Chapter 2

Propositional Logic

2.1 Syntax

Consider a finite, non-empty signature X of propositional variables, the “alpha-
bet” of propositional logic. In addition to the alphabet “propositional connec-
tives” are further building blocks composing the sentences (formulas) of the
language and auxiliary symbols such as parentheses enable disambiguation.

Definition 2.1.1 (Propositional Formula). The set PROP(X) of propositional
formulas over a signature X is inductively defined by:

PROP(X) Comment

L connective 1 denotes “false”
T connective T denotes “true”
P for any propositional variable P € ¥
(—9) connective — denotes “negation”
(¢ A1) connective A denotes “conjunction”
(p V1) connective V denotes “disjunction”

(¢ — 1) connective — denotes “implication”
(¢ <> 1) connective <> denotes “equivalence”

where ¢, € PROP(X).

The above definition is an abbreviation for setting PROP(X) to be the
language of a context free grammar PROP(X) = L((N,T, P, S)) (see Defini-
tion 1.3.9) where N = {¢, v}, T =X U{(,)}U{L, T,—,A,V, =, <} with start
symbol rules S = ¢ [, 6 = L | T| (=6) | (9A®) | (9Ve) | (6 = ¥) | (6 >),
G LT[(=) [(@AD)]| (6VY) | (d =) | (6), and ¢ = P,y = P
for every P € X.

As a notational convention we assume that — binds strongest and we omit
outermost parenthesis. So =P V @ is actually a shorthand for ((—P) V Q). For
all other logical connectives we will explicitly put parenthesis when needed.
From the semantics we will see that A and V are associative and commutative.
Therefore instead of (P A Q) A R) we simply write P A Q A R.

27

28 CHAPTER 2. PROPOSITIONAL LOGIC

Definition 2.1.2 (Atom, Literal,Clause). A propositional formula P is called
an atom. It is also called a (positive) literal and its negation —P is called a
(negative) literal. If L is a literal, then =L = P if L = =P and =L = =P if
L = P, |-P| = P and |P| = P. Literals are denoted by letters L, K. The literals
P and =P are called complementary. A disjunction of literals Ly V ...V L, is
called a clause.

Automated reasoning is very much formula manipulation. In order to pre-
cisely represent the manipulation of a formula, we introduce positions.

Definition 2.1.3 (Position). A position is a word over N. The set of positions
of a formula ¢ is inductively defined by

pos(¢) = {e}ifpe{T,L}orpeX
pos(—¢) = {e}U{lp|p € pos(¢)}
pos(potp) = {e}U{lp|p € pos(#)} U{2p|p € pos(¢)}

where o € {A,V, =, <}

The prefix order < on positions is defined by p < ¢ if there is some p’ such
that pp’ = ¢. Note that the prefix order is partial, e.g., the positions 12 and 21
are not comparable, they are “parallel”, see below. By < we denote the strict
part of <, i.e.,, p < ¢ if p < ¢ but not ¢ < p. By || we denote incomparable
positions, i.e., p || ¢ if neither p < ¢, nor ¢ < p. A position p is above ¢ if p < g,
p is strictly above q if p < q, and p and ¢ are parallel if p || q.

The size of a formula ¢ is given by the cardinality of pos(¢): |¢| := | pos(¢@)|.

The subformula of ¢ at position p € pos(¢) is recursively defined by ¢|. := ¢,
—|¢|1p = ¢|p7 and (¢1 o ¢2)|ip = ¢z|p where i € {1,2}, o € {/\,\/,—),H}.
Finally, the replacement of a subformula at position p € pos(¢) by a formula
¢ is recursively defined by @[] := ¢ and (¢1 0 ¢2)[¥]1p = (d1[¢]p © ¢2),
(@1 0 @2)[Y]2p := (¢1 0 P2[¢V]p), where o € {A,V, =, ¢}
Example 2.1.4. The set of positions for the formula ¢ = (PA Q) = (P V Q)
is pos(¢) = {¢,1,11,12,2,21,22}. The subformula at position 22 is @, ¢|22 = @
and replacing this formula by P « @ results in ¢[P + Qlaa = (P A Q) —
(PV (P < Q)).

A further prerequisite for efficient formula manipulation is the notion of
the polarity of the subformula ¢|, of ¢ at position p. The polarity considers the
number of “negations” starting from ¢ at € down to p. It is 1 for an even number
along the path, —1 for an odd number and 0 if there is at least one equivalence
connective along the path.

Definition 2.1.5 (Polarity). The polarity of the subformula ¢|, of ¢ at position
p € pos(¢) is inductively defined by

pol(¢p,e) = 1
pol(=¢,1p) := —pol(e,p)
pol(¢1 0 ¢2,ip) = pol(¢;,p) if o € {A,V}
pol(¢1 — ¢2,1p) = —pol(¢1,p)
pol(¢1 — ¢2,2p) = pol(¢2,p)
pol(¢y < ¢a,ip) = 0

2.2. SEMANTICS 29

Example 2.1.6. We reuse the formula ¢ = (AAB) — (AVB) of Example 2.1.4.
Then pol(¢,1) = pol(4,11) = —1 and pol(4,2) = pol(¢,22) = 1. For the
formula ¢’ = (AA B) + (AV B) we get pol(¢',€) = 1 and pol(¢’,p) = 0 for all
other p € pos(¢'), p # e.

2.2 Semantics

In classical logic there are two truth values “true” and “false” which we shall
denote, respectively, by 1 and 0. There are many-valued logics [36] having more
than two truth values and in fact, as we will see later on, for the definition of
some propositional logic calculi, we will need an implicit third truth value called
“undefined”.

Definition 2.2.1 ((Partial) Valuation). A Y-valuation is a map
A:¥ - {0,1}.

where {0, 1} is the set of truth values. A partial X-valuation is a map A" : &' —
{0,1} where ¥’ C X.

Definition 2.2.2 (Semantics). A -valuation A is inductively extended from
propositional variables to propositional formulas ¢, € PROP(X) by

A(L) = 0
A(T) = 1
Al-¢) = 1-A(9)
Al@Ay) = min({A(), A(})})
AlpV) = max({A(¢), A(¥)})
Al — ¢g = max({(1 - A(¢)), A(¥)})

= if A(¢) = A(+)) then 1 else 0

If A(¢) =1 for some X-valuation A of a formula ¢ then ¢ is satisfiable and we
write A = ¢. In this case A is a model of ¢. If A(¢) =1 for all X-valuations A
of a formula ¢ then ¢ is valid and we write |= ¢. If there is no ¥-valuation A
for a formula ¢ where A(¢) = 1 we say ¢ is unsatisfiable. A formula ¢ entails
¥, written ¢ = 1, if for all X-valuations A whenever A = ¢ then A = 9.

Accordingly, a formula ¢ is satisfiable, valid, unsatisfiable, respectively, with
respect to a partial valuation A’ with domain ¥', if for any valuation A with
A(P) = A'(P) for all P € ¥' the formula ¢ is satisfiable, valid, unsatisfiable,
respectively, with respect to a A.

I call the fact that some formula ¢ is satisfiable, unsatisfiable, or valid, the
status of ¢. Note that if ¢ is valid it is also satisfiable, but not the other way
round.

Valuations can be nicely represented by sets or sequences of literals that do
not contain complementary literals nor duplicates. If A is a (partial) valuation
of domain ¥ then it can be represented by the set {P | P € ¥ and A(P) =
1}U{=P | P € ¥ and A(P) = 0}. For example, for the valuation A = {P,-Q}

30 CHAPTER 2. PROPOSITIONAL LOGIC

the truth value of PV Q is A(PV Q) =1, for PV R it is A(PV R) = 1, for
“PARIitis A(-P A R) =0, and the status of =P V R cannot be established
by A. In particular, A is a partial valuation for ¥ = {P, Q, R}.

Example 2.2.3. The formula ¢ V —¢ is valid, independently of ¢. According
to Definition 2.2.2 we need to prove that for all ¥-valuations A of ¢ we have
A(p vV =¢) = 1. So let A be an arbitrary valuation. There are two cases to
consider. If A(¢) = 1 then A(¢ V =¢) = 1 because the valuation function takes
the maximum if distributed over V. If A(¢) = 0 then A(—¢) = 1 and again by
the before argument A(¢ V —¢) = 1. This finishes the proof that | ¢ V —¢.

Proposition 2.2.4 (Deduction Theorem). ¢ E ¢ iff E ¢ — ¢

Proof. (=) Suppose that ¢ entails ¢ and let A be an arbitrary X-valuation.
We need to show A = ¢ — ¢. If A(p) = 1, then A(¢)) = 1, because ¢ entails
¥, and therefore A |= ¢ — 1. For otherwise, if A(¢) = 0, then A(¢ — ¢) =
max({(1— A(¢)), A(¥)}) = max({(1, A(¥)}) = 1, independently of the value of
A(). In both cases A |= ¢ — 9.

(<) By contraposition. Suppose that ¢ does not entail 1). Then there exists a
Y-valuation A such that A = ¢, A(¢) = 1 but A £ ¢, A(p) = 0. By definition,
Al — 1) = max({(1 — A()), A(%)}) = max({(1 — 1),0}) = 0, hence ¢ — 1
does not hold in A. O

Proposition 2.2.5. The equivalences of Figure 2.1 are valid for all formulas

¢, X-

From Figure 2.1 we conclude that the propositional language introduced
in Definition 2.1.1 is redundant in the sense that certain connectives can be
expressed by others. For example, the equivalence Eliminate — expresses im-
plication by means of disjunction and negation. So for any propositional for-
mula ¢ there exists an equivalent formula ¢’ such that ¢’ does not contain the
implication connective. In order to prove this proposition we need the below
replacement lemma.

Note that the formulas ¢ A ¢ and ¢ A ¢ are equivalent. Nevertheless,
recalling the problem state definition for Sudokus in Section 1.1 the

two states (N; f(2,3) = 1A f(2,4) = 4, T) and (N; f(2,4) = 4 A
f(2,3) = 1;T) are significantly different. For example, it can be that the first
state can lead to a solution by the rules of the algorithm where the latter
cannot, because the latter implicitly means that the square (2,4) has already
been checked for all values smaller than 4. This reveals the important point that
arguing by logical equivalence in the context of a rule set manipulating formulas
can lead to wrong results.

Lemma 2.2.6 (Formula Replacement). Let ¢ be a propositional formula con-
taining a subformula ¢ at position p, i.e., ¢|, = . Furthermore, assume

=4 < x. Then = ¢ & ¢[x]p.

2.2. SEMANTICS 31

I (pAB) < ¢ Idempotency A
(pVe) & ¢ Idempotency V
(II) (pNAY) & (W AP) Commutativity A
(V) & (PV) Commutativity V
(111) (A (W AX)) & ((pAY) AX) Associativity A
(VW VX)) e (eVY)VYX) Associativity V
(IV) (A (WY V X)) < (@AY)V(PpAX) Distributivity AV
(eV (W AX)) & (@VY)A(PV x) Distributivity VA
V) BABVY) & 6 Absorption AV
OV (pAY)) & @ Absorption VA
(VD) (P VY) < (mdp A—) De Morgan —V
(P AY) & (0o V) De Morgan —A
(VII) (P A=) < L Introduction L
(pV—9) T Introduction T
=T L Propagate =T
Al T Propagate =L
(PAT) < & Absorption TA
(VL)< o Absorption LV
(79) < ¢ Absorption ==
(¢ = L)< —o Eliminate — L
(L=9)T Eliminate 1 —
(p—=T)<T Eliminate — T
(T—=9) <o Eliminate T —
(g L)< -0 Eliminate 1 <
(P& T)e o Eliminate T <
(pVT)eT Propagate T
(pAL) & L Propagate L
(VIII) (p =) & (mp V) Eliminate —

(IX) (p 1)) < (= Y)A () — ¢) Eliminatel «
(¢ <) < (pAY)V (mp A=) Eliminate2 <

Figure 2.1: Valid Propositional Equivalences

32 CHAPTER 2. PROPOSITIONAL LOGIC

Proof. By induction on |p| and structural induction on ¢. For the base step let
p =€ and A be an arbitrary valuation.

A(p) = A(y) (by definition of replacement)
= A(x) (because A E ¢ <)
= A(d[x]e) (by definition of replacement,)

For the induction step the lemma holds for all positions p and has to be
shown for all positions ip. By structural induction on ¢, I show the cases where
¢ = ¢1 and ¢ = ¢1 — @2 in detail. All other cases are analogous.

If = —¢1 then showing the lemma amounts to proving = —¢1 < =1 [x]1p-
Let A be an arbitrary valuation.

A(=¢1) =1 - A(d1) (expanding semantics)
=1- A(¢1[x]p) (by induction hypothesis)
= A(=¢[x]1p) (applying semantics)

If ¢ = ¢1 — ¢ then showing the lemma amounts to proving the two cases

F (01 = ¢2) < (¢1 = d2)[x]1p and |= (41 = ¢2) < (d1 = ¢2)[x]2p- Both
cases are similar so I show only the first case. Let A be an arbitrary valuation.

A(p1 = ¢2) = max({(1 — A(é1)), A(d2)}) (expanding semantics)
=max({(1 — A(¢1[x]p)), A(#2)}) (by induction hypothesis)
= A((¢1 = ¢2)[x]p) (applying semantics)

O

Lemma 2.2.7 (Polarity Dependent Replacement). Consider a formula ¢, po-
sition p € pos(¢), pol(¢,p) = 1 and (partial) valuation A with A(¢) = 1. If for
some formula ¢, A(y)) =1 then A(¢[¢)],) = 1. Symmetrically, if pol(¢,p) = —1
and A(¢p) = 0 then A(¢[¢],) = 1.

Proof. By induction on the length of p. O

Note that the case for the above lemma where pol(¢,p) = 0 is actually
Lemma 2.2.6.

The equivalences of Figure 2.1 show that the propositional language
introduced in Definition 2.1.1 is redundant in the sense that certain
connectives can be expressed by others. For example, the equivalence
Eliminate — expresses implication by means of disjunction and negation. So for
any propositional formula ¢ there exists an equivalent formula ¢’ such that ¢’

does not contain the implication connective. In order to prove this proposition
the above replacement lemma is key.

2.3. ABSTRACT PROPERTIES OF CALCULI 33

2.3 Abstract Properties of Calculi

A proof procedure can be sound, complete, strongly complete, refutationally
complete or terminating. Terminating means that it terminates on any input
formula. Now depending on whether the calculus investigates validity (unsat-
isfiability) or satisfiability the aforementioned notions have (slightly) different

meanings.

Validity Satisfiability

Sound If the calculus derives a | If the calculus derives sat-
proof of validity for the | isfiability of the formula, it
formula, it is valid. has a model.

Complete If the formula is valid, a | If the formula has a model,
proof of validity is deriv- | the calculus derives satis-
able by the calculus. fiability.

Strongly For any proof of the for- | For any model of the for-

Complete mula, there is a derivation | mula, there is a derivation
in the calculus producing | in the calculus producing
this proof. this model.

There are some assumptions underlying these informal definitions. First, the
calculus actually produces a proof in case of investigating validity, and in case of
investigating satisfiability it produces a model. This in fact requires the notion of
a proof and a model. Then soundness means in both cases that the calculus has
no bugs. The results it produces are correct. Completeness means that if there
is a proof (model) for a formula, the calculus could eventually find it. Strong
completeness requires in addition that any proof (model) can be found by the
calculus. A variant of complete calculus is a refutationally complete calculus:
a calculus is refutationally complete, if for any unsatisfiable formula it derives
a proof of contradiction. Many automated theorem procedures like resolution
(see Section 2.7), or tableaux (see Section 2.5) are actually only refutationally
complete.

2.4 Truth Tables

The first calculus I consider are truth tables. For example, consider proving
validity of the formula ¢ = (A A B) — A. According to Definition 2.2.2 this is
the case when actually for all valuations A over ¥ = {4, B} we have A(¢) = 1.
The extension of A to formulas is defined inductively over the connectives, so if
the result of A on the arguments of a connective is known, it can be straightfor-
wardly computed for the overall formula. That’s the idea behind truth tables.
We simply make all valuations A on ¥ explicit and then extend it connective by
connective bottom-up to the overall formula. Stated differently, in order to es-
tablish the truth value for a formula ¢ we establish it subformula by subformula

34 CHAPTER 2. PROPOSITIONAL LOGIC

of ¢ according to <. If p,q € pos(¢) and p < ¢ then we first compute the truth
value for ¢|,. The truth table for (P A Q) — P is then depicted in Figure 2.2

P Q|PAQ|(PAQ)—= P
0 0 0 1
0 1 0 1
1 0 0 1
1 1 1 1

Figure 2.2: Truth Table for (P A Q) —» P

Definition 2.4.1 (Truth Table). Let ¢ be a propositional formula over variables
Py,...,P,, p; € pos(¢), 1 <i <k and pr = €. Then a truth table for ¢ is a
table with n + k& columns and 2™ 4+ 1 rows of the form

P|l...|P.] ol |.-| 9l
0[]0 A@lp) |- Ailélp)
Ul |1 A Bl) | o | A (Do)

such that the A4; are exactly the 2™ different valuations for Py, ..., P,, and either
Di || Pixj Or pi > pitj, for all 4,5 > 0, i + j < k and whenever ¢|,, has a proper
subformula 1 that is not an atom, there is exactly one j < i with ¢[,, = 1.

Now given a truth table for some formula ¢, ¢ is satisfiable, if there is at
least one 1 in the ¢ column. It is valid, if there is no 0 in the ¢ column. It is
unsatisfiable, if there is no 1 in the ¢ column. So truth tables are a simple and
“easy” way to establish the status of a formula. They need not to be completely
computed in order to establish the status of a formula. For example, as soon as
the column of ¢ in a truth table contains a 1 and a 0, then ¢ is satisfiable but
neither valid nor unsatisfiable.

The formula (P V Q) < (P V R) is satisfiable but not valid. Figure 2.3
contains a truth table for the formula.

P Q R|PVQ|PVR|(PVQ)© (PVR)
0 0 0] 0 0 1
01 0| 1 0 0
1 0 0] 1 1 1
1 1 0| 1 1 1
0 0 1] 0 1 0
0 1 1| 1 1 1
1 0 1| 1 1 1
11 1| 1 1 1

Figure 2.3: Truth Table for (P V Q) + (PV R)

2.5. PROPOSITIONAL TABLEAUX 35

Of course, there are cases where a truth table for some formula ¢ can have
less columns than the number of variables occurring in ¢ plus the number of
subformulas in ¢. For example, for the formula ¢ = (PV Q) A (R — (PV
@)) only one column with formula (P V @) is needed for both subformulas ¢|;
and ¢@|22. In general, a single column is needed for each different subformula.
Detecting subformula equivalence is beneficial. For the above example, this was
simply syntactic, i.e., the two subformulas ¢|; and ¢|s2. But what about a
slight variation of the formula ¢’ = (PV Q) A (R — (QV P))? Strictly speaking,
now the two subformulas ¢'|; and ¢'|s2 are different, but since disjunction is
commutative, they are equivalent. One or two columns in the truth table for the
two subformulas? Again, saving a column is beneficial but in general, detecting
equivalence of two subformulas may become as difficult as checking whether the
overall formula is valid. A compromise, often performed in practice, are normal
forms that guarantee that certain occurrences of equivalent subformulas can be
found in polynomial time. For the running example, we can simply assume some
ordering on the propositional variables and assume that for a disjunction of two
propositional variables, the smaller variable always comes first. So if P < @
then the normal form of PV @ and @ V P is in fact PV Q.

In practice, nobody uses truth tables as a reasoning procedure. Worst
case, computing a truth table for checking the status of a formula ¢
requires O(2") steps, where n is the number of different propositional

variables in ¢. But this is actually not the reason why the procedure is imprac-
tical, because the worst case behavior of all other procedures for propositional
logic known today is also of exponential complexity. So why are truth tables
not a good procedure? The answer is: because they do not adapt to the inher-
ent structure of a formula. The reasoning mechanism of a truth table for two
formulas ¢ and v sharing the same propositional variables is exactly the same:
we enumerate all valuations. However, if ¢ is, e.g., of the form ¢ = P A ¢’ and
we are interested in the satisfiability of ¢, then ¢ can only become true for a
valuation A with A(P) = 1. Hence, 2"~! rows of ¢’s truth table are superflu-
ous. All procedures I will introduce in the sequel, automatically detect this (and
further) specific structures of a formula and use it to speed up the reasoning
process.

2.5 Propositional Tableaux

Like resolution, semantic tableaux were developed in the sixties, independently
by Lis [25] and Smullyan [34] on the basis of work by Gentzen in the 30s [18]
and of Beth [8] in the 50s. For an at that time state of the art overview consider
Fitting’s book [16].

In contrast to the calculi introduced in subsequent sections, semantic tableau
does not rely on a normal form of input formulas but actually applies to any
propositional formula. The formulas are divided into a- and S-formulas, where
intuitively an « formula represents a (hidden) conjunction and a 3 formula a

36 CHAPTER 2. PROPOSITIONAL LOGIC
« Left Descendant | Right Descendant
- ¢ ¢
D1 A o P P2
P1 & P2 $1 = P2 P2 = ¢1
(1 V ¢o) -1 ¢
—(¢1 — ¢2) b1 o
B8 Left Descendant | Right Descendant
1V P2 b1 ¢2
P11 — @2 ¢ P2
—(p1 A p2) Py P
(1 & g2) | (P = ¢2) (2 — ¢1)

Figure 2.4: a- and g-Formulas

(hidden) disjunction.

Definition 2.5.1 (a-, 8-Formulas). A formula ¢ is called an a-formula if ¢ is

a formula =1, @1 A da, ¢1 & P2, 2(¢1 V ¢2), or (1 — ¢2). A formula ¢ is
called an B-formula if ¢ is a formula ¢1 Vo, 1 — ¢a, =(d1 Ad2), or =(¢h1 < ¢2).

A common property of a-, 8-formulas is that they can be decomposed into
direct descendants representing (modulo negation) subformulas of the respective
formulas. Then an a-formula is valid iff all its descendants are valid and a -
formula is valid iff one of its descendants is valid. Therefore, the literature uses
both the notions semantic tableaux and analytic tableaux.

Definition 2.5.2 (Direct Descendant). Given an a- or S-formula ¢, Figure 2.4
shows its direct descendants.

Duplicating ¢ for the a-descendants of —=—¢ is a trick for conformity. Any
propositional formula is either an a-formula or a S-formula or a literal.

Proposition 2.5.3. For any valuation A: (i) if ¢ is an a-formula then A(¢) =1
iff A(¢1) =1 and A(¢2) = 1 for its descendants ¢y, ¢=. (ii) if ¢ is a S-formula
then A(¢) = 1iff A(¢1) =1 or A(¢2) =1 for its descendants ¢y, ¢ps.

The tableaux calculus operates on states that are sets of sequences of for-
mulas. Semantically, the set represents a disjunction of sequences that are in-
terpreted as conjunctions of the respective formulas. A sequence of formulas
(¢1,-..,¢n) is called closed if there are two formulas ¢; and ¢; in the sequence
where ¢; = —¢; or —¢; = ¢;. A state is closed if all its formula sequences are
closed. A state actually represents a tree and this tree is called a tableau in
the literature. So if a state is closed, the respective tree, the tableau is closed
too. The tableaux calculus is a calculus showing unsatisfiability. Such calculi are
called refutational calculi. Later on soundness and completeness of the calculus

2.5. PROPOSITIONAL TABLEAUX 37

S[(PA-(QV=R)) = (QAR)]
PA=(QV-R)
~(Q A R)
P
~(QV—R)
—Q
-—R
R

/\

-Q R
Figure 2.5: A Tableau for (P A —=(Q V =R)) = (Q A R)

imply that a formula ¢ is valid iff the rules of tableaux produce a closed state
starting with N = {(—¢)}.

