsat-

is�able i� ground(�; nf(:�)) is unsatis�able i� superposition provides a refu-

tation of ground(�; nf(:�)).

Theorem 3.10.13 (Semi-Deidability of First-Order Logi by Ground Super-

position). If a �rst-order �-sentene � is valid then a ground superposition

refutation an be omputed.

Proof. In a fair way enumerate ground(�; nf(:�)) and perform superposition

inferene steps. The enumeration an, e.g., be done by onsidering Herbrand

terms of inreasing size.

Example 3.10.14 (Ground Superposition). Consider the below lauses 1-4

and superposition refutation with respet a KBO with preedene P � Q �

g � f � � b � a where the weight funtion w returns 1 for all signature

symbols. Maximal literals are marked with a

�

.

1: :P (f())

�

_ :P (f())

�

_Q(b) (Input)

2: P (f())

�

_Q(b) (Input)

3: :P (g(b;))

�

_ :Q(b) (Input)

4: P (g(b;))

�

(Input)

5: :P (f())

�

_Q(b) (Cond(1))

6: Q(b)

�

_Q(b)

�

(Sup(5; 2)))

7: Q(b)

�

(Fat(6))

8: :Q(b)

�

(Sup(3; 4))

10: ? (Sup(8; 7))

120 CHAPTER 3. FIRST-ORDER LOGIC

Note that lause 5 annot be derived by Fatoring whereas lause 7 an also be

derived by Condensation. Clause 8 is also the result of a Subsumption Resolution

appliation to lauses 3, 4.

Theorem 3.10.15 (Craig Theorem [14℄). Let � and be two propositional

formulas so that � j= . Then there exists a formula � (alled the interpolant

for � j=), so that � ontains only propositional variables ourring both in �

and in so that � j= � and � j= .

Proof. Translate � and : into CNF. let N and M , respetively, denote the

resulting lause set. Choose an atom ordering � for whih the propositional

variables that our in � but not in are maximal. Saturate N into N

�

w.r.t.

Sup

�

sel

with an empty seletion funtion sel. Then saturate N

�

[M w.r.t. Sup

�

sel

to derive ?. As N

�

is already saturated, due to the ordering restritions only

inferenes need to be onsidered where premises, if they are from N

�

, only

ontain symbols that also our in . The onjuntion of these premises is an

interpolant �. The theorem also holds for �rst-order formulas. For universal for-

mulas the above proof an be easily extended. In the general ase, a proof based

on superposition tehnology is more ompliated beause of Skolemization.

3.11 First-Order Superposition with Seletion

The ompleteness proof of ground superposition (Setion 3.10) talks about

(stritly) maximal literals of ground lauses. The non-ground alulus onsiders

those literals that orrespond to (stritly) maximal literals of ground instanes.

The used ordering is exatly the ordering of De�nition 3.10.1 where lauses

with variables are projeted to their ground instanes for ordering omputations.

De�nition 3.11.1 (Maximal Literal). A literal L is alled [stritly℄ maximal

in a lause C if and only if there exists a grounding substitution � so that L�

is [stritly℄ maximal in C� (i.e., if for no other L

0

in C: L� � L

0

� [L� � L

0

�℄).

Superposition Left (N℄fC

1

_P (t

1

; : : : ; t

n

); C

2

_:P (s

1

; : : : ; s

n

)g))

SUP

(N [fC

1

_ P (t

1

; : : : ; t

n

); C

2

_ :P (s

1

; : : : ; s

n

)g [f(C

1

_ C

2

)�g)

where (i) P (t

1

; : : : ; t

n

)� is stritly maximal in (C

1

_ P (t

1

; : : : ; t

n

))� (ii) no

literal in C

1

_ P (t

1

; : : : ; t

n

) is seleted (iii) :P (s

1

; : : : ; s

n

)� is maximal and

no literal seleted in (C

2

_ :P (s

1

; : : : ; s

n

))�, or :P (s

1

; : : : ; s

n

) is seleted in

(C

2

_ :P (s

1

; : : : ; s

n

))� (iv) � is the mgu of P (t

1

; : : : ; t

n

) and P (s

1

; : : : ; s

n

)

Fatoring (N ℄ fC _ P (t

1

; : : : ; t

n

) _ P (s

1

; : : : ; s

n

)g))

SUP

(N [fC _ P (t

1

; : : : ; t

n

) _ P (s

1

; : : : ; s

n

)g [f(C _ P (t

1

; : : : ; t

n

))�g)

where (i) P (t

1

; : : : ; t

n

)� is maximal in (C _ P (t

1

; : : : ; t

n

) _ P (s

1

; : : : ; s

n

))�

(ii) no literal is seleted in C _P (t

1

; : : : ; t

n

)_P (s

1

; : : : ; s

n

) (iii) � is the mgu of

P (t

1

; : : : ; t

n

) and P (s

1

; : : : ; s

n

)

3.11. FIRST-ORDER SUPERPOSITION WITH SELECTION 121

Note that the above inferene rules Superpositions Left and Fatoring are

generalizations of their respetive ounterparts from Setion 3.10. On ground

lauses they oinide. Therefore, we an safely overload them in the sequel.