A formula ¢ occurring in some sequence is called open if in case ¢ is an
a-formula not both direct descendants are already part of the sequence and if
it is a B-formula none of its descendants is part of the sequence.

a-Expansion NU{(d1,...,¢0,...,00)} =17 NIH{(d1,...,0,...,0n,01,02)}

provided v is an open a-formula, 11, 15 its direct descendants and the sequence
is not closed.

B-Expansion NS{(d1,. -0y ooy n)} =1 NO{(d1,...,0, ..., ¢n, 1)}
{(@1,. s, b0, 12)}

provided v is an open S-formula, 1, ¥ its direct descendants and the sequence
is not closed.

Consider the question of validity of the formula (PA-(QV-R)) - (QAR).
Applying the tableau rules generates the following derivation:

{(=[(PA=(QV=R) = (QAR))}
a-Expansion =4 {(-[(P A =(Q V -R)) = (Q A R)],
PA _'(Q \ _'R)7 _'(Q A R)a P, _'(Q \ _'R)a _'Qa _'_'RaR)}
B-Expansion =1 {(=[(P A =(Q V —R)) = (Q A R)],
P A _'(Q \% _'R)a _'(Q A R)7 P, _'(Q \% _'R)7 -Q,—R,R, _‘Q),
(=[(PA=(QV-R)) = (QAR),
PA —|(Q \% —IR), —I(Q A R), P, —|(Q V —|R), -@Q,—R,R, —|R)}

The state after S-expansion is final, i.e., no more rule can be applied. The
first sequence is not closed, whereas the second sequence is because it contains R
and —R. A tree representation, where common formulas of sequences are shared,
can be seen in Figure 2.5.

38 CHAPTER 2. PROPOSITIONAL LOGIC

Theorem 2.5.4 (Propositional Tableaux is Sound). If for a formula ¢ the
tableaux calculus computes {(—¢)} =% N and N is closed, then ¢ is valid.

Proof. Tt is sufficient to show the following: (i) if NV is closed then the disjunction
of the conjunction of all sequence formulas is unsatisfiable (ii) the two tableaux
rules preserve satisfiability.

Part (i) is obvious: if N is closed all its sequences are closed. A sequence is
closed if it contains a formula and its negation. The conjunction of two such
formulas is unsatisfiable.

Part (ii) is shown by induction on the length of the derivation and then by
a case analysis for the two rules. a-Expansion: for any valuation A if A(¢) =1
then A(¢1) = A(y2) = 1. B-Expansion: for any valuation A if A(y) = 1 then
A1) =1 or A(¢h2) = 1 (see Proposition 2.5.3). O

Theorem 2.5.5 (Propositional Tableaux Terminates). Starting from a start
state {(¢)} for some formula ¢, =4 is well-founded.

Proof. Take the two-folded multi-set extension of the lexicographic extension
of > on the naturals to triples (n,k,[). The measure y is first defined on for-
mulas by u(¢) := (n, k,l) where n is the number of equivalence symbols in ¢,
k is the sum of all disjunction, conjunction, implication symbols in ¢ and [is
|¢|. On sequences (¢1,...,¢,) the measure is defined to deliver a multiset by
p((1,y-. ., 0n)) = {t1,...,tn} where t; = pu(¢;) if ¢ is open in the sequence
and t; = (0,0,0) otherwise. Finally, u is extended to states by computing the
multiset u(N) := {u(s) | s € N}.

Note, that a-, as well as S-expansion strictly extend sequences. Once a for-
mula is closed in a sequence by applying an expansion rule, it remains closed
forever in the sequence.

An a-expansion on a formula 1)1 A on the sequence (¢1, ..., 1A Y2, ..., dn)
results in (@1, ...,9%1 A2, ..., dn,¥1,12). It needs to be shown u((¢1,...,9%1 A

1:[]27 e ¢n)) >mul M((Qsla e 717[]1 A ¢2, e ¢nawlaw2))‘ In the second sequence
w(tby A1) = (0,0,0) because the formula is closed. For the triple (n,k,1)

assigned by p to ¢ A 1y in the first sequence, it holds (n,k,1) >1ex (1),
(n,k,l) >1ex p(1p2) and (n,k,l) >iex (0,0,0), the former because the ; are
subformulas and the latter because [# 0. This proves the case.

A B-expansion on a formula ©; V)2 on the sequence (@1, ...,101 Vo, ..., dn)
results in (¢1,...,01 Vo, ..., dn, 1), (D1, 01 Vo, ..., dpn,12). It needs to
be shown M((¢1a s awl Vd]?a sy ¢n)) >mul /j’((¢17 s 71111 V¢2,) ¢naw1)) and

u((¢1’ -t 7¢1v¢27 R ¢n)) >mu1 l’l/((¢17 et 7¢1 V¢2’ R ¢n7¢2))' In the derived
sequences u(1 V) = (0,0,0) because the formula is closed. For the triple

(n, k,1) assigned by p to ¢ V 12 in the starting sequence, it holds (n, k,) >lex
w(hr), (n,k,1) >1ex u(th2) and (n,k,1) >1ex (0,0,0), the former because the ;
are subformulas and the latter because [# 0. This proves the case. (]

Theorem 2.5.6 (Propositional Tableaux is Complete). If ¢ is valid, tableaux
computes a closed state out of {(—¢)}.

2.6. NORMAL FORMS 39

Proof. If ¢ is valid then —¢ is unsatisfiable. Now assume after termination the
resulting state and hence at least one sequence is not closed. For this sequence
consider a valuation A consisting of the literals in the sequence. By assumption
there are no opposite literals, so A is well-defined. I prove by contradiction that
A is a model for the sequence. Assume it is not. Then there is a minimal formula
in the sequence, with respect to the ordering on triples considered in the proof
of Theorem 2.5.5, that is not satisfied by 4. By definition of A the formula
cannot be a literal. So it is an a-formula or a S-formula. In all cases at least one
descendant formula is contained in the sequence, is smaller than the original
formula, false in A (Proposition 2.5.3) and hence contradicts the assumption.
Therefore, A satisfies the sequence contradicting that —¢ is unsatisfiable. [

Corollary 2.5.7 (Propositional Tableaux generates Models). Let ¢ be a for-
mula, {(¢)} =% N and s € N be a sequence that is not closed and neither
a-expansion nor f-expansion are applicable to s. Then the literals in s form a
(partial) valuation that is a model for ¢.

Proof. A consequence of the proof of Theorem 2.5.6 O

Consider the example tableau shown in Figure 2.5. The open first branch
corresponds to the valuation A = {P, R,—Q} which is a model of the formula
S[(PA=(QV—R)) = (QAR).

L/\; LA;

Figure 2.6: Semantic tableau.

2.6 Normal Forms

In order to check the status of a formula ¢ via truth tables, the truth table
contains a column for the subformulas of ¢ and all valuations for its variables.

40 CHAPTER 2. PROPOSITIONAL LOGIC

Any shape of ¢ is fine in order to generate the respective truth table. The
superposition calculus (Section 2.8) and the CDCL (Conflict Driven Clause
Learning) calculus (Section 2.10) both operate on a normal form, i.e., the shape
of ¢ is restricted. Both calculi accept only conjunctions of disjunctions of literals,
a particular normal form. It is called Clause Normal Form or simply CNF. The
purpose of this section is to show that an arbitrary formula ¢ can be effectively
transformed into an equivalent formula in CNF.

2.6.1 Conjunctive and Disjunctive Normal Forms

Definition 2.6.1 (CNF, DNF). A formulais in conjunctive normal form (CNF)
or clause normal form if it is a conjunction of disjunctions of literals, or in other
words, a conjunction of clauses.

A formula is in disjunctive normal form (DNF), if it is a disjunction of
conjunctions of literals.

So a CNF has the form A, \/; L; and a DNF the form \/; A ; L; where L; are
literals. In the sequel the logical notation with V is overloaded with a multiset
notation. Both the disjunction L; V...V L, and the multiset {L4,...,L,} are
clauses. For clauses the letters C', D, possibly indexed are used. Furthermore, a
conjunction of clauses is considered as a set of clauses. Then, for a set of clauses,
the empty set denotes T. For a clause, the empty multiset denotes () and at the
same time L.

Although CNF and DNF are defined in almost any text book on au-
tomated reasoning, the definitions in the literature differ with respect

to the “border” cases: (i) are complementary literals permitted in a
clause? (ii) are duplicated literals permitted in a clause? (iii) are empty dis-
junctions/conjunctions permitted? The above Definition 2.6.1 answers all three
questions with “yes”. A clause containing complementary literals is valid, as in
PVQ@QV-P. Duplicate literals may occur, as in PV QV P. The empty disjunction
is L and the empty conjunction T, i.e., the empty disjunction is always false
while the empty conjunction is always true.

Checking the validity of CNF formulas or the unsatisfiability of DNF formu-
las is easy: (i) a formula in CNF is valid, if and only if each of its disjunctions
contains a pair of complementary literals P and —P, (ii) conversely, a formula
in DNF is unsatisfiable, if and only if each of its conjunctions contains a pair of
complementary literals P and =P (see Exercise 77).

On the other hand, checking the unsatisfiability of CNF formulas or
the validity of DNF formulas is coNP-complete. For any propositional
formula ¢ there is an equivalent formula in CNF and DNF and T will
prove this below by actually providing an effective procedure for the transforma-
tion. However, also because of the above comment on validity and satisfiability

checking for CNF and DNF formulas, respectively, the transformation is costly.
In general, a CNF or DNF of a formula ¢ is exponentially larger than ¢ as

2.6. NORMAL FORMS 41

long as the normal forms need to be logically equivalent. If this is not needed,
then by the introduction of fresh propositional variables, CNF or DNF normal
forms for ¢ can be computed in linear time in the size of ¢. More concretely,
given a formula ¢ instead of checking validity the unsatisfiability of =¢ can be
considered. Then the linear time CNF normal form algorithm (see Section ?7)
is satisfiability preserving, i.e., the linear time CNF of —¢ is unsatisfiable iff —¢
is.

Proposition 2.6.2. For every formula there is an equivalent formula in CNF
and also an equivalent formula in DNF.

Proof. See the rewrite systems =pgcnrE, and = acnr below and the lemmata on
their properties. O

2.6.2 Basic CNF/DNF Transformation

The below algorithm benf is a basic algorithm for transforming any propositional
formula into CNF, or DNF if the rule PushDisj is replaced by PushConj.

Algorithm 2: benf(¢)

Input : A propositional formula ¢.

Output: A propositional formula v equivalent to ¢ in CNF.
whilerule (ElimEquiv(¢)) do ;

whilerule (ElimImp(¢)) do ;

whilerule (ElimTB1(¢),...,ElimTB6(¢)) do ;
whilerule (PushNegl(¢),...,PushNeg3(¢)) do ;
whilerule (PushDisj(¢)) do ;

return ¢;

[I N

In the sequel I study only the CNF version of the algorithm. All properties
hold in an analogous way for the DNF version. To start an informal analysis of
the algorithm, consider the following example CNF transformation.

Example 2.6.3. Consider the formula =((PV Q) < (P = (Q A T))) and the
application of =pgcnr depicted in Figure 2.8. Already for this simple formula
the CNF transformation via =pcnr becomes quite messy. Note that the CNF
result in Figure 2.8 is still highly redundant. If I remove all disjunctions that
are trivially true, because they contain a propositional literal and its negation,
the result becomes
(PV=Q)A(-QV=P)A(=QV Q)
now elimination of duplicate literals beautifies the third clause and the overall
formula into
(PV=Q)A(=QV=P)A=Q.

Now let’s inspect this formula a little closer. Any valuation satisfying the formula
must set A(Q) = 0, because of the third clause. But then the first two clauses are
already satisfied. The formula =@ subsumes the formulas PV =@ and —-Q V - P

42 CHAPTER 2. PROPOSITIONAL LOGIC

ElimEquiv x[(¢ ¢+ ¢¥)], =Bcene X[(6 = ¥) A (0 = 0)],
ElimImp x[(¢ = ¢¥)], =Bene X[(7¢ VY],
PushNegl x[-(¢V ¥)], =Bene X[(00 A —9)]p
PushNeg2 x[-(¢ A)], =Bene X[(—0V)],

PushNeg3 x[—¢], =rone X[y

PushDisj x[(¢1 A ¢2) V], =Bene X[(61 V) A (92 V)],
PushConj x[(¢1V ¢2) AY], =BDNE X[(01 AY)V (P2 A)],p
EimTB1 x[(¢AT)l, =Bone X[9]p

ElimTB2 x[(¢A L), =rone X[L]p

ELimTB3 x[(¢V T)l, =rone X[Tlp

EimTB4 x[(¢V 1), =Bcene X[9lp

ElimTB5 x[-1], =scne X[Tlp

ElimTB6 x[-T], =scne X[L1]p

Figure 2.7: Basic CNF/DNF Transformation Rules

in this sense. The notion of subsumption will be discussed in detail for clauses
in Section 2.7.
So it is eventually equivalent to
-Q.

The correctness of the result is obvious by looking at the original formula and
doing a case analysis. For any valuation A with A(Q) = 1 the two parts of the
equivalence become true, independently of P, so the overall formula is false.
For A(Q) = 0, for any value of P, the truth values of the two sides of the
equivalence are different, so the equivalence becomes false and hence the overall
formula true.

After proving =goNr correct and terminating, in the succeeding section I
will present an algorithm = scnp that actually generates =@ out of =((PVQ)
(P = (QAT))) and does this without generating the mess of formulas =pcoNr
does. Please recall that the above rules apply modulo commutativity of V, A,
e.g., the rule ElimTB1 is both applicable to the formulas ¢ A T and T A ¢.

Figure 2.1 contains more potential for simplification. For example, the
idempotency equivalences (¢ A ¢) < ¢, (¢ V @) <> ¢ can be turned

into simplification rules by applying them left to right. However, the
way they are stated they can only be applied in case of identical subformulas.
The formula (PV Q) A (Q V P) does this way not reduce to (Q V P). A solution
is to consider identity modulo commutativity. But then identity modulo com-
mutativity and associativity (AC) asin ((PV Q)V R) A (Q V (R V P) is still
not detected. On the other hand, in practice, checking identity modulo AC is
often too expensive. An elegant way out of this situation is to implement AC

2.6. NORMAL FORMS 43

((PVQ) & (P—=(QAT))

SRt S((PVQ) = (P = (QAT)IALP = (QAT)) = (PVQ))

Spke A([FPVQ)V(P = (QATHIAIP = (QAT)) = (PVQ))
Spke A([FPVQ)V (P = (QATNIA[R(P = (QAT)V(PVQ))
S5 2 S([(PVQ)V (P = (QATHIA[S(=PV(QAT))V(PVQ))
=SR2 A([F(PVQ)V(=PV(QAT)IAPV(QAT))V(PVQ))
Sk S([H(PVQ)V (=P V Q) A[=(-PV Q) V (PVQ)))

St S([(=P A-Q) V (=P V Q)] A[A(=PV Q) V (P V Q)])

SpeRe S([(=PA-Q)V (=P V Q) A [(-=P A=Q) V (P V Q)])

S E (P A-Q)V (=P V Q)] A[(-=P A=Q) V (P V Q)])

Sponk ¢ (0P V=mQ) A (=P A=)V [(-==P V@) A (-P A=Q)]

[
ShoaRt [(PVQ)A(PA=Q)VI(-PVQ)A (=P A-Q)]
=Shone” (PVQV=PVQ)A(PVQV-P)A(PVQV=Q)A(PV-PV
Q)N (PV=PYA(PV-Q)A(-QV-=PVQ)A(=QV-P)A(=QV Q)

Figure 2.8: Example Basic CNF Transformation

connectives like V or A with flexible arity, to normalize nested occurrences of
the connectives, and finally to sort the arguments using some total ordering.
Applying this to (PV Q) V R) A (Q V (RV P) with ordering R > P > @ the
result is (Q VPV R)A (QV PV R). Now complete AC simplification is back
at the cost of checking for identical subformulas. Note that in an appropriate
implementation, the normalization and ordering process is only done once at
the start and then normalization and argument ordering is kept as an invariant.

2.6.3 Advanced CNF Transformation

The simple algorithm for CNF transformation Algorithm 2 can be improved in
various ways: (i) more aggressive formula simplification, (ii) renaming, (iii) po-
larity dependant transformations. The before studied Example 2.6.3 serves al-
ready as a nice motivation for (i) and (iii). Firstly, removing T from the formula
=((PVQ) < (P — (QAT))) first and not in the middle of the algorithm ob-
viously shortens the overall process. Secondly, if the equivalence is replaced
polarity dependant, i.e., using the equivalence (¢ <) < (¢ AY) V (=d A =)
and not the one used in rule ElimEquiv applied before, a lot of redundancy gen-
erated by =ponr is prevented. In general, if ¥[¢1 <> ¢2], and pol(y,p) = —1
then for CNF transformation do ¢[(¢1 A ¢=2) V (m¢1 A=¢2)], and if pol(y,p) =1
do Y[(¢1 = ¢2) A (B2 = é1)lp

Item (ii) can be motivated by a formula
P+ (P2 nd (P3 nd ((Pn—l (—)Pn))))

where Algorithm 2 generates a CNF with 2" clauses out of this formula. The
way out of this problem is the introduction of additional fresh propositional

44 CHAPTER 2. PROPOSITIONAL LOGIC

variables that rename subformulas. The price to pay is that a renamed formula
is not equivalent to the original formula due to the extra propositional variables,
but satisfiability preserving. A renamed formula for the above formula is

(P1(—)(Pz(—)@l))/\(Ql(—)(Pg(—)Qg))/\

where the @); are additional, fresh propositional variables. The number of clauses
of the CNF of this formula is 4(n — 1) where each conjunct (Q; <> (P; > Qi41))
contributes four clauses.

Proposition 2.6.4. Let P be a propositional variable not occurring in ¢[¢],.

1. If pol(¢p, p) = 1, then 9[¢], is satisfiable if and only if ¢[P], A (P — ¢) is
satisfiable.

2. If pol(y, p) = —1, then ¢[¢], is satisfiable if and only if Y[P], A (¢ — P)
is satisfiable.

3. If pol(¢), p) = 0, then ¢[¢)], is satisfiable if and only if ¥[P], A (P > ¢) is
satisfiable.

Proof. Exercise. O

So depending on the formula 1, the position p where the variable P is in-
troduced definition of P is given by

(P —lp) if pol(y,p) =1
def(d},p, P) = (¢|P — P) if pOI(wap) =-1
(P <> plp) if pol(s,p) =0

For renaming there are several choices which subformula to choose. Ob-
viously, since a formula has only linearly many subformulas, renaming every
subformula works [35, 29]. Basically this is what I show below. In the following
section a renaming variant is introduced that produces smallest CNFs.

SimpleRenaming ® =simpRen O[P1]p:i[Polps - - - [Palp. A def(d,p1, P1) A
oo A def([Pi]p, [Palps - - - [Pa=1lpn_1s Pns> Pn)

provided {p1,...,pn} C pos(¢) and for all i,i + j either p; || pi+; or p; > piy;j
and the P; are different and new to ¢

Actually, the rule SimpleRenaming does not provide an effective way to
compute the set {p1,...,pn} of positions in ¢ to be renamed. Where are several
choices. Following Plaisted and Greenbaum [29], the set contains all positions
from ¢ that do not point to a propositional variable or a negation symbol. In
addition, renaming position € does not make sense because it would generate the
formula P A (P — ¢) which results in more clauses than just ¢. Choosing the
set of Plaisted and Greenbaum prevents the explosion in the number of clauses
during CNF transformation. But not all renamings are needed to this end.

2.6. NORMAL FORMS 45

5
[1/¢€]
] / \ V
[-1/1] [1/2]
| /N
Y P &

[1/11] [1/21] [1/22]
/N /N
[1/111] [1/112] [0/221] [0/222]
| /N | |
p Q R Q R
[-1/1111] [1/1121] [1/1122] [0/2211] [0/2221]

Figure 2.9: Tree representation of [=(=PV (Q AR))] = [PV (-Q + —R)] where
each node is annotated with its [polarity /position].

A smaller set of positions from ¢, let’s call it the set of obvious positions, is
still preventing the explosion and given by the rules: (i) if ¢|, is an equivalence
and there is a position ¢ < p such that ¢|, is either an equivalence or disjunctive
in ¢ then p is an obvious position (ii) if ¢|,, is a conjunctive formula in ¢, ¢|,
is a disjunctive formula in ¢ and for all positions r with p < r < pq the formula
é|r is not a conjunctive formula then pg is an obvious position. A formula ¢|,
is conjunctive in ¢ if ¢|, is a conjunction and pol(¢,p) € {0,1} or ¢|, is a
disjunction or implication and pol(¢,p) € {0,—1}. Analogously, a formula ¢|,
is disjunctive in ¢ if ¢|, is a disjunction or implication and pol(¢,p) € {0,1} or
é|p is a conjunction and pol(¢,p) € {0,—1}.

Consider as an example the formula

[(=PV(QAR))] =[PV (-Q < —R)]

. Its tree representation as well as the polarity and position of each node is
shown in Figure 2.9.

The before mentioned polarity dependent transformations for equivalences
are realized by the following two rules:

ElimEquivl x[(¢ < ¥)], =acne x[(0 = ¥) A (¥ = 9)],
provided pol(x,p) € {0,1}

ElimEquiv2 x[(¢ <)], =acne X[(@ A YD)V (mp A=),
provided pol(x,p) = —1

46 CHAPTER 2. PROPOSITIONAL LOGIC

Algorithm 3: acnf(¢)

Input : A formula ¢.

Output: A formula ¢ in CNF satisfiability preserving to ¢.
whilerule (ElimTB1(¢),...,ElimTB6(¢)) do ;
SimpleRenaming($) on obvious positions;

whilerule (ElimEquivl(¢),ElimEquiv2(¢)) do ;
whilerule (ElimImp(¢)) do ;

whilerule (PushNegl(¢),...,PushNeg3(¢)) do ;
whilerule (PushDisj(¢)) do ;

return ¢;

N O R W =

~((PVQ) 4 (P = (QAT))

S3kp ~(PVQ) & (P Q)

=ik (PVQ)A(P = Q) V (~(PVQ) AP~ Q)))

Skt 2(PVQ)A(RPVQ)V (<(PV Q) A=(=PV Q)))
=Saone” (GPA=Q)V (PA-Q)A((PVQ)V (=P V Q)

=Rt ® (FPVP)A(=PV=Q)A(=QVP)A(~QV=Q)A(PVQV-PVQ)

Figure 2.10: Example Advanced CNF Transformation

Proposition 2.6.5 (Models of Renamed Formulas). Let ¢ be a formula and
¢' a renamed CNF of ¢ computed by acnf. Then any (partial) model A of ¢’ is
also a model for ¢.

Proof. By an inductive argument it is sufficient to consider one renaming appli-
cation, i.e., ¢' = ¢[P], Adef(¢, p, P). There are three cases depending on the po-
larity. () 1fp01(¢>,p) = 1then ¢' = ¢[P],AP — ¢|,.If A(P) = 1then A(¢|,) =1
and hence A(¢) = 1. The interesting case is A(P) = 0 and A(¢|,) = 1. But
then because pol(¢,p) = 1 also A(¢) = 1 by Lemma 2.2.7. (ii) if pol(¢,p) = —1
the case is symmetric to the previous one. Finally, (iii) if pol(¢,p) = 0 for any
A satisfying ¢’ it holds A(¢|,) = A(P) and hence A(¢) = 1. O

2.6.4 Computing Small CNFs

In the previous chapter obvious positions are a suggestion for smaller CNFs
with respect to the renaming positions suggested by Plaisted and Greenbaum.
In this section I develop a set of renaming positions that is in fact minimal with
respect to the resulting CNF. A subformula is renamed if the eventual number
of generated clauses by benf decreases after renaming [10, 28]. If formulas are
checked top-down for this condition, and profitable formulas in the above sense
are renamed, the resulting CNF is optimal in the number of clauses [10]. The
below function ac computes the number of clauses generated by the algorithm
benf, as long as the formula does not contain T or L.

2.6. NORMAL FORMS 47

A state of the art CNF algorithm first tries to simplify a formula be-
fore doing the actual CNF transformation. Eliminating T or L using

the EimTB is a standard part of any such simplification procedure. Further
simplifications are discussed in Section 2.13.

| ¢] ac(y) | be(1)) |
b1 A P2 ac(¢1) + ac(¢2) be(g1) be(¢)
P1V by ac(¢1) ac(¢2) be(¢1) + be(gz)
¢1 = P2 be(or) ac(¢2) ac(¢1) + be(gz)
d1 > b2 | ac(p1) be(da) + be(gr) ac(g2) | ac(dr) ac(gz) + be(dr) be(ha)
1 be(¢1) ac(¢1)
P 1 1

Let ¢ be a formula that does not contain L, or T, then ac(¢) computes ex-
actly the number of clauses generated by benf(¢). The proof is left as an exercise,
but as an example consider the case where ¢ = L ... L, is a disjunction of liter-
als. In this case benf does not change ¢ at all ad produces exactly the clause ¢.
Expanding the definition of ac(¢) produces ac(¢) = ac(Ly) ac(La)...ac(L,) =1
because if some L; is a propositional variable, then ac(L;) = 1. If some L; is
negative, i.e., Lj = =P then ac(L;) = ac(-P) = bc(P) = 1.

A renaming yields fewer clauses, if the difference between the number of
clauses generated without and with a renaming is positive. Consider the renam-
ing of a subformula at position p within a formula ¢ with fresh variable P. The
condition to be checked is

ac(y) 2 ac(P[Plp) + ac(def(s), p, P)).

The inequality above is not strict. If some formula ¢ = 1|, is replaced inside
¢ where ac(¢p) = ac(y¥[P],) + ac(def(y, p, P)) then this equation turns into a
strict inequality as soon as we do another replacement inside ¢. In this case
ac(def(v), p, P)) will strictly decrease. Therefore, when searching for a minimal
CNF it is mandatory to consider the above inequality non-strict.

Example 2.6.6. For a formula P; < P, renaming does not pay off. If P, is
replaced by some fresh variable @) the result is P, & Q A QQ < P, where the
original formula generates 2 clauses and the formula after replacement generates
4 clauses.

The break even point for nested equivalences is the formula P, + (P <
(P; <> Py)) where replacement at position 22 using the fresh variable @ results
in P, & (P, & Q)ANQ < (Ps < P4). Both formulas eventually generate
8 clauses. So this is an example for the above inequality to be non-strict.

The obvious problem with this condition is that the function ac cannot be
efficiently computed in general, for it grows exponentially in the size of the in-
put formula. Moreover, a straightforward, naive top-down implementation of ac
following the above table results in an algorithm with exponential time com-
plexity, due to the duplication of recursive calls. The exponential complexity

48 CHAPTER 2. PROPOSITIONAL LOGIC

can be avoided using a dynamic programming idea: simply store intermediate
results for subformulas. Nevertheless, because ac grows exponentially, comput-
ing ac requires arbitrary precision integer arithmetic. It turns out that this can
hardly be afforded in practice. The rest of this section is therefore concerned
with a solution to this problem, i.e., I show that it is not necessary to compute
ac at all for deciding the above inequation.

Obviously, the formulas ¢ and ¢[P], differ only at position p, the other parts
of the formulas remain identical. We make use of this fact by an abstraction of
those parts of ¢ that do not influence the changed position. To this end we
introduce the notion of a coefficient as shown in Table 2.1.

(2 [vl | ap | by |
qi | o1 Ao a¥ by I1;zi be(4))
qi | 1V ay [T, ac(¢;) by
q.1 | ¢1 — ¢ by al ac(¢s)
q.2 | ¢p1 = P2 a¥ be(pr) by

g1 | ¢1 & ¢ | al be(da) +bY ac(ds) | al ac(pa) + bY be(gr)
42 | 1 & ¢ | a¥be(pr) +bY ac(dr) | al ac(r) + bY be(g)
q.1 ol bg’ ag’

€ P 1 0

Table 2.1: Calculating the Coefficients

The coefficients determine how often a particular subformula and its negation
are duplicated in the course of a basic CNF translation. The coefficient a;f is the
factor of ac(t)|,) in the recursive computation whereas the factor b¥ is the factor
of be(#]p). The first column of Table 2.1 shows the form of p, the second column
the form of v directly above position p (1 itself if p = €). The next two columns
demonstrate the corresponding recursive bottom-up calculations for a;ﬁ’ and bg’,
respectively. Applied to our starting example formula ¢ = ¢ V Vz ¢ where we
renamed position 2.1, i.e., the subformula ¢5, the coefficients are a;p.l = ac(¢1)
(Table 2.1, eighth, second and last row, first column) and bY, = 0 (eighth, second
and last row, second column). Note that a;ﬁ’ (bg’) is always 0 if pol(y,p) = —
(pol(¥,p) = 1).

Using the notion of a coefficient, the previously stated condition can be
reformulated as

a;f ac(q) + b;f be(g) > a;f + bl‘f + ac(def(¢, p, P))

where we still assume that ¢ = |, and P is a fresh propositional variable.
Note that, since ¢ is replaced by P in 1 at position p, the coefficients a;f, bg’ are
multiplied by 1 in the renamed version, because ac(P) = bc(P) = 1. Depending

on the polarity of 9|, the inequality is equivalent to one of the three inequalities:

2.6. NORMAL FORMS 49

a¥ ac(¢) > a¥ + ac(¢) if pol(y,p) =1
by be(p) > by + be(o) if pol(y,p) = —1
a;ﬁ’ ac(q) + b;f be(g) > ag’ + bg’ + ac(¢) + be(g) if pol(y,p) =0

By simple arithmetical transformations, we can group all occurrences of factors
a;f, b;f and all occurrences of ac(¢) and bc(g), respectively:

(ay —1)(ac(¢) —1)>1 if pol(y,p) =1
(by —1)(be(¢) — 1) >1 if pol(y,p) = -1
(ay — 1)(ac(¢) —1) + (by —1)(be(¢) —1) >2 if pol(,p) =0

Let, us abbreviate the product (af —1)(ac(¢) —1) with p, and (b% —1)(bc(¢)—1)
with pp. Since neither p, nor p, can become negative, in any of the cases where
they appear, the first inequality holds if p, > 1, the second inequality holds if
pp > 1 and the third inequality holds if (i) p, > 2 or (ii) pp > 2 or (iii) p, > 1
and p, > 1. In order to check these conditions, it suffices to test whether the
coefficients ag’, b’*p” and the number of clauses ac(¢), bc(¢) are strictly greater
than 1, 2 or 3, respectively. This can always be checked in linear time with
respect to the size of 1. The condition ac(¢) > 1 holds iff there exists a position
p such that ¢[p1 <> ¢2], or ¢[d1 A ¢2], and pol(d,p) = 1 or ¢[¢1 o ¢ps], with
pol(¢,p) = —1 and o € {V,—}. The computations for the boolean conditions
ac(¢) > 2 and ac(¢) > 3 are depicted in Table 2.2. The computation of the
conditions for bc works accordingly, see Table 2.3.

As for the factors, Table 2.4 shows how to compute a;f > 1 and, following
Table 2.1, this can be extended to the other cases for the a factor and the
corresponding conditions for the b factor.

Hence we turned a test that required the computation of exponentially grow-
ing functions into a boolean condition that does not require any arithmetic
calculation at all.

Theorem 2.6.7 (Formula Renaming). Formula Renaming preserves satisfia-
bility and can be computed in polynomial time.

In order to further reduce the number of eventually generated clauses it may
still be useful to rename a formula, even if the above considerations do not apply.
For example, renaming the formula P; V (Q1 A Q=) at position 2 results in three
clauses, whereas a standard CNF translation of the original formula yields two
clauses. This calculation also applies if this situation is repeated, as in

[PLV(QiAQ)IAN[PV(QLAQ2)IA... [PV (Q1AQ2)]

where our renaming criterion does not apply. But now a simultaneous renaming
of all occurrences (Q1 A @Q2) may pay off. It results in n + 2 clauses whereas
the standard CNF translation yields 2n clauses. Hence, it is useful to search for
multiple occurrences of the same subformula. The problem here is to find an
appropriate “equality” or “instance” relation between subformulas. In our ex-
ample syntactic equality was sufficient to detect all such occurrences. In general,
a matching process — probably with respect to the commutativity, associativity

50 CHAPTER 2. PROPOSITIONAL LOGIC

‘ W ‘ ac(y) > 1
o1 N ¢ | true

$1 Vo2 | ac(pr) > 1or ac(pe) > 1

1 — ¢2 | be(pr) > 1or ac(da) > 1

@1 & o | true

-6 | be(g) > 1

L v | ac(y) > 2 |
$1 NPy | ac(gr) > 1or ac(ge) > 1

$1 Vo | ac(g;) > 2or [ac(gr) > 1 and ac(gs) > 1]

1 — d2 | be(pr) > 2o0r ac(pz) > 2 or [be(pr) > 1 and ac(gs) > 1]
@1 < ¢o | at least one out of ¢y, ¢ is not a literal

) be(g) > 2

[v] ac(y) > 3 |
d1Npa | ac(g;) > 2
1V o2 | ac(d;) > 3or[ac(e;) > 2 and ac(g;) > 1,i # j]
$1 = ¢2 | be(gr) > 2or ac(gz) > 2 or [be(¢pr) > 1 and ac(g2) > 1]
¢1 <> ¢o | ac(d;) > 3 or be(p;) > 3 or ¢ is not a literal

) be(g) > 3

)

Table 2.2: The Boolean Conditions for ac

of some logical operators or even logical implication — may be needed to obtain a
suitable renaming result. So we run here into a tradeoff between compact CNFs
and computational complexity to achieve these CNFs.

For the formulation of the optimized CNF algorithm I rely on the equiv-
alences from categories (I), (V) and (VII) from Figure 2.1. They are used to
transform the formula. The equivalences are always applied from left to right.
So “applying” such an equivalence means turning it into a rule. For example,
the equivalence (¢ V (¢ A 1)) +» ¢ from category (V) generates the rule

xX[oV (oA, =oonk X[Plp
Applying this rule with respect to commutativity of V means, for example, that
both the formulas (¢ V (¢ A1) and ((p A1)V ¢) can be transformed by the rule
to ¢ where in both cases p = €. Rules are always applied modulo associativity
and commutativity of A, V.

2.6. NORMAL FORMS 51

| v] be() > 1
$1 ANd2 | be(dr) > 1or be(ge) > 1
o1V ¢ | true

¢1 = o | true

¢1 & o | true

- ac(¢) > 1

v be(y) > 2

$1V ey | be(pr) > 1or be(ds) > 1

d1 Apa | be(g;) > 2o0r be(dr) > 1 and be(gps) > 1
¢ ac(¢p) > 2

v] be() > 3 |

D1V P be(d;) > 2

¢1 A2 | be(g;) > 3or [be(g;) > 2and be(gy) > 1,0 # j]
¢ ac(¢p) > 3

Table 2.3: The Boolean Conditions for bc

The procedure is depicted in Algorithm 4. Although computing ac for Step 2
is not practical in general, because the function is exponentially growing, the
test ac(y[@]p) > ac(y[P], Adef(¢p, p, P)) can be computed in constant time after
a linear time processing phase.

Applying Algorithm 4 to the formula =((P V Q) < (P — (Q A T))) of
Example 2.6.3 results in the transformation depicted in Figure 2.11. Looking
at the result it is already very close to —@Q, as it contains the clause (=Q V
—@)). Removing duplicate literals in clauses and removing clauses containing
complementary literals from the result yields

(=P V=Q) A (=QV P) A-Q
which is even closer to just =@). The first two clauses can actually be removed
because they are subsumed by —@Q), i.e., considered as multisets, =@ is a subset
of these clauses. Subsumption will be introduced in the next section. Logically,
they can be removed because =@ has to be true for any satisfying assignment
of the formula and then the first two clauses are satisfied anyway.

52

CHAPTER 2. PROPOSITIONAL LOGIC

Algorithm 4: ocnf(¢)

Input : A formula ¢.
Output: A formula ¢ in CNF satisfiability preserving to ¢.

1 whilerule (ElimRedI(¢),ElimRedV(¢),ElimRedVII(¢)) do ;
2 SimpleRenaming(¢) on beneficial positions;
3 whilerule (ElimEquivl(¢),ElimEquiv2(¢)) do ;
4 whilerule (ElimImp(¢)) do ;
5 whilerule (PushNegl(¢),...,PushNeg3(¢)) do ;
6 whilerule (PushDisj(¢)) do ;
7 return ¢;
“(PVQ) & (P—=(QAT))
Socke ~((PVQ) & (P Q)
=Socmp ((PVQ)A(P = Q)]V[=(PVQ)A~(P—Q))
=ocnr ((PVQ) AP VQ)V[-(PVQ)A=(=PVQ))
=5enp . CIPVQ) APV Q) APV Q) A=(=PV Q)]
S5enp . [S(PVQ) VA(=PVQIAPVQ)V (=P V Q)]
=oenp” [(GPA=Q)V (PA-QIA[(PVQ)V (=P V Q)]
=5ene " [(GPVP)A(=PV=Q)A(=QVP)A(=QV-Q)IA[PVQV-PVQ)]

Figure 2.11: Example Optimized CNF Transformation

2.7. PROPOSITIONAL RESOLUTION 53

B aj > 1
qi | o1\ o al >1
q.i | ¢1V do a;f > 1l or ac(¢;) > 1 for some i

Table 2.4: The Boolean Conditions for a

2.7 Propositional Resolution

A calculus is a set of inference and reduction rules for a given logic (here
PROP(X)). We only consider calculi operating on a set of clauses N. Infer-
ence rules add new clauses to N whereas reduction rules remove clauses from
N or replace clauses by “simpler” ones.

We are only interested in unsatisfiability, i.e., the considered calculi test
whether a clause set N is unsatisfiable. This is in particular motivated by the
renaming step of CNF transformation, see Section 2.6.3. So, in order to check
validity of a formula ¢ we check unsatisfiability of the clauses generated from
—¢.

For clauses we switch between the notation as a disjunction, e.g., PVQV PV
- R, and the notation as a multiset, e.g., { P, @, P,~R}. This makes no difference
as we consider V in the context of clauses always modulo AC. Note that L, the
empty disjunction, corresponds to @, the empty multiset. Clauses are typically
denoted by letters C, D, possibly with subscript.

The resolution calculus consists of the inference rules Resolution and Fac-
toring. So, if we consider clause sets N as states, W is disjoint union, we get the
inference rules

Resolution (NLﬂ{Cl VP, Cs \/—|P}) =RES (NU{Cl VP,Cs \/—IP}U{Cl VCQ})

Factoring (Nw{CVLVL}) =res (NU{CVLVL}U{CVL})

Theorem 2.7.1. The resolution calculus is sound and complete:
N is unsatisfiable iff N =§pg {1}

Proof. (<) Soundness means for all rules that N |= N’ where N’ is the clause
set obtained from N after applying Resolution or Factoring. For Resolution it
is sufficient to show that Cy V P,C2 V =P |= Cy V C5. This is obvious by a case
analysis of valuations satisfying Cy V P,C> V= P: of P is true in such a valuation
so must be Cs, hence C7 V Cy. If P is false in some valuation then C| must
be true and so C V . Soundness for Factoring is obvious this way because it
simply removes a duplicate literal in the respective clause.

(=) The traditional method of proving resolution completeness are semantic
trees. A semantic tree is a binary tree where the edges a labeled with literals

54 CHAPTER 2. PROPOSITIONAL LOGIC

such that: (i) edges of children of the same parent are labeled with L and —L,
and (ii) any node has either no or two children, and (iii) for any path from the
root to a leave, each propositional variable occurs at most once. Therefore, each
path corresponds to a partial valuation. Now for an unsatisfiable clause set NV
there is a semantic tree such that for each leaf of the tree there is a clause in N
that is false with respect to the partial valuation at that leaf. Let this tree be
minimal in the sense that there is no smaller tree with less nodes having this
property. Now consider two sister leaves of the same parent of this tree, where
the edges are labeled with L and —L, respectively. Let Cy and Cs be the two
false clauses at the respective leaves. Obviously, Cy = C{ V L and Cy = C§V L
as for otherwise the tree would not be minimal. If C; (or C3) contains further
occurrences of L (or Cy of —L), then the rule Factoring is applied to eventually
remove all additional occurrences. Therefore, I can assume L ¢ Cf and —L ¢ C}.
A resolution step between these two clauses on L yields C] vV C} which is false
at the parent of the two leaves, because the resolvent neither contains I nor
= L. Furthermore, the resulting tree from cutting the two leaves is minimal
for N U{C] Vv C}} and strictly smaller. By an inductive argument this proves
completeness. O

Example 2.7.2 (Resolution Completeness). Consider the clause set
PVQ,-PVQ, PV-Q, -PV-QVS, -PV-QV-S

and the corresponding semantic tree as shown in Figure 2.12.

[-P, [-P, [P, =P, [P, [P, [P [P,
_'Qa _'Qa Q; Q7 _'Qa _'Qa Qa Q7
5] S| -] S| -] S| -] S]

Figure 2.12: Semantic tree representation of {PV @, -PV Q, PV —-Q, =PV
—QV S, 7PV -Q V S} where each leaf is labeled with the literals that falsify
the partial valuation at that leaf.

The reduction rules are

2.7. PROPOSITIONAL RESOLUTION 95

Subsumption (N W {C1,C5}) =rrs (NU{C1})
pI‘OVided Cy C Oy

Tautology
N Pv-P N
Deletion (Ne{Cv PV b =mes (N)

Condensation (N W {C1 VLV L}) =gres (NU{C1VL})

Note the different nature of inference rules and reduction rules. Resolution
and Factorization only add clauses to the set whereas Subsumption, Tautology
Deletion and Condensation delete clauses or replace clauses by “simpler” ones.
In the next section, Section 2.8, I will show that “simpler” means.

At first, it looks strange to have the same rule both as a reduction
rules and as an inference rule, i.e., Factorization and Condensation.
On the propositional level there is obviously no difference and it is

possible to get rid of one of the two. In Section 3.13 the resolution calculus is
extended to first-order logic. In first-order logic Factorization and Condensation

are actually different. They are separated here to eventually obtain the same
set of resolution calculus rules for propositional and first-order logic.

Proposition 2.7.3. The reduction rules Subsumption, Tautology Deletion and
Condensation are sound.

Proof. This is obvious for Tautology Deletion and Condensation. For Subsump-
tion we have to show that Cy = Cs, because this guarantees that if NU{C} } has
a model, N & {C},C>} has a model too. So assume A(C;) = 1 for an arbitrary
A. Then there is some literal L € C with A(L) = 1. Since Cy C Cs, also L € Cy
and therefore A(Cs) = 1. O

Theorem 2.7.4 (Resolution Termination). If redundancy rules are preferred
over inference rules and no inference rule is applied twice to the same clause(s),
then :>EES is well-founded.

Proof. For some given clause set N the redundancy rules Subsumption, Tautol-
ogy Deletion and Condensation always terminate because they all reduce the
number of literals occurring in N. Furthermore, a clause set N where the re-
dundancy rules have been exhaustively applied does not contain any tautology,
no clause with duplicate literals and, in particular, no duplicate clauses. The
number of such clauses can be overestimated by 3" where n is the number of
propositional variables in N. Hence, there are at most 23" different, finite clause
sets with respect to clause sets where the redundancy rules have been applied.
Obviously, for each of such clause sets there are only finitely many different
Resolution and Factoring steps. |

o6 CHAPTER 2. PROPOSITIONAL LOGIC

Of course, what needs to be shown is that the strategy employed in
Theorem 2.7.4 is still complete. This is not completely trivial and
gets very nasty using semantic trees as the proof method of choice. So let’s wait

until superposition is established where this result becomes a particular case of
superposition completeness.

2.8 Propositional Superposition

Superposition was originally developed for first-order logic [5]. Here I introduce
its projection to propositional logic. Compared to the resolution calculus su-
perposition adds (i) ordering and selection restrictions on inferences, (ii) an
abstract redundancy notion, (iii) the notion of a partial model for inference
guidance, and (iv) a saturation concept.

Definition 2.8.1 (Clause Ordering). Let < be a total strict ordering on X.
Then < can be lifted to a total ordering on literals by <C<p, and P <y =P and
P <y @, ~P <1 =Q for all P < Q. The ordering <, can be lifted to a total
ordering on clauses <¢ by considering the multiset extension of <, for clauses.

Proposition 2.8.2 (Properties of the Clause Ordering). (i) The orderings on
literals and clauses are total and well-founded.

(ii) Let C and D be clauses with P = |max(C)|, @ = | max(D)|, where max(C')
denotes the maximal literal in C'.

1. If Q <1, P then D <o C.
2. If P = @, P occurs negatively in C but only positively in D, then D <& C.

Eventually, I overload < with <;, and <¢. So if < is applied to literals it
denotes <, if it is applied to clauses, it denotes <. Note that < is a total
ordering on literals and clauses as well. Eventually we will restrict inferences to
maximal literals with respect to <. For a clause set N, I define N<¢ = {D €
N |D<C}.

Definition 2.8.3 (Abstract Redundancy). A clause C is redundant with respect
to a clause set N if N<¢ = C.

Tautologies are redundant. Subsumed clauses are redundant if C is strict.
Duplicate clauses are anyway eliminated quietly because the calculus operates
on sets of clauses.

Note that for finite N, and any C' € N redundancy N=<¢ |= C can
be decided but is as hard as testing unsatisfiability for a clause set

N. So the goal is to invent redundancy notions that can be efficiently
decided and that are useful.

Definition 2.8.4 (Selection Function). The selection function sel maps clauses
to one of its negative literals or L. If sel(C') = =P then —P is called selected in
C. If sel(C) = L then no literal in C is selected.

2.8. PROPOSITIONAL SUPERPOSITION o7

The selection function is, in addition to the ordering, a further means to
restrict superposition inferences. If a negative literal is selected on a clause, any
superposition inference must be on the selected literal.

Definition 2.8.5 (Partial Model Construction). Given a clause set N and an
ordering < we can construct a (partial) model Nz for N inductively as follows:

Ne = UD-<C op

{P} if D= D'V P,P strictly maximal, no literal
op = selected in D and Np £ D
) otherwise

Nz = UCGN dc
Clauses C with d¢ # () are called productive.
Proposition 2.8.6. Some properties of the partial model construction.
1. For every D with (C'V —=P) < D we have 0p # {P}.
2. If §¢ = {P} then N¢ Udc | C.