De�nition 3.11.2 (Abstrat Redundany). A lause C is redundant with

respet to a lause set N if for all ground instanes C� where are lauses

fC

1

; : : : ; C

n

g � N with ground instanes C

1

�

1

; : : : ; C

n

�

n

suh that C

i

�

i

� C�

for all i and C

1

�

1

; : : : ; C

n

�

n

j= C�.

De�nition 3.11.3 (Saturation). A set N of lauses is alled saturated up to

redundany, if any inferene from non-redundant lauses in N yields a redundant

lause with respet to N .

In ontrast to the ground ase, the above abstrat notion of redundany is

not e�etive, i.e., it is undeidable for some lause C whether it is redundant, in

general. Nevertheless, the onrete redundany notions from Setion 3.10 arry

over to the non-ground ase. Let dup be a funtion from lauses to lauses that

removes dupliate literals, i.e., dup(C) = C

0

where C

0

� C, C

0

does not ontain

any dupliate literals, and for eah L 2 C also L 2 C

0

.

Subsumption (N ℄ fC

1

; C

2

g))

SUP

(N [fC

1

g)

provided C

1

� � C

2

for some �

Tautology Dele-

tion

(N ℄ fC _ P (t

1

; : : : ; t

n

) _ :P (t

1

; : : : ; t

n

)g))

SUP

(N)

Condensation

(N ℄ fC

1

_L_L

0

g))

SUP

(N [fdup((C

1

_L_L

0

)�)g)

provided L� = L

0

and dup((C

1

_ L _ L

0

)�) subsumes C

1

_ L _ L

0

for some �

Subsumption

Resolution

(N ℄ fC

1

_ L;C

2

_ L

0

g))

SUP

(N [fC

1

_ L;C

2

g)

where L� = :L

0

and C

1

� � C

2

for some �

Lemma 3.11.4. All redution rules are instanes of the abstrat redundany

riterion

Lemma 3.11.5 (Subsumption is NP-omplete). Subsumption is NP-omplete.

Proof. Let C

1

subsume C

2

with substitution � Subsumption is in NP beause

the size of � is bound by the size of C

2

and the subset relation an be heked

in time at most quadrati in the size of C

1

and C

2

.

Propositional SAT an be redued as follows. Assume a 3-SAT lause set

N . Consider a 3-plae prediate R and a unary funtion g and a mapping from

propositional variables P to �rst order variables x

P

. : : :

Lemma 3.11.6 (Lifting). Let D_L and C_L

0

be variable-disjoint lauses and

� a grounding substitution for C _L and D _L

0

. If there is a superposition left

inferene

(N ℄ f(D _ L)�; (C _ L

0

)�g))

SUP

(N [f(D _ L)�; (C _ L

0

)�g [fD� _ C�g)

122 CHAPTER 3. FIRST-ORDER LOGIC

and if sel((D _ L)�) = sel((D _ L))�, sel((C _ L

0

)�) = sel((C _ L

0

))� , then

there exists a mgu � suh that

(N ℄ fD _ L;C _ L

0

g))

SUP

(N [fD _ L;C _ L

0

g [f(D _ C)�g):

Let C _L_L

0

be a lause and � a grounding substitution for C _L_L

0

. If

there is a fatoring inferene

(N ℄ f(C _ L _ L

0

)�g))

SUP

(N [f(C _ L _ L

0

)�g [f(C _ L)�g)

and if sel((C _ L _ L

0

)�) = sel((C _ L _ L

0

))� , then there exists a mgu � suh

that

(N ℄ fC _ L _ L

0

g))

SUP

(N [fC _ L _ L

0

g [f(C _ L)�g)

Note that in the above lemma the lause D�_C� is an instane of the lause

(D _C)� The redution rules annot be lifted in the same way as the following

example shows.

Example 3.11.7 (First-Order Redutions are not Liftable). Consider the two

lauses P (x) _ Q(x), P (g(y)) and grounding substitution fx 7! g(a); y 7! ag.

Then P (g(y))� subsumes (P (x)_Q(x))� but P (g(y)) does not subsume P (x)_

Q(x). For all other redution rules similar examples an be onstruted.

Lemma 3.11.8 (Soundness and Completeness). Superposition is sound and

omplete.

Proof. Soundness is obvious. For ompleteness, Theorem 3.10.12 proves the

ground ase. Now by applying Lemma 3.11.6 to this proof it an be lifted to the

�rst-order level.

There are questions left open by Lemma 3.11.8. It just says that a ground

refutation an be lifted to a �rst-order refutation. But what about abstrat

redundany, De�nition 3.11.2? Can �rst-order redundant lauses be deleted

without harming ompleteness? And what about the ground model operator

with respet to lause sets N saturated on the �rst order level. Is in this ase

ground(�; N)

I

a model? The next two lemmas answer these questions positively.

Lemma 3.11.9 (Redundant Clauses are Obsolete). If a lause set N is unsat-

is�able, then there is a derivation N)

�

SUP

N

0

suh that ? 2 N

0

and no lause

in the derivation of ? is redundant.