3. If No = D and D < C then for all C' with C < C' we have Nov = D
and in particular Nz |= D.

4. There is no clause C' with PV P < C such that dc = {P}.

Please properly distinguish: N is a set of clauses interpreted as the
conjunction of all clauses. N<¢ is of set of clauses from N strictly
smaller than C' with respect to <. Nz, N¢ are sets of atoms, often
called Herbrand Interpretations. N7 is the overall (partial) model for N, whereas
N¢ is generated from all clauses from N strictly smaller than C. Validity is
defined by Nz |= P if P € Nz and Nz |= —P if P ¢ Nz, accordingly for N¢.
Given some clause set NV the partial model N7 can be extended to a valuation
A by defining A(N7) := Nz U {=P | P ¢ Nz}. So we can also define for some
Herbrand interpretation Nz (N¢) that Nz = ¢ iff A(Nz)(¢) = 1.

Superposition Left (NW{C,V P,CyV~-P}) =sup (NU{C1V P,CsV
-P}U{Ci Vv (C,})
where (i) P is strictly maximal in Cy V P (ii) no literal in C; V P is selected

(iii) =P is maximal and no literal selected in Cy V =P, or =P is selected in
Cy VP

Factoring (Nw{CVPVP}) =sup (NU{CVPVP}U{CVP})

where (i) P is maximal in C'V PV P (ii) no literal is selected in C'vV PV P
Note that the superposition factoring rule differs from the resolution factor-
ing rule in that it only applies to positive literals.

58 CHAPTER 2. PROPOSITIONAL LOGIC

Definition 2.8.7 (Saturation). A set N of clauses is called saturated up to
redundancy, if any inference from non-redundant clauses in N yields a redundant
clause with respect to V.

Examples for specific redundancy rules that can be efficiently decided are
Subsumption (Nw{C1,C}) =svp (NU{C1})
provided C; C Cs
Tautology Dele- (NW{CVPV-P}) =sup (N)

tion

Condensation (Nw{Ci,VLVL}) =svp (NU{C,VL})
Subsumption

Resolution (NW{C1VL,Cyv-L}) =sup (NU{CLVL,C})

where Ol g CQ

Proposition 2.8.8. All clauses removed by Subsumption, Tautology Deletion,
Condensation and Subsumption Resolution are redundant with respect to the
kept or added clauses.

Theorem 2.8.9. If N is saturated up to redundancy and L ¢ N then N is
satisfiable and Nz |= N.

Proof. The proof is by contradiction. So I assume: (i) for any clause D derived
by Superposition Left or Factoring from N that D is redundant, i.e., N<P = D,
(ii) L ¢ N and (iii) Nz £ N. Then there is a minimal, with respect to <, clause
CV L € N such that Nz £ C'V L and L is a selected literal in C'V L or no literal
in CV L is selected and L is maximal. This clause must exist because L ¢ N.

The clause C'V L is not redundant. For otherwise, N<“V! |= C' v L and
hence Nz |= C'V L, because Nz = N<¢VE 4 contradiction.

I distinguish the case L is a positive and no literal selected in CV L or L is a
negative literal. Firstly, assume L is positive, i.e., L = P for some propositional
variable P. Now if P is strictly maximal in C' V P then actually dcvp = {P}
and hence N7 |= C'V P, a contradiction. So P is not strictly maximal. But then
actually C' V P has the form C{ V PV P and Factoring derives C] V P where
(Ci Vv P) < (C{VvPVP). Now Cj V P is not redundant, strictly smaller than
CV L, wehave C{VP € N and Nz [~£ C] V P, a contradiction against the choice
that C' Vv L is minimal.

Secondly, let us assume L is negative, i.e., L = =P for some propositional
variable P. Then, since Nz £ C'V =P we know P € Nz. So there is a clause
DV P € N where dpyp = {P} and P is strictly maximal in D V P and
(DV P) < (CV =P). So Superposition Left derives C' V D where (C V D) <
(C'V—P). The derived clause C'V D cannot be redundant, because for otherwise
either NXPVP |= DV P or NX¢V=F = Cv-P.SoCVD € N and N7 [£ CV D,
a contradiction against the choice that C'V L is the minimal false clause. O

2.9. DAVIS PUTNAM LOGEMANN LOVELAND PROCEDURE (DPLL) 59

Propagate (M; N) =nppr, (ML;N)

provided C VL € N, M |E —C, and L is undefined in M
Decide (M;N) =pprr (MLT;N)

provided L is undefined in M

Backtrack (ML My; N) =pprr, (M;—L;N)

provided there is a D € N and M | =D and no K ' in M,

Figure 2.13: The DPLL Calculus

So the proof actually tells us that at any point in time we need only to
consider either a superposition left inference between a minimal false clause and
a productive clause or a factoring inference on a minimal false clause.

2.9 Davis Putnam Logemann Loveland Proce-
dure (DPLL)

A DPLL problem state is a pair (M; N) where M a sequence of partly annotated
literals, and N is a set of clauses. In particular, the following states can be
distinguished:

N) is the start state for some clause set N

;N) is a final state, if M |= N

N) s a final state, if M |= =N and there is no literal L™

in M

N) is an intermediate state if M neither is a model for
N nor does it falsify a clause in IV

The sequence M will, by construction, neither contain duplicate nor com-
plementary literals. So it will always serve as a partial valuation for the clause
set N.

Here are the rules

Lemma 2.9.1. Let (M; N) be a state reached by the DPLL algorithm from
the initial state (e; N). If M = M L] MsLj ...L} M1 and all M; have no
decision literals then for all 0 < i < m it holds: N, My,..., L] E M4

Proof. Proof by complete induction on the number n of rule applications.

Induction basis: n = 0. No rule has been applied so that M = € and M does
not contain any decision literal. Therefore the statement holds.

Induction hypothesis: If (M; N) is reached via n or less rule applications
where M = My L{ MyLj ... L} My, 1 and all M; have no decision literals then
for all 1 <i < m it holds: N, My,...,L] E M.

Induction step: n — n+1. Assume (M'; N) is reached via n rule applications.
Then by the use of the induction hypothesis it holds for all 1 < i < m that

60

N,

CHAPTER 2. PROPOSITIONAL LOGIC

My,...,L] = My, so that it remains to be shown that N, M,...,L] =

Mm+1

1. Rule Propagate (M'; N) =pprr (M'L;N):Tf M' = ML MyL) ... L] My, 1
and all M; have no decision literals then by definition there is a
clause C VL € N with M' |= -C, ie. CV L,M'" = L and
N, MlLIM2L;— - L;Mmﬂ E L. Using the induction hypothesis it fol-
lows N, M,L] MxL, ...L], = M,,,1, L.

2. Rule Decide (M'; N) =pprr, (M'LT; N): The statement holds because of

M', LT & T and the induction hypothesis.

3. Rule Backtrack (M{LTMb; N) =ppLr (M{—=L;N): By definition M} has

no decision literals and there is a clause D € N with M{LTM}
—=D. With the induction hypothesis M{LT = M} holds. It follows
that M{LT | =D which is equivalent to M{LT,D E 1 and
M{,D | =LT. Since D € N it holds that N,M| E =L. Let M| =
MiL{ ML ...L}) M, 1 where all M; have no decision literals then by
induction hypothesis N, My L{ M>LJ ... L} &= My,41,-L.

O

Proposition 2.9.2. For a state (M; N) that is reached from the initial state

(€

N) where M contains k decision literals Ly ... Ly with ¥ > 0 and for each

valuation A4 with A |= N, Ly,..., Ly it holds that A(K) =1 for all K € M.

Proof. Let M = MlLI .. L;M;Hl where all M; have no decision literals. With
Lemma 2.9.1 for all i it holds that N, M, L] ... L] | | M;, i.e., for all i, literals

K
1.

€ M; and each valuation A with A = N,Ly,...,L; it holds that A(K) =
O

Lemma 2.9.3. If M contains only propagated literals and M = Ly ... L, and
there is a D € N with M = —~D where D = K; ... K, then N is unsatisfiable.

Proof. Since M = =D it holds that —K; € M for all 1 < i < m. With Propo-
sition 2.9.2 for each valuation A with A |= N it holds that A(L;) = 1 for all
1 < j < n. Thus in particular it holds that A(—K;) = 1 for all 1 < i < m.
Therefore D is always false under any valuation A and N is always unsatisfi-
able. O

Proposition 2.9.4 (DPLL Soundness). The rules Propagate, Decide, and
Backtrack are sound, i.e. whenever the algorithm terminates in state (M; N)
starting from the initial state (¢; V) then it holds: M |= N iff N is satisfiable

Proof. (=) if M |= N then obviously N is satisfiable.

(<) Proof by contradiction. Assume N is satisfiable and the algorithm termi-
nates in state (M; N) starting from the initial state (¢; V). Furthermore, assume
M = N does not hold, i.e. either there is at least one literal that is not defined
in M or there is a clause D € N with M |= —D.

2.9. DAVIS PUTNAM LOGEMANN LOVELAND PROCEDURE (DPLL) 61

For the first case the rule Decide is applicable. This contradicts that the
algorithm terminated.

For the second case either M only contains propagated literals then N is
unsatisfiable with Lemma 2.9.3. This is a contradiction to the assumption that
N is satisfiable. If M does not only contain propagated literals there must be at
least one decision literal in M. Then the rule Backtrack is applicable but this
contradicts that the algorithm terminated.

Therefore M = N and the rules Propagate, Decide, and Backtrack are sound.
O

Proposition 2.9.5 (DPLL Strong Completeness). The rules Propagate, De-
cide, and Backtrack are strongly complete: for any valuation M with M = N,
there is a sequence of rule application generating (M, N) as a final state.

Proof. Let M = L1Ls ... L. Since it is a valuation there are no duplicates in
M and k applications of rule Decide yield (L{ Lj ... L/}, N) out of (e; N). This
is a final state because backtrack is not applicable since M = N and Propagate
and Decide are no further applicable since M is a valuation. [l

Proposition 2.9.6 (DPLL Termination). The rules Propagate, Decide, and
Backtrack terminate on any input state (e, V).

Proof. Let n be the number of propositional variables in N. As usual, termina-
tion is shown by assigning a well-founded measure and proving that it decreases
with each rule application. The domain for the measure u are n-tuples over
{1,2,3}.
p((Ly...Lg; N)) = (my, ..., mg, 3,...,3)

where m; = 2 if L; is annotated with T and m; = 1 otherwise. So u((e, N)) =
(3,...,3). The well-founded ordering is the lexicographic extension of < to n-
tuples. What remains to be shown is that each rule application decreases p. I
do this by a case analysis over the rules.

Propagate:
M((Ll 'Lk;N)):(mla"'amk73737"'73)
> (my,...,mg,1,3,...,3)
=u((Ly ... LiL; N))
Decide:
w((Ly ...Lg; N)) = (ma, ... ,mg, 3,3,...,3)
> (my,...,mg,2,3,...,3)
=u((Ly...LyLT;N))
Backtrack:

/j,((Ll...LjLTLj+1...Lk;N)) = (ml,...,mj,2,mj+1,...,mk,3,...,3)
> (mi,...,mj,1,3,...,3)

62 CHAPTER 2. PROPOSITIONAL LOGIC

O

2.10 Conflict Driven Clause Learning (CDCL)

A CDCL problem state is a five-tuple (M; N;U; k; C) where M a sequence of
annotated literals, N and U are sets of clauses, £k € N, and C is a non-empty
clause or T or L. In particular, the following states can be distinguished:

;0; T) is the start state for some clause set N

N;U;k;T) is afinal state, if M = N and all literals from N are
defined in M

N;U;k; L) is a final state, where N has no model

N;U;k;T) is an intermediate model search state if M = N

(M;N;U;k; D) is a backtracking state if D ¢ {T, L}

A literal L is of level k with respect to a problem state (M;N;U;j;C) if
L or =L occurs in M and the first decision literal left from L (=L) in M is
annotated with & or if there is no decision literal £ = 0. A clause D is of level
k with respect to a problem state (M; N;U; j; C) if k is the maximal level of a
literal in D. Recall C' is a non-empty clause or T or L. The rules are

Propagate (M; N;U;k; T) =cpcr, (MLEVL;N;U; k;T)
provided CV L € (NUU), M | —=C, and L is undefined in M

Decide (M;N;U;k;T) =cpcr (MLFY, N;U;k+1;7T)
provided L is undefined in M

Conflict (M;N;U;k;T) =cper, (M;N;U;k; D)
provided D € (NUU) and M |=-D

Skip (MLEVE;N;Us k; D) =cper (M;N;Usk; D)
provided D ¢ {T, L} and =L does not occur in D

Resolve (MLYV";N;U;k; DV -L) =cpeL (M;N;U;k; DV C)
provided D contains a literal of level k£ or £ =0

For rule Resolve we assume that duplicate literals in D V C' are always re-
moved.

Backtrack (M;K™#'My; N;U;k;DV L) =cper. (MiLPVE;N;U U {D Vv
L};i;T)
provided L is of maximal level k in D V L and D is of level ¢, where i < k.

Restart (M;N;U;k;T) =cpcr (6, N;U;0;T)
provided M £ N

2.10. CONFLICT DRIVEN CLAUSE LEARNING (CDCL) 63

Forget (M;N;UU{C};k;T) =cpcr, (M;N;U;k;T)

provided M £ N

Recall that 1 denotes the empty clause, hence failure of searching for a
model. The level of the empty clause L is 0. The clause D V L added in rule
Backtrack to U is called a learned clause. The CDCL algorithm stops with a
model M if neither Propagate nor Decide nor Conflict are applicable to a state
(M;N;U;k;T), hence M |= N and all literals of N are defined in M. The only
possibility to generate a state (M; N;U;k; L) is by the rule Resolve. So in case
of detecting unsatisfiability the CDCL algorithm actually generates a resolution
proof as a certificate. I will discuss this aspect in more detail in Section 2.12.
In the special case of a unit clause L, the rule Propagate actually annotates the
literal L with itself.

Obviously, the CDCL rule set does not terminate in general for a number of
reasons. For example, starting with (e; N;();0; T) a simple combination Propa-
gate, Decide and eventually Restart yields the start state again. Even after a
successful application of Backtrack, exhaustive application of Forget followed
by Restart again produces the start state. So why these rules? Actually, any
modern SAT solver is based on this rule set and the underlying mechanisms. I
will motivate the rules later on and how they are actually used in an efficient
way.

Example 2.10.1 (CDCL Strategy I). Consider the clause set N = {PVQ,—-PV
@, —Q} which is unsatisfiable. The below is a CDCL derivation proving this fact.
The chosen strategy for CDCL rule selection produces a lengthy proof.

(& N 0;0;T)

=058 (P N;0;1;T)

=onar (P1=Q% Ni0;2;T)

=epar (P1-Q* Ni0:2,-PV Q)

=ohan s (PPQTTVON{=PV QY1 T)

SR (P1QPY NPV Q) 1-Q)

=SCBEY (Q7Y N {=PV Q,=Q};0; T)

=ohar (FQTCPL N {-PVQ,-Q};1;T)

=epir’ (FQTPL N {-PVQ,=Q};1;-PV Q)

S OB (-QT9=PTPVR N {=PV Q,-Q};0; T)

SR (2Q PPV NG (=P V Q, Q0 PV Q)

=S0per® (FQU N {-PVQ,-Q};0;Q)

=B (6N {=PVQ,~Q};0; 1)

Example 2.10.2 (CDCL Strategy II). Consider again the clause set N =
{PVQ,-PVQ,-Q} from Example 2.10.1. For the following CDCL derivation
the rules Propagate and Conflict are preferred over the other rules.

64 CHAPTER 2. PROPOSITIONAL LOGIC

(e; N;0;0;T)

P -
Sopor . (FQTYN; ;05 T)
Sonei "t (2QTOPAYEIN; 50, T)

=tpers (FQTY N 0;0;Q)
= Resolve €;N;0;0; 1)

In an implementation the rule Conflict is preferred over the rule Prop-
agate and both over all other rules. Exactly this strategy has been
used in Example 2.10.2 and is called reasonable below. A further in-
gredient is a dynamic heuristic which literal is actually used by the rule Decide.

This heuristic typically depends on the usage of literals by the rule Resolve, i.e.,
literals used in Resolve “get a bonus”.

(
(
=epert (FQTOPYYTIN:G;0,-PV Q)
(
(

Definition 2.10.3 (Reasonable CDCL Strategy). A CDCL strategy is reason-
able if Conflict is always preferred over rule Propagate is always preferred over
all other rules.

Proposition 2.10.4 (CDCL Basic Properties). Consider a CDCL state
(M; N;U;k;C) derived by a reasonable strategy from start state (e, N, 0,0, T)
without using the rules Restart and Forget. Then the following properties hold:

1. M is consistent.
2. All learned clauses are entailed by .
3. IfC ¢ {T, L} then M | -C.

4. If C =T and M contains only propagated literals then for each valuation
A with A |= N it holds that A = M.

5. If C = T, M contains only propagated literals and M |= —D for some
D € (NUU) then N is unsatisfiable.

6. If C' = L then CDCL terminates and NV is unsatisfiable.
7. Each infinite derivation
(6, N;0;0; T) =cper (My; N; U ks Di) =cpcr - - -
contains an infinite number of Backtrack applications.

8. CDCL never learns the same clause twice if Conflict selects the smallest
clause out of NUU.

Proof. 1. M is consistent if it does does not contain L and —L at the same time.
The rules Propagate, Decide only add undefined literals to M. By an inductive

2.10. CONFLICT DRIVEN CLAUSE LEARNING (CDCL) 65

argument this holds also for Backtrack as it just removes literals from M and
flips one literal already contained in M.

2. A learned clause is a always a resolvent of clauses from N U U and even-
tually added to U where U is initially empty. By soundness of resolution (The-
orem 2.7.1) and an inductive argument it is entailed by N.

3. A clause C' ¢ {T,L} can only occur after Conflict where M [-C.
The rule Skip does not change C' and only deletes propagated literals from M
that are not contained in C. By an inductive argument, if the rule Resolve is
applied to a state (M'LPVE; N;U;k; D V —L) where C = D V —L resulting in
(M';N;U; k; DV D') then M' |= =D because M' |= =C and M’ |= =D’ because
L was propagated with respect to M’ and D'V L.

4. Proof by induction on the number n of propagated literals in M. Let
M =1Ly,...,Ly, Lyy1. There are two rules that could have added L,y1. (i) rule
Propagate: in this case there is a clause C = DV L, 1 where L,;; was unde-
fined in M and M [—D. By induction hypothesis for each valuation A with
A = N it holds that A(L;) = 1 for all i € {1,...,n}. Since all literals in D
appear negated in M with the induction hypothesis it holds that all those liter-
als must have the truth value 1 in any valuation A. Therefore, for the clause C
to be true L,+1 must be true as well in any valuation. It follows that for each
valuation A it holds that A(L;) = 1 for alli € {1,...,n + 1}. (ii) rule Back-
track: the state (M; Kt My; N;U; k; DV LE) where M = —(DV Lk,) (with
Proposition 2.10.4-3) and My = L, ... L, with only propagated literals becomes
(MlLfl/lL"“;N; U;i; T). With the induction hypothesis for each valuation A
with A = N it holds that A(L;) =1 for all 1 <4 <mn i.e. in particular it holds
that for each literal L in D A(L) = 0 since each literal in D appears negated in
M. Thus, for each each valuation A4 with 4 E N A(L,41) =1 holds.

5. Since M = —D it holds that —=K; € M for all 1 < i < m. With Propo-
sition 2.10.4-4 for each valuation A with A = N it holds that A(L;) = 1 for
all 1 < j < n. Thus in particular it holds that A(=K;) =1 for all 1 <i < m.
Therefore D is always false under any valuation 4 and N is always unsatisfiable.

6. By the definition of the rules the state (M; N;U; k; L) can only be reached
if the rule Conflict has been applied to set some conflict clause C' of a state
(M'; N;U; k; T) as the last component and Resolve is used in the last rule
application to derive L. Before the last call of Resolve the state had the following
form (M L*VE; N;U; k; L) otherwise L could not be derived. M cannot contain
any decision literal because L is a propagated literal and due to the strategy
the rule Propagate is applied before the rule Decide. With Proposition 2.10.4-5
it follows that IV is unsatisfiable.

7. Proof by contradiction. Assume Backtrack is applied only finitely often
in the infinite trace. Then there exists an i € Nt with R; # Backtrack for all
j > i. Propagate and Decide can only be applied as long as there are undefined
literals in M. Since there is only a finite number of propositional variables they
can only be applied finitely often.

66 CHAPTER 2. PROPOSITIONAL LOGIC

By definition the application of the rules Skip, Resolve and Backtrack is
preceded by an application of the rule Conflict since the initial state has a
T as the last component and Conflict is the only rule that replaces the last
component by a clause. For the rule Conflict to be applied infinitely often the
last component has to change to T. By definition that can only be performed
by the rules Resolve and Backtrack (a contradiction to the assumption). For
Resolve assume the following rule application (M LEVE; N;U; k; DV-L) =cpcL
(M;N;U;k;DV C). For DV C = T there must be a literal K with K,-K €
(D v C). With Proposition 2.10.4-3 M | —=(D Vv C) holds which is equivalent
to M }= L,a contradiction because of Proposition 2.10.4-1. Therefore Conflict
is applied finitely often.

Skip and Resolve are also applied finitely often since Conflict is applied
finitely often and they cannot be applied infinitely often interchangeably. Oth-
erwise the first component M has to be of infinite length, a contradiction.

8. By Proposition 2.12.4. O

Lemma 2.10.5. Assume the algorithm CDCL with all rules is applied us-
ing the strategy eager application of Conflict and Propagate where Conflict is
applied before Propagate. The CDCL algorithm has only 2 termination states:
(M;N;U;k;T) where M |= N and (M; N;U;k; L) where N is unsatisfiable.

Proof. Let the CDCL algorithm terminate in a state (M; N;U;k;¢) starting
from the initial state (e; N;0;0; T).

1. Let ¢ = L. Norule can be applied and (M; N;U; k; L) is indeed a termina-
tion state. With Proposition 2.10.4-6 it also holds that NV is unsatisfiable.

2. Let ¢ = T and M = N. Then the algorithm found a total valuation M
for N and no literal in N is undefined in M (otherwise we could apply
Decide, contradicting that the algorithm terminated). Since M = N there
can also be no conflict clause D. Hence, no further rule can be applied and
the state (M; N;U;k; T) where M |= N is a termination state.

3. Let ¢ = T and M = N does not hold. Since M = N does not hold there is
either a clause D € N with M |= =D or there is no such clause D but there
is a literal in IV that is undefined in M. For the first case the rule Conflict
is applicable and for the second case the rule Decide is applicable. Thus,
for both cases it holds that (M; N;U;k; T) is not a termination state, a
contradiction.

4. Let ¢ be a clause C = DV L. With Proposition 2.10.4-3 the clause C' must
be a conflicting clause where M | —C.

If the rightmost literal in M is a propagated literal then the rules Skip or
Resolve are applicable if their conditions are satisfied. This would contra-
dict that the algorithm terminated. The case that the conditions are not
satisfied is handled in a similar way as the decided literal case.

2.10. CONFLICT DRIVEN CLAUSE LEARNING (CDCL) 67

If the rightmost literal is a decision literal L then L is contained in C'. This
is due to the fact that with the assumed strategy before deciding literal L
(via the rule Decide) neither Propagate nor Conflict were applicable. Thus,
L is of maximal level k and the remaining part of C' can only be of a level
1 with ¢ < k. The same holds for the case that the rightmost literal is a
propagated literal but D does not contain a literal of level k and Skip is also
not applicable. Then D must again be of a level i with i < k and L must be
the literal of level k in C' (otherwise, due to the strategy, the rule Conflict
would have been called before the rule Propagate and the rightmost literal
in M could not be the propagated literal L). Therefore, in both cases the
rule Backtrack is applicable, contradicting that the algorithm terminated.

O

Proposition 2.10.6 (CDCL Soundness). Assume the algorithm CDCL with
all rules is applied using the strategy eager application of Conflict and Propagate
where Conflict is applied before Propagate. The rules of the CDCL algorithm are
sound, i.e. whenever the algorithm terminates in state (M; N;U;k; @) starting
from the initial state (¢; N;0;0; T) then it holds that M = N iff N is satisfiable.

Proof. (=) if M = N and M is consistent with Proposition 2.10.4-1 then N is
satisfiable.

(<) Proof by contradiction. Assume N is satisfiable and the algorithm ter-
minates in state (M;N;U;k;¢) starting from the initial state (e; N;0;0;T).
Furthermore, assume M = N does not hold. With Lemma 2.10.5 there are only
2 termination states, i.e. ¢ can only be T or L.

Case ¢ = T then by Lemma 2.10.5 M = N. This is a contradiction to the
assumption that M = N does not hold.

Case ¢ = L then by Lemma 2.10.5 N is unsatisfiable. This is a contradiction
to N being satisfiable. O

Therefore all rules of the CDCL algorithm are sound.

Proposition 2.10.7 (CDCL Completeness). The CDCL rule set is complete:
for any valuation M with M |= N there is a sequence of rule application gener-
ating (M; N;U;k; T) as a final state.

Proof. Let M = LiLs...Lj. Since M is a valuation there are no duplicates
in M and k applications of rule Decide yield (L1L3...LK;N;0;k; T) out of
(;N;0;0;T). Since M | N this is a final state and all literals from N are
defined in M. The rules Propagate and Decide cannot be applied anymore and
there is no conflict because M |= N. Therefore Conflict, Skip, Resolve and
Backtrack are not applicable. The rule Forget is not applicable since U =) and
there is no need to restart. [l

68 CHAPTER 2. PROPOSITIONAL LOGIC

As an alternative proof of Proposition 2.10.7 the strategy of an alter-

nation of an exhaustive application of Propagate and one application
of Decide produces (M;N;0;i; T) as a final state where M = N. As in the
proof of Proposition 2.10.7 let M = L1 L, ... Ly. First apply Propagate m-times
exhaustively resulting in (Lj ... Ly; N;0;0; T) where m < k. With Proposi-
tion 2.10.4-4 the literals L ... L,, must be true in any valuation A with A = N.
Thus, if m = k then (Ly ... L;,,; N;0;0; T) is a final state and M = N. If m < k
then apply Decide once on a literal from M resultingin (L; ... L, L'; N;0;1; T).
Since L' is contained in M it must be true. This strategy can be applied equiv-
alently to all further literals in M resulting in the desired state.

Proposition 2.10.8 (CDCL Termination). Assume the algorithm CDCL with
all rules except Restart and Forget is applied using the strategy eager application
of Conflict and Propagate where Conflict is applied before Propagate. Then it
terminates in a state (M; N;U;k; D) with D € {T, L}.

Proof. Proof by contradiction. Assume there is an infinite trace that starts in
a state (M'; N;U';k'; D"). With Proposition 2.10.4-?? and 2.10.4-8 there can
only be a finite number of clauses that are learned during the infinite run. By
definition of the rules only the rule Backtrack causes that a clause is learned so
that the rule Backtrack can only be applied finitely often. But with Proposition
2.10.4-7 the rule Backtrack must be applied infinitely often, a contradiction.
Therefore there does not exist an infinite trace, i.e. the algorithm always termi-
nates under the given assumptions. O

The CDCL rule set does not in general terminate. This is due to the rules
Restart and Forget. If they are applied only finitely often then the algorithm
terminates. At some point the last application of Restart and Forget was reached
since they are only applied finitely often. From this point onwards Proposition
2.10.8 can be applied and the algorithm eventually terminates.

Example 2.10.9 (CDCL Termination I). Consider the clause set N = {PV
Q,-PV @Q,-Q}. The CDCL algorithm does not terminate due to the rule
Restart.

(6 N;0;0;T)
Propagate

= CDCL
Propagate

= CDCL

Restart
= CDCL
Propagate
= CDCL
Propagate
= CDCL

Restart
= CDCL

=CDCL

Example 2.10.10 (CDCL Termination IT). Consider the clause set N = {=PV
QV-R,-PVQV R}. The CDCL algorithm does not terminate due to the rule
Forget.

~Q79;N;0;0; T)
~Q™CPRVEIN;0;0;T)
& N;0;0;T)
~Q7Y;N;0;0; T)
~Q™9PYVPIN;0;0;T)
& N;0;0;T)

~~ o~~~ o~ o~

2.10. CONFLICT DRIVEN CLAUSE LEARNING (CDCL) 69

(e; N3 0;0;T)
=eber (PH N L)
=oRCl (P1Q% N 032 T)
jgg)gigate (Pl—-QQ—-RﬁPVQVﬁR; N; Q); 2; —|—)
SERer (P'=Q*-~RTPVOVTRIN;0:2;-PV QV R)
=tper (P'=Q% N;0;2,-PV Q)
=SEHEE (PLN{=PVQELT)
coer, (PHN;BLT)
=ober (P'-Q%N;0;2;T)
gggigate (Pl—.QQ—.RﬁPVQVﬁR; N; @; 2; -|-)
=ERE (P'=Q*~R™PVOVTRIN;0:2;-PV QV R)
=CDCL

As an alternative for the proof of Proposition 2.10.8 the termination
can be shown by assigning a well-founded measure p and proving that
it decreases with each rule application except for the rules Restart and

Forget. Let n be the number of propositional variables in N. The domain for
the measure p is N x {0,1} x N.

(3”—1—|U|,1,n—|M|) 7D:T
(3" —1-|U|,0,|M]) ,else

The well-founded ordering is the lexicographic extension of < to triples.
What remains to be shown is that each rule application except Restart and
Forget decreases p. This is done via a case analysis over the rules:

Propagate:

W(M; N3 Us ks D)) = {

p((M;N;U;k;T)) = (3" =1 = |U], 1,n — |M])
> (3" —1— |U],1,n — [MLOVE)
= u((MLYE N3 U3 ks T))
Decide:
p(M;N;U; k;T)) = (3" =1 = |U|, 1,n — |M])
> (3" —1— |U],1,n — |[ML*|)
= u(ML* N U3 ks T))
Conflict:
p((M;N;U B T)) = (3" =1 = U, 1,n — |[M|)
> (3n —-1- |U|707 |M|)
= pu((M;N;U;k; D))
Skip:

p((MLEYE;N;Us k; D)) = (3" — 1 — |U],0, [MLEVE))
(3n -1- |U|a07 |M|)

w((M;N;U; k; D))

vl

70 CHAPTER 2. PROPOSITIONAL LOGIC

Resolve:

p((MLEVE;N;Us k; DV =L)) = (3" — 1= |U],0,|MLEVE])
(3n -1- |U|707 |M|)

w((M;N;U; k; DV ()

Backtrack: with Proposition 2.10.4-8 it holds that D V L ¢ U so that the
first component decreases.

IIAVARI

u((My K My; N Us ks DV L)) = (3" — 1= U0, My K M)
(3" —1—|[UU{DV L}|,1,n— |M,LPVY|

p((M{LPVE, N;UU{DV L};i; T))

vl

2.11 Implementing CDCL

For an effective CDCL implementation the underlying data structure of the im-
plementation plays a crucial part. The technique that proved to be very success-
ful in modern SAT solvers and that is also used in a CDCL implementation is the
2-watched literals data structure. For choosing the decision variables a special
heuristic plays an important role in the implementation as well. This heuris-
tic is called VSIDS (Variable State Independent Decaying Sum) that works on
natural numbers. Furthermore, the decision for choosing the most reasonable
clause to be learned after a discovered conflict is handled by the notion of UIPs
(Unique Implication Points). In the following these main concepts (2-watched
literals, VSIDS and 1UIP scheme) will be introduced in accordance with the
CDCL rule set.

2.11.1 Lazy Data Structure: 2-Watched Literals (2WL)

For applying the rule Propagate, the number of literals in each clause that are
not false need to be known. Maintaining this number is expensive, however,
since it has to be updated whenever Backtrack is applied. Therefore, the better
approach is to use a more efficient representation called 2-watched literals. A
list as represented in Figure 2.14 has references for each variable P to clauses
where P occurs positive and references to clauses where P occurs negative. A
variable is either unassigned, true or false. For each clause within the clause list
2 watched (unassigned) variables are maintained. The way of working with the
watched literals is as follows:

1. Let an unassigned variable P be set to false (or true).
2. Visit all clauses in which P (or =P) is watched.

3. In every clause where P (or —P) is watched find an unwatched and non-
falsified variable to be watched. If there is no other unassigned or true
variable then this clause is either a unit clause and the rule Propagate can
be applied or there is a conflict and the rule Backtrack is applied or the
clause set is already satisfied.

2.11. IMPLEMENTING CDCL 71

: P R clause
® * R clauses with P
P
® R clauses with =P
. Q | =P clause

Figure 2.14: The watched literals list with the variables P, @, R and the watched
literals P, R and =P, Q.

An advantage of the data structure as shown in the example below is no
extra cost for variables that are not watched (but assigned false).

As an example consider the formula ¢ = {-PV QV-RV-SVT,-PVQV
-T,RVT,SVT}. Figure 2.17 shows how to derive unit clauses and finally satisfy
the formula within the watched literals data structure. The watched literals are
the first two entries in a clause. The trail (see next section on Backtracking)
represents the assigned literals for the current state.

2.11.2 Backtracking

Another main advantage of the 2-watched literals data structure is discovered
when considering backtracking. For this purpose a trail, a decision level and a
control stack are maintained together with the watched literals data structure.
The trail is a stack of variables that stores the order in which the variables
are assigned. The decision level counts the number of calls of the rule Decide.
The control stack stores the trail height for each decision level, i.e. once Decide
is applied the control stack increases by one entry and saves the height of the
previous trail stack.

If the rule Backtrack is applied the trail height entry from the control stack is
taken and every variable from that trail height on will be unassigned, i.e. every
assignment value that was made since the last application of the rule Decide is
deleted. A detailed example is shown in Figure 2.18. Again, the advantage with
the watched literals data structure is that the watched variables stay unchanged
and will not be considered by this backtracking step.

72 CHAPTER 2. PROPOSITIONAL LOGIC

-P| Q | =T

o—— NULL

]

-P| Q |-R| -S| T

(a) Initialized 2WL data structure for the literal P and the current
trail is empty.

-T| Q | =P

o— NULL

{9

“R| Q |-P|=S| T

(b) After deciding P the watched literals have changed and the cur-
rent trail is: P.

-T| Q | =P

o— NULL

9]

-R| T |-P|=S| @

(c) After deciding —@Q the unit clause {=PV QV =T} is achieved and
the current trail is: P, —Q).

2.11. IMPLEMENTING CDCL 73

-T | Q | =P

o— NULL

e []

“R|-S|-P| T | Q

(d) After propagating —T,R and S the current trail is:
P,-Q,—T,R, S and the clause {-=PV QV =RV -SV T} evaluates to
false, a conflict.

-T | Q | =P

o— NULL

e []

“R|-S|-P| T | Q

(e) After backtracking S, R, T, Q the current trail is: P.

-T| Q | =P

o—— NULL

{9]

-R| T |-P|=S| @

(f) After propagating @ and deciding S the trail is: P, @, S.

74 CHAPTER 2. PROPOSITIONAL LOGIC

-T | Q | =P

o—— NULL

o]

-R| Q |-P| -S| T

(g) After deciding =T and propagating R the trail is: P,Q, S,—T, R.

Figure 2.17: The watched literals list for the formula ¢ = {-PVQV-RV-SV
T,-PVQV-T,RVT,SVT} before and after deciding / propagating variables
with a focus on the literal P.

o
o] [} E I e e E e K

decision control trail decision control trail decision control trail
level stack level stack level stack
(a) The initial entries. (b) After deciding P. (c) After deciding —Q.
-R|
5]

s
nlE 0
ARONE nEnEn

decision control trail decision control trail
level stack level stack
(d) After propagating —T, S and —R. (e) After backtracking.

Figure 2.18: The entries for decision level, control stack and trail for the formula
p={SvQ,PVvQ,-PVRV~-S-PV-RVT,-PVvQV-T}

2.11. IMPLEMENTING CDCL 75

2.11.3 Dynamic Decision Heuristic: VSIDS

Choosing the right unassigned variable to decide is important for efficiency, but
the heuristic may be expensive itself. Therefore, the aim is to use a heuristic
that needs not to be recomputed too often, that for example chooses variables
which occur frequently and prefers variables from recent conflicts.

The VSIDS (Variable State Independent Decaying Sum) is such a heuristic.
The strategy is as follows:

1. Initially assign each variable a score e.g. its number of occurrences in the
formula.

2. Adjust the scores during a CDCL run: whenever a conflict clause is re-
solved with another clause the resolved variable gets its score increased by

a bonus d, initially d = 1 and d increases with every conflict: d = [gd].

3. Furthermore, whenever a clause is learned the score of the variables of this
clause is additionally increased by adding d to its score.

4. As soon as a variable score s or d reaches a certain limit k, e.g. k = 259,
all variables get their score rescaled by a constant, e.g. s = [s-250]. At
this point d is also rescaled: d = [d - 275°].

5. At a decision point with probability 51—0 choose a variable at random. In
the other cases choose an unassigned variable with the highest score.

The heuristic has very low overhead since it is independent of variable as-
signments which makes it a fast strategy. Furthermore, it favors variables that
satisfy the most possible number of clauses and prefers variables that are more
involved in conflicts.

2.11.4 Conflict Analysis and Learning: 1UIP scheme

If a conflicting clause is found, the algorithm needs to derive a new clause from
the conflict and add it to the current set of clauses. But the problem is that this
may produce a large number of new clauses, therefore it becomes necessary to
choose a clause that is most reasonable.

This section examines how to derive such a conflict clause once a conflict
is detected. The key idea is to find an asserting clause that includes the first
UIP (Unique Implication Point). For this purpose the concept of implication
graphs is required and hence defined first. An implication graph G = (V, E) is
a directed graph with a node set V and an edge set E. Each node has the form
/L, which means that the variable L was set to a value (either true or false)
at the decision level [either via the rule Propagate or Decide. If a variable L
of a node n was set via the rule Propagate with clause C = D V L then there
must be an edge from every node of the variables in D to n. This means that
the variables from D imply L. In particular, decision variable nodes have no
incoming edges. A cut of an implication graph is a partition of the graph into

76 CHAPTER 2. PROPOSITIONAL LOGIC

two nonempty sets such that the decision variable nodes will be in a different
set than the conflict node. Every edge that crosses a specific cut will be part
of a conflict set, i.e. the number of cuts denotes the number of conflict sets.
There is a total of 2%~* possible cuts, where n = # variables and k = level of
conflict clause (= # decision variables). A UIP in the graph is a variable of the
conflict level [that lies on every path from the decision variable of level [and
the conflict. The first UIP (1UIP) is a UIP that lies closest to the conflict in
the implication graph. The strategy for deriving the most useful conflict clause
is as follows:

1. Construct the implication graph according to a given set of clauses, a for-
mula ¢. As an example consider Figure 2.19 that depicts an implication
graph of the formula ¢ = {SVQ, PVQ,~PVRV-S,—-PV-RVT,-PVQV
T} where the node 1/ denotes a conflict. The corresponding trail, con-
trol stack and decision level are shown in Figure 2.18. The corresponding
watched literals list is shown in Figure 2.23.

2. Identify the conflict sets by means of the implication graph, i.e. the cuts
of the graph need to be considered. In Figure 2.19 there are three cuts
depicted representing the following conflict sets: {P,-~Q}, {P,~T,S} and
{P,—-R,S}.

3. Choose the most useful clause from the set of all conflicts. It proved to be
most effective to choose a clause that has exactly one variable that was
assigned at the same decision level in which the conflict arose. This is why
the clause is also called asserting clause. If there is more than one asserting
clause for a conflict as in Figure 2.19, then take the asserting clause that
contains the 1UIP. In Figure 2.20 there is only one UIP which is also the
1UIP that is =@). Therefore, the most useful clause from the conflict set

is {P, —|Q}

4. Learn the clause: After determining the asserting clause C' with the 1UIP
the actual conflict clause is obtained by negating all assignments of the
variables within clause C'. This conflict clause will eventually be learned
by adding it to the set of clauses of the original formula ¢. In the example
from Figure 2.19 the clause =P V @ will be learned.

The combination of conflict analysis and non-chronological backtracking en-
sures that the learned clause becomes a unit clause and thereby preventing the
solver from making the same mistakes over again.

2.11.5 Restart and Forget

As mentioned in the section on VSIDS (see 2.11.3) the runtime of the CDCL
implementation depends on the choice of the decision variable. In case no suit-
able variable is found within a certain time limit it might be useful to apply
a restart, another important technique applied in the CDCL implementation.
With the rule Restart all currently assigned variables will become unassigned

2.11. IMPLEMENTING CDCL

2/0

Figure 2.19: An implication graph for the formula ¢ with cuts.

" \\)

1UIP
2/9

Figure 2.20: The implication graph denoted with the 1UIP.

7

CHAPTER 2. PROPOSITIONAL LOGIC

P
] -P|-R | T
Q —— NUL
] -P R =S
R —
} B s | @
7
T] -P | Q =T
(a) The initial state and the current trail is empty.
P
] T -R | =P
Q —— NUL
[] aS R -P
R —
} B s | @
7
T] -T | Q =P

(b) After deciding P watched literals are swapped, the trail is: P.

b |
_ T -R | =P

Q —t— NUL

[] aS R -P
R [
. = s | @

;7
T — =T Q -P

(c) After deciding =@, no change in the watched literals, the trail is: P, —=Q.

2.11. IMPLEMENTING CDCL

T

T -R | =P
- NUL
— -S| R | -P
= s | @
4
— T | Q -P

79

(d) After propagating =T, S and =R, no change of watched literals but a conflict occurs

in =PV RV S, the trail is: P,~Q, T, S, —R.

T

(e) After backtracking the literals =Q,—T, S, =R, the trail is: P.

T | -R | =P
- NUL
[] aS R -P
= s | @
4
— -T | Q | =P

80 CHAPTER 2. PROPOSITIONAL LOGIC

-P Q
P | Q
P]
1 T -R | =P
Q | ™
———> NUL
=S R -P
R
S S Q
T =T Q -P

(f) After learning the clause =P V @, the trail is still P.

Figure 2.23: The watched literals list according to the implication graph from
Figures 2.19 and 2.20 as well as the control stack, trail and decision level of
Figure 2.18.

while learned clauses will be maintained. The motivation for this technique has
to do with the fact that the solver can reach a point where incorrect variable
assignments were made and the solver is not able to resolve within a reasonable
amount of time the literals that are needed to find a conflict. In that case a
restart is performed intending to make better variable assignments earlier on
with the previous learned information.

A further technique that contributes to the performance of the CDCL solver
is the rule Forget. With every conflict clause the number of learned clauses
increases. Recording all learned clauses can be very expensive especially if some
clauses are repeatedly stored or if some clauses are subsumed by others. As a
result, this can lead to an exhaustion of available memory and to an additional
overhead. Therefore deleting suitable clauses from the learned clause set can be
useful. The criteria by which the rule Forget is applied are the following: either
if the number of learned clauses is 4 times the number of original clauses or
if a specific maximum number of learned clauses is reached that is previously
given. In both cases the minimum of the following 2 cases is executed: either
half of the learned clauses are deleted or all learned clauses are deleted until a
clause is reached that implies or has implied a current assignment. Furthermore,
an implementation could also check the subsumption of learned clauses over
existing clauses but this check is often omitted due to performance reasons.

2.12. SUPERPOSITION AND CDCL 81

2.11.6 Algorithm and Strategy

As shown in the examples 2.10.1 and 2.10.2 a certain CDCL rule application
order can improve the performance of the rule-based CDCL algorithm. The
algorithm 5 depicts the strategy where Conflict is preferred over Propagate and
Propagate over any other rule. In general the rules Decide and Propagate should
not be applied when a conflict already exists. For otherwise, the additional
literals that are added via Decide or Propagate become useless and will be
deleted again when backtracking. Therefore the application of the rule Conflict
is checked before any other rule. The statements from line 1 onwards describe
the actual strategy, i.e. Conflict is always preferred over any other rule and
Propagate is preferred over Decide. The reason why the rules Skip and Resolve
are always applied excessively once a conflict was found is due to finding the
clause with the 1UIP of the conflict level. The rule Skip is applied to those
literals that are not involved in the conflict. Via the rule Resolve the conflict
clause is resolved with clauses that implied the conflict and thereby yielding
a new potentially learned clause. Once both rules cannot be applied anymore
the state is either a fail state, Backtrack cannot be applied and the algorithm
returns the fail state (M;N;U;k; L) or the state is not a fail state and the
conflict clause with the 1UIP was found. In the latter case the current conflict
clause will be learned via the rule Backtrack. At this point it is checked whether
the total number of approached conflicts reached a certain limit, i.e. a restart is
necessary, indicating that the solver needs too much time detecting an incorrect
value assignment that was previously made. Since the number of learned clauses
increases with every conflict it is also checked whether previously learned clauses
can be deleted, i.e. forget is necessary. In case the current state has no conflict,
the rule Propagate is preferred over the rule Decide in line 15 since the chances
of taking wrong decisions when deciding a literal’s truth value decreases. The
rule Decide takes the value of the VSIDS heuristic for the current state into
account.

2.12 Superposition and CDCL

At the time of this writing it is often believed that the superposition (resolution)
calculus is not successful in practice whereas most of the successful SAT solvers
implemented in 2012 are based on CDCL. In this section I will develop some
relationships between superposition and CDCL.

The start is a modification of the superposition model operator, Defini-
tion 2.8.5. The goal of the original model operator is to create minimal models
with respect to positive literals, i.e., if Nz = N for some N, then there is no
M' C Nz such that M' |= N. However, if the goal generating minimal models
is dropped, then there is more freedom to construct the model while preserving
the general properties of the superposition calculus. So, let’s assume a heuristic
H that selects whether a literal should be productive or not.

82 CHAPTER 2. PROPOSITIONAL LOGIC

Algorithm 5: CDCL(S)

Input : An initial state (e; N;0;0; T).
Output: A final state S = (M;N;U;k; T)or S = (M;N;U; k; L)

1 while (any rule applicable) do

2 ifrule (Conflict(S)) then

3 while (Skip(S) || Resolve(S)) do

4 | update VSIDS scores on resolved literals;
5 end

6 update VSIDS scores on learned clause;
7 Backtrack(S);

8 scale VSIDS scores;

9 if (forget heuristic) then

10 | Forget(S) redundant clauses ;

11 Restart(S);

12 else

13 ifrule (! Propagate(S)) then

14 | Decide(S);

15

16

17 end

18 return(S);

Definition 2.12.1 (Heuristic-Based Partial Model Construction). Given a
clause set N, an ordering < and a variable heuristic H : ¥ — {0, 1}, the (partial)
model N for N and signature %, with P,Q € ¥ is inductively constructed as
follows:

N].SL = UQ_<P 522{
{P} if (DV P) € N, P strictly maximal and N} # D or
sH H(P) =1 and for all clauses (C'V -P) € N,C < =P
L it holds N} |= C
0 otherwise
NE = Upes op

Please note that Nz is defined inductively over the clause ordering <
whereas N& is defined inductively over the atom ordering <.
Proposition 2.12.2. If H(P) = 0 for all P € ¥ then N7 = N for

any N.