Proof. If N is unsatis�able then there is a ground superposition refutation of

ground(�; N) suh that no ground lause in the refutation is redundant. Now

aording to Lemma 3.11.8 this proof an be lifted to the �rst-order level. Now

assume some lause C in the �rst-order proof is redundant that is the lifting of

some lause C� from the ground proof with respet to a grounding substitution

�. The lause C is redundant by De�nition 3.11.2 if all its ground instanes are,

in partiular, C�. But this ontradits the fat that the lifted ground proof does

not ontain redundant lauses.

3.11. FIRST-ORDER SUPERPOSITION WITH SELECTION 123

Lemma 3.11.10 (Model Property). If N is a saturated lause set and ? 62 N

then ground(�; N)

I

j= N .

Proof. As usual we assume that seletion on the ground and respetive non-

ground lauses is idential. Assume ground(�; N)

I

6j= N . Then there is a min-

imal ground lause C�, C 6= ?, C 2 N suh that ground(�; N)

I

6j= C�.

Note that C� is not redundant as for otherwise ground(�; N)

I

j= C�. So

ground(�; N) is not saturated. If C� is produtive, i.e., C� = (C

0

_ L)� suh

that L is positive, L� stritly maximal in (C

0

_ L)� then L� 2 ground(�; N)

I

and hene ground(�; N)

I

j= C� ontraditing ground(�; N)

I

6j= C�.

If C� = (C

0

_L_L

0

)� suh that L is positive, L� maximal in (C

0

_L_L

0

)�

then, beause N is saturated, there is a lause (C

0

_ L)� 2 N suh that (C

0

_

L)�� = (C

0

_L)�. Now (C

0

_L)� is not redundant, ground(�; N)

I

6j= (C

0

_L)� ,

ontraditing the minimal hoie of C�.

If C� = (C

0

_L)� suh that L is seleted, or negative and maximal then there

is a lause (D

0

_L

0

) 2 N and grounding substitution �, suh that L

0

� is a stritly

maximal positive literal in (D

0

_ L

0

)�, L

0

� 2 ground(�; N)

I

and L

0

� = :L�.

Again, sine N is saturated, there is variable disjoint lause (C

0

_ D

0

)� 2 N

for some uni�er � , (C

0

_ D

0

)��� � C�, and ground(�; N)

I

6j= (C

0

_ D

0

)���

ontraditing the minimal hoie of C�.

De�nition 3.11.11 (Persistent Clause). Let N

0

)

SUP

N

1

)

SUP

: : : be a,

possibly in�nite, superposition derivation. A lause C is alled persistent in this

derivation if C 2 N

i

for some i and for all j > i also C 2 N

j

.

De�nition 3.11.12 (Fair Derivation). A derivation N

0

)

SUP

N

1

)

SUP

: : : is

alled fair if for any persistent lause C 2 N

i

where fatoring is appliable to

C, there is a j suh that the fator of C

0

2 N

j

or ? 2 N

j

. If fC;Dg � N

i

are

persistent lauses suh that superposition left is appliable to C, D then the

superposition left result is also in N

j

for some j or ? 2 N

j

.

Theorem 3.11.13 (Dynami Superposition Completeness). If N is unsatis�-

able and N = N

0

)

SUP

N

1

)

SUP

: : : is a fair derivation, then there is ? 2 N

j

for some j.

Proof. If N is unsatis�able, then by Lemma 3.11.8 there is a derivation of ?

by superposition. Furthermore, no lause ontributing to the derivation of ? is

redundant (Lemma 3.11.9). So all lauses in the derivation of ? are persistent.

The derivation N

0

)

SUP

N

1

)

SUP

: : : is fair, hene ? 2 N

j

for some j.

Lemma 3.11.14. Let red(N) be all lauses that are redundant with respet to

the lauses in N and N , M be lause sets. Then

1. if N �M then red(N) � red(M)

2. if M � red(N) then red(N) � red(N nM)

It follows that redundany is preserved when, during a theorem proving

proess, new lauses are added (or derived) or redundant lauses are deleted.

Furthermore, red(N) may inlude lauses that are not in N .

124 CHAPTER 3. FIRST-ORDER LOGIC

Algorithm 7: SupProver(N)

Input : A set of lauses N .

Output: A saturated set of lauses N

0

, equivalent to N .

1 WO := ;;

2 US := N ;

3 while (US 6= ; and ? 62 US) do

4 Given:= pik a lause from US;

5 WO :=WO [fGiveng;

6 New := SupLeft(WO,Given) [Fat(Given);

7 while (New 6= ;) do

8 Given:= pik a lause from New;

9 if (!TautDel(Given)) then

10 if (!SubDel(Given,WO [US)) then

11 Given:= Cond(Given);

12 Given:= SubRes(Given,WO);

13 WO:= SubDel(WO,Given);

14 US:= SubDel(US,Given);

15 New:= New [SubRes(WO [US,Given);

16 US:= US [fGiven g;

17

18

19 end

20 end

21 return WO;