Proof. The proof is by contradiction. Assume Nz # N, i.e., there is a minimal
P € ¥ such that P occurs only in one set out of Nz and Ng:{.

2.12. SUPERPOSITION AND CDCL 83

Case 1: P € Nz but P ¢ N&.

Then there is a productive clause D = D'V P € N such that P is strictly
maximal in this clause and Np £ D'. Since P is strictly maximal in D the clause
D’ only contains literals strictly smaller than P. Since both interpretations agree
on all literals smaller than P from Np [~ D' it follows N % D' and therefore
8% = {P} contradicting P ¢ N&.

Case 2: P ¢ Nz but P € NX.

Then there is a productive clause D = D'V P € N such that P is strictly
maximal in this clause and N} £ D’ because H(P) = 0. Since P is strictly
maximal in D the clause D' only contains literals strictly smaller than P. Since

both interpretations agree on all literals smaller than P from N} £ D' it follows
Np £ D' and therefore §p = { P} contradicting P ¢ Nz. O

So the new model operator N& is a generalization of N7. Next, I will show
that with the help of N a close relationship between the model operator run
by the CDCL calculus and the superposition model operator can be established.
This result can then further be used to relate the abstract superposition redun-
dancy criteria to CDCL. But before going into the relationship I first show that
the generalized superposition partial model operator N4 supports the standard
superposition completeness result, analogous to Theorem 2.8.9. Recall that the
same notion of redundancy, Definition 2.8.3, is used.

Theorem 2.12.3. If N is saturated up to redundancy and L ¢ N then N is
satisfiable and N = N.

Proof. The proof is by contradiction. So T assume (i) any clause C' derived by
Superposition Left or Factoring from N that C is redundant, i.e., N<¢ & C,
(ii) L ¢ N and (iii) N& £ N. Then there is a minimal, with respect to <,
clause C; V L € N such that Nz [£# C; V L and L is a maximal literal in C; V L.
This clause must exist because L ¢ N.

The clause C; V L is not redundant. For otherwise, N <¢1VL E Ci VL and
hence N& |= Cy V L, because N& = N=“1VL 4 contradiction.

I distinguish the case whether L is a positive or a negative literal. Firstly,
assume L is positive, i.e., L = P for some propositional variable P. Now if P is
strictly maximal in C} V P then actually 6% = {P} and hence N} = C, VP, a
contradiction. So P is not strictly maximal. But then actually C; V P has the
form C] V PV P and Factoring derives C{ V P where (C] V P) < (C]{ V PV P).
Now C} V P is not redundant, strictly smaller than C; V L, we have C{ VP € N
and N¥ £ C] V P, a contradiction against the choice that C; V L is minimal.

Secondly, assume L is negative, i.e., L = =P for some propositional variable
P. Then, since N& [~ Cy V=P we know P € Nz, i.e., % = {P}. There are two
cases to distinguish. Firstly, there is a clause C> V P € N where P is strictly
maximal and by definition (C2 V P) < (Cy V =P). So a Superposition Left
inference derives C; V Cy where (C; V C3) < (Cy V =P). The derived clause
C1 V C5 cannot be redundant, because for otherwise either N<¢2VFP ECyvP
or NXGV=FP =y v=P.So C; VCy € N and N& £ Cy V Cs, a contradiction

84 CHAPTER 2. PROPOSITIONAL LOGIC

against the choice that Cy V L is minimal. Secondly, there is no clause Co VP € N
where P is strictly maximal but H(P) = 1. But a further condition for this case
is that there is no clause (Cy V =P) € N such that N} £ C; contradicting the
above choice of C; V —P. O

Recalling Section 2.8 Superposition is based on an ordering <. It relies
on a model assumption N7, Definition 2.8.5 or its generalization N, Defi-
nition 2.12.1. Given a set N of clauses, either Nz (N&) is a model for N, N
contains the empty clause, or there is an inference on the minimal false clause
with respect to <, see the proof of Theorem 2.8.9 or Theorem 2.12.3, respec-
tively.

CDCL is based on a variable selection heuristic. It computes a model as-
sumption via decision variables and propagation. Either this assumption is a
model of N, N contains the empty clause, or there is a backjump clause that is
learned.

For a CDCL state (M, N,U, k, D) generated by an application of the rule
Conflict, where M = L4, ..., L, any following Resolve step actually corresponds
to a superposition step between a minimal false clause and its productive coun-
terpart, where atom(L;) < atom(Ls) < ... < atom(L,,). Furthermore, for a
positive decision literal L, occurring in M the heuristic #(atom(L,,)) = 1 and
‘H(atom(L,,)) = 0 otherwise. Then the learned clause is in fact generated by su-
perposition with respect to the model operator N&. The following propositions
present this relationship between Superposition and CDCL in full detail.

Proposition 2.12.4. Let (M,N,U,k,D) be a CDCL state generated by a
strategy with eager application of Conflict and Propagate, in this order. Let M =
Li,...,Ly, H(atom(L,,)) = 1 for any positive decision literal L] occurring in
M and H(atom(L,,)) = 0 otherwise. The superposition ordering is atom(L;) <
atom(Ls) < ... < atom(L,,). Then

1. L, is a propagated literal.

2. The resolvent between C'V =L, and the clause C' V L;, propagating Ly, is
a superposition inference and the conclusion is not redundant.

Proof. 1. Assume L,, is a decision literal. Then, since Conflict and Propagation
are applied eagerly, D has the form D = D'V—L,,. But then at trail Ly, ..., L, 1
the clause D'V L, propagates =L, with respect to L;...L,_1, so with ea-
ger propagation, the literal L, cannot be decision literal but its negation was
propagated by a clause D'V =L, € N.

2. Both C and C' only contain literals with variables from atom(L;),
...,atom(Lg_1). Since we assume duplicate literals to be removed and tau-
tologies to be deleted, the literal =L is strictly maximal in C'V —L; and Ly
is strictly maximal in C" V Lj. So resolving on Ly is a superposition inference
with respect to the variable ordering atom(L;) < atom(Ls)... < atom(Lg).
Now assume C'V C" is redundant, i.e., there are clauses D1, ..., D, from N with
D;<CvC(C"and Dy,...,D, ECVC'". Since CVC'isfalsein L; ... L_; there
is at least one D; that is also false in Lq...L;_1. A contradiction against the

2.13. REDUNDANCY 85

assumption that Lj ... L1 does not falsify any clause in N, i.e., rule Conflict
was applied eagerly. [l

Proposition 2.12.4 is actually a nice explanation for the efficiency of the
CDCL procedure: a learned clause is never redundant. Recall that redundancy
here means that the learned clause C' is not entailed by smaller clauses in NUU.
Furthermore, the ordering underlying Proposition 2.12.4 is based on the trail,
i.e., it changes during a CDCL run. For superposition it is well known that
changing the ordering is not compatible with the notion of redundancy, i.e.,
superposition is incomplete when the ordering may be changed infinitely often
and the superposition redundancy notion is applied.

Example 2.12.5. Consider the superposition left inference between the clauses
PV @ and RV —Q with ordering P < R < @ resulting in PV R. Changing the
ordering to) < P < R the inference P V R becomes redundant. So flipping
infinitely often between P < R < Q and Q < P < R is already sufficient to
prevent any saturation progress.

Although Example 2.12.5 shows that changing the ordering is not compati-
ble with redundancy and superposition completeness, Proposition 2.12.4 proves
that any CDCL learned clause is not redundant in the superposition sense and
the CDCL procedure changes the ordering and is complete. This relationship
shows the power of reasoning with respect to a model assumption. The model
assumption actually prevents the generation of redundant clauses. Nevertheless,
also in the CDCL framework completeness would be lost if redundant clauses
are eagerly removed in general. So either the ordering is not changed and the
superposition redundancy notion can be eagerly applied or only a weaker notion
of redundancy is possible while keeping completeness.

The crucial point is that for the superposition calculus the ordering is also
the bases for termination and completeness. If the completeness proof can be
decoupled from the ordering, then the ordering might be changed infinitely often
and other notions of redundancy become available. However, these new notions
of redundancy need to be compatible with the completeness, termination proof.

Definition 2.12.6 (Abstract Length Redundancy). A clause C is length redun-
dant with respect to a clause set N if N<ICl = €| where N<Il = {D | |D| <
C1}-

Theorem 2.12.7 (Length Redundancy and Superposition). Arbitrary Order-
ing Changes plus fairness plus length redundancy preserves completeness.

Theorem 2.12.8 (Length Redundancy and CDCL). At any time length re-
dundant clauses may be removed.

2.13 Redundancy

One of the most successful and robust heuristics is to keep the formula, clause
set “small”. This heuristic is already the motivation for the specific renaming

86 CHAPTER 2. PROPOSITIONAL LOGIC

algorithm presented in Section 2.6.3. So getting rid of superfluous, i.e., redun-
dant formulas or clauses is typically beneficial to any efficient reasoning. The
section on normal form transformation (Section 2.6) and the sections on CDCL
and superposition already introduced some redundancy criteria. In this section
they are extended for the case of clause sets.

There is an important difference between clause redundancy before a CDCL
or superposition calculus starts reasoning and clause redundancy while the cal-
culus (superposition, CDCL) is operating on a set of clauses. For the former
it is sufficient that the redundancy procedure is sound and terminating. For
the latter the procedure has in addition to respect the redundancy notion of
the respective calculus in order to preserve completeness, see Definition 2.8.3,
Example 2.12.5, and Theorem 2.12.8, Theorem 2.12.7.

2.13.1 Redundancy before Superposition and CDCL

Here are some standard rules for removing redundant clauses before superposi-
tion or CDCL starts. Subsumption, Tautology Deletion and Subsumption Res-
olution have already been introduced in Section 2.8. Purity and Blocked Clause
Deletion are new.

Subsumption Deletion
(NW{Cy,C2}) =RrBsc (NU{C:i})
provided Cy C Cs

Tautology Deletion
(NW{CV PV -P}) =gpsc (N)

Subsumption Resolution
(N ©] {Ol \Y L, 02 \Y L}) = RBSC (N U {Cl \Y L, 02})
where C; C Cs

Purity
(N@{Ol VL,...,Cg VL}) =RBSC (N)

where L, L do not occur in N

Blocked Clause Elimination _
(Ny{CiVL,...,C,kVL,C{VL,...,C/VL}) =rssc (N)

where L, L do not occur in N and all resolvents on L between any C; V L and

C} V L result in tautologies

Example 2.13.1. Consider a clause set consisting of the five clauses
(1) PvQ
(2) PVYQVRVS

(3) -RVS

(4) RvV=S

(5) ~QVS

Clause (1) subsumes clause (2). Subsumption resolution is applicable to

2.14. COMPLEXITY 87

clause (2) and clause (5) resulting in PV RV S. Purity is applicable to P.
Blocked clause elimination is not applicable.
Applying first subsumption deletion results in the clauses

(1) PVQ
(3) -RVS
(4) RV-S
(5) ~QVvS

Now subsumption resolution is no longer applicable, but blocked clause elimina-
tion is to R and clauses (3), (4). After application of blocked clause elimination
the resulting clauses are

() Pv@

(5) ~QVvS
Now P and S are pure and after applying purity the result is the empty set of
clauses indicating satisfiability.

For the above Example 2.13.1 other rule application orderings are possible,
e.g., starting with purity on P. Nevertheless, any application ordering results in
an empty set of clauses. However, =gpgsc is not confluent.

Lemma 2.13.2 (=gpsc terminates).
Proof. Exercise U

Lemma 2.13.3 (=gpsc is sound). If (N) =grpsc (V') then N is satisfiable iff
N'is.

Proof. =: All rules remove clauses except subsumption resolution. Removing
clauses obviously preservers satisfiability. For subsumption resolution any model
satisfying C; V L and Cs V L has to satisfy Cy or Cs. Since Cy C (s it satisfies
Cs.

<«: The direction is obvious for Subsumption Deletion, Tautology Deletion, and
Subsumption Resolution. Since, actually, Purity is a special case of Blocked
Clause Elimination, it suffices to show the case of Blocked Clause Elimination.
In this case N = N'W{C, VL,...,C,VL,C;VL,...,C/VL}and L, L do not
occur in N’ and all resolvents on L between any C; V L and C’]’- V L result in
tautologies. Let 4 be a model for N'. Obviously, being A4 a model for N does
not depend on the truth value of L, because neither L nor L occurs in N. If A
does not satisfy some clause C; V L (analogously C} V L), then A(L) = 0 and
A(C;) = 0. Since all combinations C; V C7, for any j are tautologies, A(C}) =1
for all j. Hence A’ which is like A except that A'(L) =1 is a model for N. O

2.13.2 Redundancy while Superposition and CDCL

2.14 Complexity

This book does not focus on complexity but on how to build systems that are
useful for selected applications. Nevertheless, any system, calculus presented in

88 CHAPTER 2. PROPOSITIONAL LOGIC

this chapter on SAT has a worst case exponential running time. So it cannot run
efficiently on any SAT instance. So some background knowledge about relevant
complexity results is useful. Here I concentrate on a personal selection of “clas-
sics”, complexity results everybody interested in propositional logic reasoning
should know.

The pigeon hole formulas are such a classic, because they were among the
first detected formulas that don’t have polynomial length resolution proofs. In
addition, they explain why the renaming techniques introduced in Section 2.6.3
are not only useful to prevent an explosion in the number of generated clauses
out of a formula, but also for the afterwards reasoning process.

Definition 2.14.1 (Pigeon Hole Formulas ph(n)). For some given n and propo-
sitional variables P; j, where 1 < j <n, 1 <i < n+1, the corresponding pigeon
hole formula (clause set) ph(n) is

ph(n) = /\ Pi,l V...V Pim AN /\ /\ _'Pi,j Vv —lPk7]'
1<i<n+1 1<j<n 1 <i,k<n+1
i<k

The intuition behind a variable P; ; is that it is true iff pigeon ¢ sits in hole
J. Then the formulas P;; V...V P; , express that every pigeon has to sit in some
hole and the formulas —P; ; V =P ; that a hole can host at most one pigeon.
Since there is one more pigeon than holes, the formula is unsatisfiable.

Note that the number of clauses of a pigeon hole formula ph(n) grows cubic
in n. The famous theorem on the pigeon whole formulas says that any resolution
proof showing unsatisfiability of ph(n) has a length at least exponential in n,
i.e., no resolution-based system can efficiently show unsatisfiability of a pigeon
hole formula.

Theorem 2.14.2 (Haken [22]). The length of any resolution refutation of ph(n)
is exponential in n.

Recall that any refutation of a CDCL procedure corresponds to a resolution
refutation, where each conflict generates some new resolvents. Now, a CDCL
procedure solves the pigeon hole problem by an enumeration of all possible
combinations how to put the n 4+ 1 pigeons into the n holes. It guesses some
pigeon in some whole, potentially propagates the consequences of the decision,
guesses the next one and so on until a conflict for the particular guess shows that
there is one hole missing for the final pigeon. Then it backtracks by remembering
that for the particular guess, i.e., combination pigeons, holes, there is no solution.
The CDCL procedure never “recognizes” the fact that the problem is completely
symmetric in pigeons and holes, e.g., once it has shown that there is no solution
with pigeon 1 in hole 1 (P; ;1 true) then the problem cannot be solved at all. It
is not necessary anymore to test the holes 2 to n for pigeon 1, because these
cases are symmetric. This is an informal explanation for the above theorem.

The pigeon hole problem can be easily solved by an inductive argument. For
ph(n) we put pigeon n + 1 in hole n. Then the problem is solvable iff ph(n — 1)
has a solution. Repeating this argument n — 1 times it remains to show that

2.14. COMPLEXITY 89

there is no solution for ph(1), i.e., the clause set P 1, Ps 1, 7P 1 V P2 is
unsatisfiable.

This reasoning can be perfectly simulated by resolution if additional clauses
over extra variables are added to ph(n). Let le“’ ; be fresh propositional variables
where 2 <k <n,1<j<k,1<i<k, where we add the clauses resulting from

B! < (Pi,j V (Pin A Ppy1,5)) for the first step

BE; & (BfT Vv (BEP ABETL) for all subsequent steps

to ph(n), where 2 < k < n — 1 and the 7,j run in the limits corresponding to
Bf; or B};, respectively. Since the Bf; are fresh and there is only one defining
equivalence for each Bf, ;» the resulting problem is unsatisfiable iff the original
is. Each equivalence results in four clauses, e.g., the first equivalence generates
the clauses B}'; V =P, j, B{*;V =P; , NV =Py11 5, 2B; VP, jV P, 2B,V P; j V
P41 ;. Thus there are only polynomially many clauses added to ph(n). Now the
additional clauses enable to reproduce via resolution the inductive argument,
where for each “induction step” only polynomially many resolution steps are
needed. Thus the extended pigeon hole problem can be refuted by resolution in
polynomially many steps [13].
For example, for the case n = 2 the pigeon hole clauses are

(1) P171 \% P172
2 P271 \% P272
P31V P3s
P V-aP,
-P VP,
Py 1 VP
PioVaPss
—PioV P35
—~Py5V P35

—_ o D

3
4
5
6
7
8
9

NN AN N N N N N

and the additional equivalences defining the B} ; are

Bi, < (PiaV(PiaAPsy))
B3, ¢ (P2q V(P22 A P3y))

Now from _'Bil \ Pl,l \4 P3,1a _'B%,l \ P2,1 \ P3,1 with (1)7 (2)7 (4)7 (5)7 (6)7 (7)
via resolution the clause

(10) _'B%,l \ _‘33,1

can be derived. From Bf | V =P 1, Bf ; V =Py » V =Py with (1), (3), (8) via
resolution the clause

(11) B,

can be derived. Analogously, from B3, V =Py, B3| V=P sV =P with (2),
(3), (9) via resolution the clause

(12) B3,

90 CHAPTER 2. PROPOSITIONAL LOGIC

can be derived. Now, (10), (11), (12) constitute ph(1), i.e., the above resolution
steps successfully perform the reduction from ph(2) to ph(1).

There are two reasons why I discuss the pigeon hole problem in such
detail. First, it shows that the invention of new names (propositional

variables) for subformulas, can lead to an exponential reduction in
proof size. So it constitutes a further justification for renaming during CNF
transformation (see Section 2.6.3). However, in general, there is no easy answer
when additional names help in proof length reduction or in proof search. Second,
and in my opinion even more important, the pigeon hole problem example nicely
shows that “inductive reasoning” can be done in propositional logic and that it
can pay off. For many real world problems, e.g., hardware verification, inductive
reasoning is key to solve the problems. At the time of this writing, research
in how to automatically detect and make use of inductive properties has just
started for propositional logic. This holds as well and gets even more difficult
for more expressive logics, such as first-order logic.

For the rest of this section I will study some well-known classes for which
SAT can be solved in polynomial time, namely, Horn-SAT and 2-SAT. Horn SAT
is the class of clauses where each clause has at most one positive literal, 2-SAT
the class of clauses where each clause has at most two literals. For both clauses
SAT is decidable in polynomial time. Actually, the 2-SAT class constitutes a
sharp border between polynomially solvable and NP-complete, because the 3-
SAT class is already NP-complete.

Definition 2.14.3 (Horn-SAT). A propositional clause set N belongs to the
class of Horn-SAT problems if every clause contains at most one positive literal.

Definition 2.14.4 (k-SAT). A propositional clause set N belongs to the class
of k-SAT problems if every clause contains at most & literals.

Proposition 2.14.5. Any Horn-SAT clause set N can be decided in time linear
in the size of N.

Proof. Superposition with selection is complete for SAT (Theorem 2.12.3). So
consider a superposition saturation for N where in every clause containing a
negative literal it is selected. Then the saturation process has two nice properties.
First, any superposition inference is an inference between a positive unit clause
and a clause containing at least one negative literal. Second, there is always a
clause where all negative literals can be resolved away by positive unit clauses
or the clause set IV is satisfiable. Combining the two properties results in a
linear-time algorithm for Horn-SAT. O

Actually, the proof of the above proposition implies that the CDCL rules
Propagate and Conflict (see Section 2.10) are complete for Horn-SAT. Another
consequence is that unit superposition, a restriction to superposition where for
all inferences one parent clause must be a unit clause, is also complete for Horn-
SAT. For unit superposition the result can even be reversed. If for some clause
set N there is a unit superposition refutation, then the subset of clauses involved

2.15. APPLICATIONS 91

in the unit refutation can be transformed into a Horn clause set by flipping signs
of literals.

The clause set PV @Q, -PV R, =RV @, =@ is unsatisfiable and refutable by
unit superposition. It is not Horn because of the clause P V Q. Now by flipping
the sign of @ in all clauses results in the clause set PV —Q, =PV R, =RV —Q,
(@ which is Horn, equisatisfiable, and still unit refutable.

Proposition 2.14.6. Any 2-SAT clause set N can be decided in time polyno-
mial in the size of V.

Proof. (Idea) Firstly, all unit clauses can be eliminated by recursively resolv-
ing away the respective literals, following the algorithm of Proposition 2.14.5.
For a clause set N containing only clauses of length two a directed graph is
constructed. The nodes are the propositional literals from N. For each clause
LV K € N, the graph contains the two directed edges (L, K) and (K, L). Then
N is unsatisfiable iff there is a cycle in the graph containing two nodes L, L.
This can be decided in time at most quadratic in N. O

Interestingly, 2-SAT constitutes the border to NP-completeness, because 3-
SAT is already NP-complete. This can be seen by reducing any clause set to a
satisfiability equivalent 3-SAT clause set via the following transformation. For
any clause

LyV...VL,

consisting of more than three literals (n > 3) replace the clause by the clauses

le---VLLn/2JVP
LLn/2J+1\/...VLnV—IP

where P is a fresh propositional variable. Obviously, L1 V ...V L, is satisfiable
iﬁ.le---VLLnﬂJ VvV P, L[n/2J+1 V...VL,V-P are.

Proposition 2.14.7. 3-SAT is NP-complete.

2.15 Applications

For the application of propositional logic on an arbitrary problem it needs to
be encoded into a propositional formula ¢. The satisfiability of ¢ can then be
checked via one of the calculi developed in this chapter, e.g. Resolution or DPLL.
In case ¢ is satisfiable the corresponding calculus derives a model which has to
be interpreted as a solution to the original problem. The unsatisfiability of ¢
must be interpreted correspondingly.

2.15.1 Sudoku

As a suitable application of propositional logic serves the Sudoku puzzle. In
chapter 1.1 a specific 4 x 4 Sudoku puzzle was solved using a specific calculus.
In this section a general n? x n? Sudoku puzzle is encoded into propositional

92 CHAPTER 2. PROPOSITIONAL LOGIC

logic and exemplarily the Resolution calculus from this chapter is applied to a
4 x 4 Sudoku puzzle.

For the encoding propositional variables P;; are defined where Pi‘fj is true
iff the value of square (7, j) is d. Square boxes are denoted by @; ; where @; ; in-
cludes the squares (i, §), ..., (i+n—1,j+n—1). The corresponding propositional
clauses are constructed as follows:

1. For every initially assigned square (i, j) with value d generate Pid,j
2. For every square (i, j) generate P, V...V Pl”;
3. For every square (i,) and pair of values d < d' generate =P, v —|Pi‘f;.

4. For every value d and column ¢ generate P, V...V Pf , (analogously for
rows)

5. For every value d and square box @; ; generate P, V...V Pi%rn—17j+n—1

6. For every value d, column i and pair of rows j < j’ generate =P, v —~Pf,,
(analogously for rows)

7. For every value d, square box @;; and pair of squares (k,1) <iex (K¥',1")
where i < k, k' <i+mn and j <I,I' < j+ n generate —-Pkd’l \Y —|Pkd,’l,

The corresponding formula ¢ is the conjunction of each subformula generated
by the steps 1 to 7. This makes a total of m + n* 4+ inf(n? — 1) + 2n* + n* +
inb(n? — 1) + inf(n? — 1) = m + 4n* + 3n%(n? — 1) clauses where m is the
number of initially assigned squares.

After the application of a propositional logic calculus the remaining unit
clauses Pid,j, i.e. the missing numbers to the initial Sudoku puzzle, are derived if
the encoded formula is satisfiable. Otherwise there is no solution to the Sudoku
puzzle.

|L1]2]3]4]
1

1

[| DN —
[\)

Figure 2.24: A 4 x 4 Sudoku

The application of this encoding on the puzzle from Figure 2.24 yields for
example the clauses P3 ,V P7,V P}, V P{,, =P33V =P;4, =P34V =P} 4 and
P2273. Applying the rule Resolution from the Resolution calculus from chapter 2.7
results in:

(N {=PF3VPP3, Pis} =res (NU{=Pi3V -Pis, Pis} U{=P§;}) and
(NIM{P§,4VP??,4VP33,4VP§,4a -P33}) =res (N'U{P; ,VP; VP VP{ ,—P;3}U

2.15. APPLICATIONS 93

{Pi,V P}, Vv P{,}) =tps (N"U{P;,}) see Figure 2.25. After exhaustive
application of the Resolution calculus the remaining unit constraints are derived
and the solution is found.

Lt]2]3]4]
][1

2 1
HE

1 214

Figure 2.25: A 4 x 4 Sudoku after generating the unit constraint P3,

2.15.2 Hardware Verification

Another example for the application of propositional logic is the verification of
logic hardware circuits. Since specific logic hardware circuits can be transformed
into CNF the satisfiability of small logic circuits as well as certain properties of
logic circuits can be checked with a propositional calculus from this chapter. This
chapter shows how to encode specific logic circuits into propositional logic and
how to apply the encoding on an exemplary logic circuit as shown in Figure 2.26.

This chapter considers logic circuits with three different types of gates Gj:
AND-, OR- and NOT-gates. Each gate has one output, AND- and OR-gates
have two inputs whereas the NOT-gate has only one input. For the encoding of
the logic circuits a propositional variable @; is defined for each gate G; where
Q; is true iff the gate G; has output value 1. The propositional clauses are
constructed as follows:

1. For every AND-gate G; with inputs @; and Q) we have Q; <> (Q; A Qk)
which is equivalent to (=Q; V Q;) A (0Q; V Qr) A (=Q; V —Qk V Q;)

2. For every OR-gate G; with inputs Q; and Qr we have Q; < (Q; V Q)
which is equivalent to (=Q; V Q; V Qr) A (7Q; V Qi) A (0Qk V Q;)

3. For every NOT-gate G; with input @); we have @Q; <+ —@Q; which is equiv-
alent to (—IQZ V —|Q]') A (Q] V Qz)

The corresponding formula ¢ is the conjunction of all clauses generated by
the steps 1 to 3. After generating this encoding a propositional calculus from
chapter 2 can be applied in order to check certain properties of logic circuits
(note that the calculi presented in chapter 2 are inefficient on larger logic circuit
constructions). Some of the properties that can be checked are for example the
satisfiability of logic circuits given a partial truth assignment 8 (which assigns
boolean values to outputs), the satisfiability of logic circuits in case of a recursive
construction, the equivalence of two logic circuits or to check if certain properties
for example Qg — Q5 for the logic circuit in Figure 2.26 hold.

94 CHAPTER 2. PROPOSITIONAL LOGIC

As an example the satisfiability of the logic circuit in Figure 2.26 under a
given partial truth assignment 5(Qo) = 1 and 8(Q5) = 1 can be checked using
the DPLL calculus:

Qo

Gy

@)

1

Figure 2.26: A logic circuit with two NOT-gates (G2 and G3), an OR-gate G4
and an AND-gate G5

The application of the encoding to the logic circuit of Figure 2.26 to-
gether with the partial truth assignment [yields a total of 12 clauses:
N = {Q0,Q5,7Qs V Q2 V Q1,7Q2 V Q4,7Q1 V Qu4,7Q2 V =Qo,Q2 V
Qo, Q3 V =Q1,Q3 V Q1,7Q5 V Q4,7Q5 V Q3,7Qs V =Q3 V @Qs}. Apply-

ing the DPLL calculus we achieve: (e; N) =pioPagate (. N) = Propasate

(QoQs; N) =pElL™ (QQsQ4; N) LRl (QoQsQaQs; N) =pphis™
(QQ5Q4Q3-Q1; N) =D P (Q0Q5Q4Q3-Q1Q2; N). Let M = (QuQ5Q4Q3Q1Q>)
then the logic circuit is unsatisfiable under the given truth assignment since
M = =N and there is no decision literal in M.

If the logic circuit of Figure 2.26 is considered without a partial truth as-
signment then the construction is satisfiable for example with M = (=Qo—Q1).
If the gate G4 of Figure 2.26 is replaced by an AND-gate instead of an OR-
gate then the construction will always be unsatisfiable independent of any truth
assignment.

Historic and Bibliographic Remarks

Although already Greek philosophers like Aristotle (384 BC — 322 BC) were
interested in “truth of propositions” the syntax and semantics of propositional
logic goes back to the modern logicians, mathematicians and philosophers Au-
gustus de Morgan (1806 — 1871), George Boole (1815 — 1864), Charles Sanders
Peirce (1839 — 1914), and Gottlob Frege (1848 — 1925). In particular, today
Boole’s calculus [9] is known as “propositional logic”. For a nice historic per-
spective see Martin Davis’s book [15].

Chapter 3

First-Order Logic

First-Order logic is a generalization of propositional logic. Propositional logic
can represent propositions, whereas first-order logic can represent individuals
and propositions about individuals. For example, in propositional logic from
“Socrates is a man” and “If Socrates is a man then Socrates is mortal” the
conclusion “Socrates is mortal” can be drawn. In first-order logic this can be
represented much more fine-grained. From “Socrates is a man” and “All man
are mortal” the conclusion “Socrates is mortal” can be drawn.

This chapter introduces first-order logic with equality. However, all calculi
presented here, namely Tableaux (Section 3.6) and Superposition (Section ?7)
are presented only for its restriction without equality. Purely equational logic
and first-order logic with equality are presented separately in Chapter ?? and
Chapter ?7, respectively.

3.1 Syntax

Definition 3.1.1 (Many-Sorted Signature). A many-sorted signature ¥ =
(S,Q,1I) is a triple consisting of a finite non-empty set S of sort symbols, a
non-empty set Q of operator symbols (also called function symbols) over S and
a set II of predicate symbols. Every operator symbol f € Q has a unique sort
declaration f : S; x...x S, — S, indicating the sorts of arguments (also called
domain sorts) and the range sort of f, respectively, for some Si,...,5,,5 € S
where n > 0 is called the arity of f, also denoted with arity(f). An operator
symbol f € Q with arity 0 is called a constant. Every predicate symbol P € II
has a unique sort declaration P C Sy x ... x S,,. A predicate symbol P € II
with arity 0 is called a propositional variable. For every sort S € S there must
be at least one constant a € 2 with range sort S.

In addition to the signature X, a variable set X', disjoint from (2 is assumed, so
that for every sort S € S there exists a countably infinite subset of X' consisting
of variables of the sort S. A variable z of sort S is denoted by zg.

Definition 3.1.2 (Term). Given a signature ¥ = (S,,1I), a sort S € S and

95

96 CHAPTER 3. FIRST-ORDER LOGIC

a variable set X, the set Ts(X, X) of all terms of sort S is recursively defined
by (i) zs € Ts(X,X) if x5 € X, (ii) f(t1,...,tn) € Ts(E,X) if f € Q and
f:S1x...x8, = Sandt; € Ts,(X,X) for every i € {1,...,n}.

The sort of a term ¢ is denoted by sort(t), i.e., if t € Ts(X, X) then sort(t) =
S. A term not containing a variable is called ground.

For the sake of simplicity it is often written: T'(X, X') for Jgcs Ts (%, &), the
set of all terms, T's(X) for the set of all ground terms of sort S € S, and T'(X)
for (Jges Ts(X), the set of all ground terms over ¥.

Definition 3.1.3 (Equation, Atom, Literal). If s,t € Ts(X, X) then s & t is an
equation over the signature ¥. Any equation is an atom (also called atomic for-
mula) as well as every P(ty,...,t,) where t; € Ts, (2, X) foreveryi € {1,...,n}
and P € II, arity(P) = n, P C S; X ... x S,. An atom or its negation of an
atom is called a literal.

The literal s ~ ¢ denotes either s ~ t or ¢t &~ s. A literal is positive if it is an
atom and negative otherwise. A negative equational literal —(s & t) is written
as s # t.

Non equational atoms can be transformed into equations: For this a
given signature is extended for every predicate symbol P as follows:
(i) add a distinct sort B to S, (ii) introduce a fresh constant true of
the sort B to , (iii) for every predicate P, P C S; X ... x S, add a fresh

function fp: Si,...,S, — B to Q, and (iv) encode every atom P(t1,...,t,) as
a function fp : Si,...,S, — B. Thus, predicate atoms are turned into equations
fp(ti,-..,tn) = true. are overloaded here.

Definition 3.1.4 (Formulas). The set FOL(X, X) of many-sorted first-order
formulas with equality over the signature X is defined as follows for formulas
¢, € F5(X) and a variable x € X

FOL(E, X) Comment
1 falsum
T verum
P(ty,...,tn),s =t atom
(o) negation
(pNY) conjunction
(p V) disjunction
(¢ —) implication
(¢ <) equivalence
Vz.p universal quantification
dx.¢ existential quantification

A consequence of the above definition is that PROP(X) C FOL(Y', X) if
the propositional variables of ¥ are contained in ¥’ as predicates of arity 0. A
formula not containing a quantifier is called quantifier-free.

3.1. SYNTAX 97

Definition 3.1.5 (Positions). It follows from the definitions of terms and for-
mulas that they have tree-like structure. For referring to a certain subtree,
called subterm or subformula, respectively, sequences of natural numbers are
used, called positions (as introduced in Chapter 2.1.3). The set of positions of
a term, formula is inductively defined by:

pos(z) :={e}ifxe X
pos(¢) :={e}if p€{T, L}
pos(—¢) = {e}U{lp|p € pos(¢)}
pos(po)) :={e}U{lp|p € pos(¢)}U{2p|p € pos(s)}
pos(s~t) :={efU{lp|p€pos(s)}U{2p|p € pos(t)}
pos(f(ti,... tn)) = {e} Ui {ip| p € pos(ti)}
pos(P(t1,...,tn)) :={e}U U?:l{ip | p € pos(t;)}
pos(Vr.¢) := {e}U{lp|p € pos(¢)}
pos(Fz.¢) := {e}U{lp|p € pos(®)}

where o € {A,V, >, <} and t; € T(E,X) for all i € {1,...,n}.

The prefiz orders (above, strictly above and parallel), the selection and re-
placement with respect to positions are defined exactly as in Chapter 2.1.3.

An term ¢ (formula ¢) is said to contain another term s (formula) if t, = s
(¢pp =). It is called a strict subexpression if p # €. The term ¢ (formula ¢)
is called an immediate subexpression of s (formula) if |p| = 1. For terms a
subexpression is called a subterm and for formulas a subformula, respectively.

The size of a term ¢ (formula ¢), written |¢| (|¢|), is the cardinality of pos(t),
ie., [t| := |pos(t)| (|¢| := | pos(¢)]). The depth of a term, formula is the maximal
length of a position in the term, formula: depth(t) := maz{|p| | p € pos(t)}
(depth(¢) := maz{|p| | p € pos(¢)}). The set of all variables occurring in a
term ¢ (formula ¢) is denoted by vars(t) (vars(phi)) and formally defined as
vars(t) := {z € X | x = t|p,p € pos(t)} (vars(¢) := {z € X |z = ¢|p,p €
pos(4)}). A term ¢ (formula ¢) is ground if vars(t) = 0 (vars(¢) = 0).

Note that vars(Vz.a ~ b) = () where a, b are constants. This is justified by the
fact that the formula does not depend on the quantifier, see semantics below. The
set of free variables of a formula ¢ (term t) is given by fvars(¢, #) (fvars(t, 0)) and
recursively defined by fvars(¢ o s, B) := fvars(¢, B) U fvars(ys, B) where o €
{\,V, =, &}, fvars(Ve.y, B) := fvars(y, BU{x}), fvars(3z.¢, B) := fvars(y, BU
{z}), tvars(—¢, B) := fvars(y, B), fvars(L, B) := vars(L) \ B (fvars(t, B) :=
vars(t) \ B. For fvars(¢, () I also write fvars(¢)

In Vz.¢ (3z.¢) the formula ¢ is called the scope of the quantifier. An oc-
currence ¢ of a variable z in a formula ¢ (¢|, =) is called bound if there is
some p < g with ¢|, = Vz.¢' or ¢|, = Jz.¢'. Any other occurrence of a vari-
able is called free. A formula not containing a free occurrence of a variable is
called closed. If {z1,...,z,} are the variables freely occurring in a formula
¢ then Vzy,...,z,.¢0 and Jz;,...,x,.¢ (abbreviations for Vz,.Vzs...Vz,.0,
1.V, ...V, .0, respectively) are the universal and the ezxistential closure of

0.

98 CHAPTER 3. FIRST-ORDER LOGIC

Example 3.1.6. For the literal =P(f(x,g(a))) the atom P(f(z,g(a))) is an
immediate subformula of occurring at position 1. The terms z and g(a) are
strict subterms occurring at positions 111 and 112, respectively. The for-
mula =P(f(z,g(a)))[bli11 = ~P(f(b,g(a))) is obtained by replacing = with b.
pos(=P(f(z,g(a)))) = {e,1,11,111,112, 1121} meaning its size is 6, its depth 4
and vars(~P(f(x, 9(a)))) = {z}.

The polarity of a subformula ¢ = ¢|, at position p is pol(¢, p) where pol is
recursively defined by
=1
—pol(¢, p)

pol(¢, €)
pol(—¢, 1p)
pol(¢1 © ¢a,ip) := pol(di,p) if o € {A,V}
pol(¢1 = ¢2,1p) —pol(¢1,p)
p01(¢1 — ¢27 p; - p01(¢27)
p)
)
)
)

pol(¢1 <> ¢o,ip) =0

pol(P(t1,-..,tpn), =1

pol(t = s,p) =1
pol(Vz.¢,1p) := pol(¢, p)
pol(3z.¢,1p) := pol(¢, p)

3.2 Semantics

Definition 3.2.1 (Z-algebra). Let ¥ = (S,Q,II) be a signature with set of
sorts S, operator set 2 and predicate set II. A X-algebra A, also called -
interpretation, is a mapping that assigns (i) a non-empty carrier set S4 to every
sort S € S, so that (Sl)Aﬂ(Sg)A =) for any distinct sorts S1,Se € S, (ii) a total
function fA (S1)A % ...x(S,)* = (S)™ to every operator f € Q, arity(f) =n
where f: S x ... % S — S, (iii) a relation P4 C ((S1)A x ... x (Sp)?) to
every predicate symbol P € II, arity(P) = m. (iv) the equality relation becomes
~A={(e,e) | e € UA} where the set UA 1= Jge5(S)? is called the universe of
A.

A (variable) assignment, also called a valuation for an algebra A is a function
B : X = Ux so that f(z) € Sy for every variable z € X', where S = sort(z). A
modification [z — e] of an assignment [at a variable z € X, where e € Sy
and S = sort(x), is the assignment defined as follows:

e ifx=y

ple = ely) = {

B(y) otherwise.

Informally speaking, the assignment S[x — e] is identical to 8 for every variable
except x, which is mapped by B[z — €] to e.

The homomorphic extension A(3) of 8 onto terms is a mapping T'(X, X') —
Uy defined as (i) A(B)(z) = B(z), where x € X and (ii) A(B)(f(t1,...,tn)) =
fa(A(B)(t1), .-, A(B)(tn)), where f € Q, arity(f) = n.

3.2. SEMANTICS 99

Given a term ¢ € T'(X, X'), the value A(B)(t) is called the interpretation of
t under A and (. If the term ¢ is ground, the value A(5)(¢) does not depend
on a particular choice of 3, for which reason the interpretation of ¢ under A is
denoted by A(t).

An algebra A is called term-generated, if every element e of the universe U 4
of A is the image of some ground term ¢, i.e., A(t) = e.

Definition 3.2.2 (Semantics). An algebra .4 and an assignment 3 are extended
to formulas ¢ € FOL(X, X') by

AB)(L) = 0
AB)(T) =1
AB) (s =t) = 1if A(B)(s) = A(B)(t) and 0 otherwise
AB)(P(t1,...,tn)) = 1 it (A(B)(t1),...,A(B)(tn)) € P4 and 0 otherwise
AB)) = 1-AB)9)
ABOAD) = miAB D). ABOY
APB) bV) = max({A(B)(9), A(B)(¥)})
APB) o —y) = max({(1 - A(B)(9)), AB)(¥)})
AB)(¢ <) = if A(B)(¢) = A(B)(¢) then 1 else 0
A(B)3zs.¢) = 1if A(B[z — e])(¢) =1 for some e € S4 and 0 otherwise

A(B)Ves.¢) = 1if A(Blx — e])(¢) =1 for all e € S4 and 0 otherwise

A formula ¢ is called satisfiable by A under 8 (or valid in A under (8) if
A, B E ¢; in this case, ¢ is also called consistent; satisfiable by A if A,8 = ¢
for some assignment (; satisfiable if A,3 | ¢ for some algebra A and some
assignment f3; valid in A, written A = ¢, if A, 8 = ¢ for any assignment ; in
this case, A is called a model of ¢; valid, written |= ¢, if A, 8 |= ¢ for any algebra
A and any assignment £; in this case, ¢ is also called a tautology; unsatisfiable
if A, [~ ¢ for any algebra A and any assignment J3; in this case ¢ is also called
inconsistent.

Note that L is inconsistent whereas T is valid. If ¢ is a sentence that is
a formula not containing a free variable, it is valid in A if and only if it is
satisfiable by A. This means the truth of a sentence does not depend on the
choice of an assignment.

Given two formulas ¢ and v, ¢ entails 1, or ¢ is a consequence of ¢, written
¢ = 1, if for any algebra A and assignment 3, if A, 8 |= ¢ then A, 3 = ¢. The
formulas ¢ and ¢ are called equivalent, written ¢ |5 ¢, if ¢ |= ¢ and ¢ = ¢. Two
formulas ¢ and 1 are called equisatisfiable, if ¢ is satisfiable iff ¢ is satisfiable (not
necessarily in the same models). Note that if ¢ and ¢ are equivalent then they
are equisatisfiable, but not the other way around. The notions of “entailment”,
“equivalence” and “equisatisfiability” are naturally extended to sets of formulas,
that are treated as conjunctions of single formulas. Thus, given formula sets M,
and Mo, the set M, entails M, written M; = Mo, if for any algebra A and
assignment 3, if A, 8 |= ¢ for every ¢ € M, then A, 8 | ¢ for every ¢» € M,. The
sets My and M, are equivalent, written My H Mo, if My |= M and My |= M;.
Given an arbitrary formula ¢ and formula set M, M |= ¢ is written to denote
M E {¢}; analogously, ¢ = M stands for {¢} E M.

100 CHAPTER 3. FIRST-ORDER LOGIC

Since clauses are implicitly universally quantified disjunctions of literals, a
clause C'is satisfiable by an algebra A if for every assignment 3 there is a literal
L € C with A, |= L. Note that if C = {Ly,..., L} is a ground clause, i.e.,
every L; is a ground literal, then A4 |= C' if and only if there is a literal L; in C
so that A |= L;. A clause set N is satisfiable iff all clauses C' € N are satisfiable
by the same algebra A. Accordingly, if N and M are two clause sets, N = M
iff every model A of N is also a model of M.

3.3 Equality

The equality predicate is build into the first-order language in Section 3.1 and
not part of the signature. It is a first class citizen. This is the case although
it can be actually axiomatized in the language. The motivation is that firstly,
many real world problems naturally contain equations. They are a means to
define functions. Then predicates over terms model properties of the functions.
Secondly, without special treatment in a calculus, it is almost impossible to
automatically prove non-trivial properties of a formula containing equations.

In this section I firstly show that any formula can be transformed into a
formula where all atoms are equations. Secondly, that any formula containing
equations can be transformed into a formula where the equality predicate is
replaced by a fresh predicate together with some axioms. In the first case the
respective clause sets are equivalent, in the second case the transformation is
satisfiability preserving. For the replacement of any predicate R by equations
over a fresh function fr we assume an additional fresh sort Bool with two fresh
constants true and false.

Inqu X[R(tl,la .. 7t17n)]p1 .. [R(tm71, .. 7tm7n)]pm =IE X[fR(tl,h PN ,th) ~
truelp, ... [fR(tm,1,- -, tm,n) & true],,,
provided R is a predicate occurring in x, {p1,...,pm} are all positions of atoms

with predicate R in x and fg is new with appropriate sorting

Proposition 3.3.1. Let x = X’ then x is satisfiable (valid) iff x’ is satisfiable
(valid).

Proof. (Sketch) The basic proof idea is to establish the relation (#{,...,t2) €

RA iff fj;{“(tf‘, cont) = truet. Furthermore, the sort of true is fresh to y and
the equations fg(ti,...,t,) = true do not interfere with any term ¢; because
the fgr are all fresh and only occur on top level of the equations. O

When removing equality from a formula it needs to be axiomatized. For
simplicity, I assume here that the considered formula y is one-sorted, i.e., there
is only one sort occurring for functions, relations in x. The extension to formulas
with many sorts is straightforward and discussed below.

RemEq Xl = r1lpy - [l = Tmlp,, =RE X[EU1L,71)]py - - [E(m, Tm)]pn A
def(x, E)

3.4. SUBSTITUTION AND UNIFIER 101

provided {pi,...,pm} are all positions of equations [; = r; in x and E is a new
binary predicate

The formula def(x, E) is the axiomatization of equality for y and it consists
of a conjunction of the equivalence relation axioms for £
Vo.E(z,x)
Vz,y.(E(z,y) = E(y,z))
Va,y, z.((E(2,y) A Bz, 2)) = E(x, 2))
plus the congruence axioms for E for every n-ary function symbol f
Ve, yr, - oy Un-(E(@1,91) Ao AE(Zn,un)) = BE(f(@1, - 20), f(W1,-- -, yn)))
plus the congruence axioms for E for every m-ary predicate symbol P
vxlayla' e 7-Tmaym'((E(x1ay1) AT /\E(fm,ym) /\P(xla s ,xm)) - P(yla s ,ym)

Proposition 3.3.2. Let x =rg X’ then y is satisfiable iff ¥’ is satisfiable.

Proof. (Sketch) The identity on an algebra (see Definition 3.2.2) is a congruence
relation proving the direction from left to right. The direction from right to left
is more involved. O

Note that =-gg is not validity preserving. Consider the simple example for-
mula a & a which is valid for any constant a. Its translation E(a,a) A def(a ~
a, F) is not valid, e.g., consider an algebra with E4 = ().

Now in case x has many different sorts then for each sort S one new fresh
predicate Eg is needed for the translation. For each of these predicates equiv-
alence relation and congruence axioms need to be generated where for every
function f only one axiom using Eg is needed, where S is the range sort of S.
Similar for the domain sorts of f and accordingly for predicates.

3.4 Substitution and Unifier

Definition 3.4.1 (Substitution). A substitution is a mapping o : X — T'(Z, X)
so that

1. o(x) # x for only finitely many variables z and

2. sort(x) = sort(t) for every variable € X that is mapped to a term
t e Ts(S, X).

The application o(x) of a substitution ¢ to a variable z is often written in
postfix notation as zo. The variable set dom(c) := {z € X' | zo # z} is called
the domain of o. The term set codom(c) := {zo | z € dom(o)} is called the
codomain of o. From the above definition of substitution it follows that dom(o)
is finite for any substitution . The composition of two substitutions o and 7
is written as a juxtaposition o7, i.e., toT = (to)7. A substitution o is called
idempotent if oo = 0. o is idempotent iff dom(s) N vars(codom(c)) = .

Substitutions are often written as {zy — t1,...,2, — t,} if dom(o) =
{z1,...,2,} and z,0 = t; for every i € {1,...,n}. The modificationof a substi-
tution o at a variable z is defined as follows:

102 CHAPTER 3. FIRST-ORDER LOGIC

[t ify=u
olz = t)(y) = { a(y) otherwise

A substitution ¢ is identified with its extension to expression and defined as
following:

1. lo=1,

2. To=T,

3. (f(t1,... ta))o = f(t10, ... tao),

4. (P(ty,...,ta))o = P(t10, ... ta0),

5. (s~ t)o = (so ~ to),

6. (=)o = (o),

7. (¢ 01)o = ¢o 0 ho where o € {V, A},

8. (Qz¢)o = Qz(go[x — z]) where Q € {V, 3}, z and z are of the same sort

and z is a fresh variable.

The result eo of applying a substitution ¢ to an expression e is called an
instance of e. The substitution o is called ground if it maps every domain
variable to a ground term. If the application of a substitution o to an expression
e produces a ground expression eo then eo is called ground instance of e. A
ground substitution o is called grounding for an expression e if ec is ground. A
substitution o is called variable renaming if im(o) C X and for any z,y € X, if
x # y then zo # yo.

Definition 3.4.2 (Unifier). Two terms s and ¢ are said to be unifiable if there
exists a substitution ¢ so that so = to, the substitution o is then called a unifier
of s and ¢. The unifier o is called most general unifier, written o = mgu(s, t), if
any other unifier 7 of s and ¢ can be represented as 7 = o7, for some substitution

T

3.5 Unification Calculi

The first calculus is the naive standard unification calculus that is typically
found in the (old) literature on automated reasoning. A state of the naive stan-
dard unification calculus is a set of equations E or 1, where L denotes that
no unifier exists. The set F is also called a unification problem. The start state
for checking whether two terms s, ¢ with sort(s) = sort(¢) (or atoms A, B) are
unifiable is the set E = {s =t}. A variable z is solvedin Eif E = {x =t} W E’,
x & vars(t) and z ¢ vars(E).

Tautology Eyw{t=t} =su E

3.5. UNIFICATION CALCULI 103

Decomposition EW{f(s1,.-.,8n) = f(t1,.-.,tn)} =su EU{s; =
tla"'asn:tn}

Clash B {f(51,-) = g(51,- - 5m)} Ssu L
iff#g

Substitution EW{z =t} =su E{z—»t}U{z =1t}

if z € vars(E) and x & vars(t)

Occurs Check Ey{z=t} =su L

if x #t and = € vars(t)

Orient Ey{t=z} =su EU{z =t}

iftgx

Theorem 3.5.1 (Soundness, Completeness and Termination of =gy). If s,t
are two terms with sort(s) = sort(¢) then

L. if {s = t} =&, E then any equation (s' = t') € E is well-sorted, i.e.,
sort(s') = sort(t').

2. =gy terminates on {s = t}.

3. if {s =t} =¢y E then o is a unifier (mgu) of E iff o is a unifier (mgu) of

{s =t}.
4. if {s =t} =&y L then s and ¢ are not unifiable.

5. if {s =t} =&y {#1 = t1,...,2, = t,} and this is a normal form, then
{1 - t1,..., 2y — t,} is an mgu of s, t.

Proof. 1. by induction on the length of the derivation and a case analysis for
the different rules.

2. for a state E = {sy = t1,...,8n, = t,} take the measure u(E) := (n, M, k)
where n is the number of unsolved variables, M the multiset of all term depths of
the s;, t; and k the number of equations ¢ = z in F where ¢ is not a variable. The
state L is mapped to (0,0, 0). Then the lexicographic combination of > on the
naturals and its multiset extension shows that any rule application decrements
the measure.

3. by induction on the length of the derivation and a case analysis for the
different rules. Clearly, for any state where Clash, or Occurs Check generate L
the respective equation is not unifiable.

4. a direct consequence of 3.

5.if E = {x; =t1,...,2, = t,} is a normal form, then for all z; = ¢; we have
x; & vars(t;) and z; & vars(E \ {z; = t;}), so {x1 = t1,...,2y = tp,}H{z1 —
ti,...,Tpn — tn} = {tl =11,...,tp = tn} and hence {:El =ty ., Ty tn} is

an mgu of {z1 =t1,...,2, = t,}. By 3. it is also an mgu of s, ¢t. O

104 CHAPTER 3. FIRST-ORDER LOGIC

Example 3.5.2 (Size of Standard Unification Problems). Any normal form of
the unification problem E given by

{f(z1,9(z1,21), 23, ..., 9(Tn, 1)) = f(9(20,T0), T2, g(T2,T2), ..., Tny1)}
with respect to =gy is exponentially larger than E.

The second calculus, polynomial unification, prevents the problem of expo-
nential growth by introducing an implicit representation for the mgu. For this
calculus the size of a normal form is always polynomial in the size of the input
unification problem.

Tautology EW{t=t} =py E

Decomposition EW{f(s1,...,8n) = f(t1,...,tn)} =pu EW{s =
tl,...,SnZtn}

Clash EW{f(tr,...,tn) =9(s1,-.-,8m)} =pUu L
iff#g

Occurs Check Ey{z=t} =py L

if x #t and = € vars(t)

Orient EW{t=z} =py EW{z =1}

iftg X

Substitution Ev{z =y} =py E{fz—ytu{z =y}

if z € vars(E) and x # y
Cycle Ew{zi=t,...,zn =tn} =pu L

pi = Tit1,tnlp, = x1 and some p; # €

if there are positions p; with ¢;
Merge Ev{z=t,x=s} =py EW{zr=tt=s}
ift,s ¢ X and |t| < |s|

Theorem 3.5.3 (Soundness, Completeness and Termination of =py). If s,¢
are two terms with sort(s) = sort(t) then

1. if {s =t} =%y E then any equation (s' = t') € E is well-sorted, i.e.,
sort(s") = sort(t').

2. =py terminates on {s = t}.

3. if {s =t} =py E then o is a unifier (mgu) of E iff ¢ is a unifier (mgu) of
{s =t}.

4. if {s =t} =5y L then s and ¢ are not unifiable.

Theorem 3.5.4 (Unifier generated by =>py). Let {s = t} =py {z1 =
t1,..., %y =tn}. Then

3.6. FIRST-ORDER TABLEAUX 105

v | Descendant y(t)
Vrg. 1/1{1‘5 — t}
~Jzs.p | p{rs =t}
for any ground term t € Ts(X)

5§ | Descendant 6(c)
Jrs.p | p{zs = c}
—Vzg.p | Wp{rs — c}
for some fresh Skolem constant ¢ € Ts(X)

Figure 3.1: v- and §-Formulas

1. z; # z; for all i # j and without loss of generality z; ¢ vars(¢;1y) for all
i,k,1<i<n,i+k<n.

2. the substitution {z; > t; }{zs — t2}...{z, — t,} is an mgu of s = ¢.

Proof. 1. If x; = z; for some ¢ # j then Merge is applicable. If z; € vars(t;)
for some i then Occurs Check is applicable. If the z; cannot be ordered in the
described way, then either Substitution or Cycle is applicable.

2. Since x; ¢ vars(t; 1 the composition yields the mgu. O

3.6 First-Order Tableaux

The different versions of tableaux for first-order logic differ in particular in the
treatment of variables by the tableaux rules. The first variant is standard first-
order tableaux where variables are instantiated by ground terms.

Definition 3.6.1 (v-,0-Formulas). A formula ¢ is called a y-formula if ¢ is a
formula Vzg.yp or =Jzg.4p. A formula ¢ is called a d-formula if ¢ is a formula
Jxg.1) or =Vag.1).

Definition 3.6.2 (Direct Standard Tableaux Descendant). Given a 5- or 6-
formula ¢, Figure 3.1 shows its direct descendants.

For the standard first-order tableaux rules to make sense “enough” Skolem
constants are needed in the signature, e.g., countably infinitely many for each
sort. A § formula ¢ occurring in some sequence is called open if no direct de-
scendant of it is part of the sequence. In general, the number of v descendants
cannot be limited for a successful tableaux proof.

~v-Expansion NU{(1,..., 0, ..., n)} =rr NI{(d1,...,0,...,0n,0")}

provided 9 is a y-formula, ¢’ a (t) descendant where ¢ is an arbitrary ground
term in the signature of the sequence (branch) and the sequence is not closed.

J-Expansion NU{(1,..., 0, ..., 00)} =rr NI{(d1,...,0,...,0n,0")}

106 CHAPTER 3. FIRST-ORDER LOGIC

provided ¢ is an open d-formula, ¥' a §(c) descendant where c is fresh to the
sequence and the sequence is not closed.

The standard first-order tableaux calculus consists of the rules a-, and
B-expansion (see Section 2.5) and the above two rules y-Expansion and §-
Expansion.

Theorem 3.6.3 (Standard First-Order Tableaux is Sound and Complete). A
formula ¢ (without equality) is valid iff standard tableaux computes a closed
state out of {(—¢)}.

Skolem constants are sufficient: In a d-formula 3z ¢, 3 is the outermost quan-
tifier and x is the only free variable in ¢. The v rule has to be applied several
times to the same formula for tableaux to be complete. For instance, construct-
ing a closed tableau for

{Va (P(x) = P(f(x))), P(b), ~P(f(f(b)))}

is impossible without applying y-expansion twice on one path.

The main disadvantage of standard first-order tableau is that the v ground
term instances need to be guessed. The whole complexity of the problem lies in
this guessing as for otherwise tableaux terminates. A natural idea is to guess
ground terms that can eventually be used to close a branch. This is the idea
of free-variable first-order tableaux. Instead of guessing a ground term for a
~ formula the variable remains, the instantiation is delayed until a branch is
closed for two literals via unification. As a consequence, for § formulas no longer
constants are introduced but Skolem terms in the formerly universally quantified
variables that had the § formula in their scope.

The new calculus suggests to keep track of scopes of variables, so I move
from a state as a set of sequences of formulas to a set of sequences of pairs
l; = (¢s, X;) where X; is a set of variables.

Definition 3.6.4 (Direct Free-Variable Tableaux Descendant). Given a 7- or
d-formula ¢, Figure 3.2 shows its direct descendants.

~v-Expansion Ng{(ly,..., (¢, X),...;ln)} =rr NIH{(y,..., (0, X),... 1, (¥, XU
{y})}

provided ¢ is a y-formula, ¢ a v(y) descendant where y is fresh to the sequence
(branch) and the sequence is not closed.

d-Expansion Ne{(l1,...,(0,X),...,ln)} =prr N&{(1,...,(,X),..., 0, (¥, X))}

provided % is an open d-formula, ¥' a 6(f(y1,.-.,yn)) descendant where f is
fresh to the sequence, X = {y1,...,y,} and the sequence is not closed.

Branch-Closing N W {(l1,...,(L,X),...,(K,X"),...,l,)} =rr NouW
{, ., (LX), (K, X", ol Yo

3.6. FIRST-ORDER TABLEAUX 107

v] Descendant v(y)
Ves.ap | Y{zs — y}

—~Jrg.4p | plrs =y}
for a fresh variable y, sort(y) = S

§ | Descendant §(f(y1,.--,yn))

3305-1/1 1/1{935 Hf(ylaayn)}
Vas. | W{zs = fy, .- yn)}
for some fresh Skolem function f

where f(?/l::yn) € Ts(E,X)

Figure 3.2: v- and §-Formulas

provided K and L are literals and there is an mgu ¢ such that Ko = —Lo and
the sequence is not closed.

The standard first-order tableaux calculus consists of the rules a-, and -
expansion (see Section 2.5) which are adapted to pairs and the above three rules
~v-Expansion, §-Expansion and Branch-Closing.

Theorem 3.6.5 (Free-variable First-Order Tableaux is Sound and Complete).
A formula ¢ (without equality) is valid iff free-variable tableaux computes a
closed state out of {(—¢)}.

Example 3.6.6.
1. —[FwVYzR(z,w, f(z,w)) - JwVzIyR(z,w, y)]

2. JwVz R(z,w, f(z,w)) 11 [o]
3. —JwVzdy R(z,w,y) 12 [a]
4. Vz R(z,c, f(x,c)) 2(e) 16]
5. _'vley R(l‘, Ulay) 3(U1) [7]
6. =3y R(g(v1),v1,y) 5(g(v1)) [0]
7. R(UQv & f(v27 C)) 4(’02) [7]
8. =R(g(v1),v1,v3) 6(vs) []

7. and 8. are complementary (modulo unification):

Vg = 9(“1), C =1, f(U2ac) = U3

is solvable with an mgu o = {v; = ¢, v2 — g(c), vs —= f(g(c),c)}, and hence,
To is a closed (linear) tableau for the formula in 1.

Problem: Strictness for v is still incomplete. For instance, constructing a
closed tableau for

{Va (P(x) = P(f(x))), P(b), ~P(f(f(b)))}

is impossible without applying y-expansion twice on one path.
Semantic Tableau vs. Resolution

108 CHAPTER 3. FIRST-ORDER LOGIC

1. Tableau: global, goal-oriented, “backward”.
2. Resolution: local, “forward”.

3. Goal-orientation is a clear advantage if only a small subset of a large set
of formulas is necessary for a proof. (Note that resolution provers saturate
also those parts of the clause set that are irrelevant for proving the goal.)

4. Resolution can be combined with more powerful redundancy elimination
methods; because of its global nature this is more difficult for the tableau
method.

5. Resolution can be refined to work well with equality; for tableau this seems
to be impossible.

6. On the other hand tableau calculi can be easily extended to other logics;
in particular tableau provers are very successful in modal and description
logics.

3.7 First-Order CNF Transformation

Similar to the propositional case, first-order superposition operates on clauses.
In this section I show how any first-order sentence can be efficiently transformed
into a CNF, preserving satisfiability. To this end all existentially quantified
variables are replaced with so called Skolem functions. Similar to renaming this
replacement only preserves satisfiability. Eventually, all variables in clauses are
implicitly universally quantified.

As usual, the CNF transformation is done by a set of rules. All rules known
from the propositional case apply. Further rules deal with the quantifies V, 3
and some of the propositional rules need an extension in order to cope with
first-order variables.

The first set of rules eliminates T and L from a first-order formula.

EimTB1 x[(#AT), =cne x[4]p
ELimTB2 x[(¢A L), =cne x[L]p
ELimTB3 x[(¢V), =cne X[Th
ELimTB4 x[(¢V 1), =cnk X4y
EimTB5 x[-L], =cxe X[Tly

ElimTB6 x[~T], =c~nr x[Llp

3.7. FIRST-ORDER CNF TRANSFORMATION 109
EimTB7 x[¢ ¢ 1], =one X[~¢]p

ElimTB8 x[¢ < T, =onk X[y

ElimTB9 x[¢ — L], =one X[74],

ELimTB10 x[¢ = T], =onr X[Tlp

ElimTB11 Xx[L — ¢], =one X[T

ElimTB12 X[T — ¢}, =onr x[9]p

ElimTB13 x[{¥,3}=.T], =cxr X[Tl

ElimTB14 x[{V,3}z. 1], =c~nr x[Llp

where the expression {V,3}z.¢ covers both cases Vz.¢ and Jz.¢. The next
step is to rename all variable such that different quantifiers bind different vari-
ables. This step is necessary to prevent a later on confusion of variables.

RenVar ¢ =cNF 9o
for o = {}

Once the variable renaming is done, renaming of beneficial subformulas is
the next step. The mechanism of renaming and the concept of a beneficial sub-
formula is exactly the same as in propositional logic. The only difference is
that renaming does introduce an atom in the free variables of the respective
subformula. When some formula 1 is renamed at position p an atom P(zy,),
Zy = Z1,...,Ty replaces 1|, where fvars(¢|,) = {®1...,2,}. The respective
definition of P(z;,) becomes

V. (P(zn) —) if pol(y,p) =1
def(yp, p, P(27)) := § Van-(¥lp — P(ay)) if pol(s,p) = —1
Va,.(P(25) < l,) if pol(¢,p) =0

and the rule SimpleRenaming is changed accordingly.

SimpleRenaming ¢ =onr OlALlp [A2]ps - - [Anlp, A def(d,p1, A1) A
oo N def(P[A1]p [A2]ps - - - [An—1]pn_1,Pns An)

provided {p1,...,pn} C pos(¢) and for all 4,i + j either p; || pi+; or p; > piy;j
and the A; = Pi(z;1,...,%:k;) where fvars(d|p,) = {zi1,..., % } and all P;
are different and new to ¢

110 CHAPTER 3. FIRST-ORDER LOGIC

Negation normal form is again done as in the propositional case with addi-
tional rules for the quantifiers.

ElimEquivl x[(¢ < ¥)], =cne x[(¢ =) A (Y = @)l
provided pol(x,p) € {0,1}

ElimEquiv2 x[(¢ < ¢)], =oene x[(0AY) V(g A =))]p
provided pol(y,p) = —1

ElimImp x[(¢ = ¢¥)]p, =c~nk x[(—0 V)],

PushNegl x[-(¢V)], =one X[(m¢ A=),

PushNeg2 x[-(¢ AY)], =cnr X[(—¢ V=),

PushNeg3 x[-—¢], =cnr X[9]p

PushNegd x[-Vz.4], =cnr X[Fz.—d)p

PushNegh x[-3z.4], =cnr Xx[VZ.7¢],

In propositional logic after NNF, the CNF can be generated using distribu-
tivity. In first-order logic the existential quantifiers are eliminated first by the
introduction of Skolem functions. In order to receive Skolem functions with few
arguments, the quantifiers are first moved inwards as far as passible. This step
is called mini-scoping.

MiniScopel x[Vz.(p1 o 92)], =conk X[(VE.4h1) o 2],
provided o € {A,V}, x ¢ fvars(ys)

MiniScope2 x[3z.(1 0o ¢2)], =onk X[(Fz.4h1) 0 ¥a]p
provided o € {A,V}, x ¢ fvars(ys)

MiniScope3 x[Vz.(¢1 Aa)], =ene X[(Vzah1) A (Ya.ah2)0],
where o = {}, x € (fvars(s1) N fvars(i)z))

MiniScope4 x[3z.(1 V ¢2)]p, =ene X[(Fz.1) V (Fz.ah)o],
where o = {},z € (fvars(¢n) N fvars(is))

3.7. FIRST-ORDER CNF TRANSFORMATION 111

The rules MiniScopel, MiniScope2 are applied modulo the commutativity
of A, V. Once the quantifiers are moved inwards Skolemization can take place.

Skolemization X[3z,%], =onr X[V{z = f(y1,--,¥n)}p

provided there is no ¢, ¢ < p with ¢|, = Fz'Y’, fvars(Iz.y) = {y1,...,yn},
arity(f) = n is a new function symbol to ¢ matching the respective sorts of the
y; with range sort sort(z)

Example 3.7.1 (Mini-Scoping and Skolemization). Consider the simple for-
mula Vz.3y.(R(z,z) A P(y). Applying Skolemization directly to this formula,
without mini-scoping results in

Va.3y.(R(z,x) A P(y)) = CNF,Skolemization VZ-(R(x,) A P(g(x))

for a unary Skolem function g because fvars(Jy.(R(z,z) A P(y))) = {z}. Apply-
ing mini-scoping and then Skolemization generates

Va:EIy(R(:U, :U) A P(y)) iE}NF,MiniScopeZl VZER(ZL”, ZL”) A Elyp(y)
iCNF,Skolemization Vl'R(l', iE) A P(a’)
for some Skolem constant a because fvars(Jy.P(y)) = 0. Now the former for-
mula after Skolemization is seriously more complex than the latter. The former

belongs to an undecidable fragment of first-order logic while the latter belongs
to a decidable one (see Section 3.14).

Finally, the universal quantifiers are removed. In a first-order logic CNF any
variable is universally quantified by default. Furthermore, the variables of two
different clauses are always assumed to be different.

RemForall x[Vz. Y], =cene X[Yp

The actual CNF is then done by distributivity.

PushDisj x[(¢1 A d2) VY], =onk X[(¢1 V) A(d2 V),

Theorem 3.7.2 (Properties of the CNF Transformation). Let ¢ be a first-order
sentence, then

1. cnf(¢) terminates
2. ¢ is satisfiable iff cnf(¢) is satisfiable

Proof. (Idea) 1. is a straightforward extension of the propositional case. It is
easy to define a measure for any line of Algorithm 6.

2. can also be established separately for all rule applications. The rules SimpleR-
enaming and Skolemization need separate proofs, the rest is straightforward or
copied from the propositional case. O

112 CHAPTER 3. FIRST-ORDER LOGIC

Algorithm 6: cnf(¢)

Input : A first-order formula ¢.

Output: A formula ¢ in CNF satisfiability preserving to ¢.
whilerule (EimTB1(g),..., EimTB14(¢)) do ;
RenVar(¢);

SimpleRenaming(¢$) on obvious positions;

whilerule (ElimEquivl(¢),ElimEquiv2(¢)) do ;
whilerule (ElimImp(¢)) do ;

whilerule (PushNegl(¢),...,PushNeg5(¢)) do ;
whilerule (MiniScopel(¢),...,MiniScope4(¢)) do ;
whilerule (Skolemization(¢)) do ;

whilerule (RemForall(¢)) do ;

whilerule (PushDisj(¢)) do ;

return ¢;

© 0 N O R WY =

=
= o

In addition to the consideration of repeated subformulas, discussed

in Section 2.6, for first-order renaming another technique can pay off:
generalization. Consider the formula [¢1 V (Q1(a1) A Q2(a1))] A [p2 V (Q1(az) A
Q2(a2))]A...Aldn V (Q1(an) AQ2(ay)]. SimpleRenaming on obvious renamings
applied to this formula will independently rename any occurrences of a formula
(Q1(a;) AQ2(a;)). However generalization pays off here. By adding the definition
Vz,y (R(z,y) = (Q1(z) A Q2(y))) and replacing the i*" occurrence of the con-
junct by R(z,y){x — a;,y — a;} one definition for all subformula occurrences
suffices.

3.8 Herbrand Interpretations

For propositional logic the existence of a canonical model is straightforward
because the definition of the semantics leads to an effective representation. A
propositional variable can be either true or false. For first-order logic this is no
longer straightforward because an interpretation can assign any non-empty set
to a sort, any function to a function symbol and any relation to a predicate
symbol. A giant step forward towards the mechanization of first-order logic
was the discovery of a canonical model construction by Herbrand. A first-order
formula has a model iff it has such a canonical model which is build out of the
syntax.

For this and the following section I restrict the focus to first-order logic
without equality. Equality is then considered and added to the concepts of this
chapter in Chapters 77, ?7.

Definition 3.8.1 (Herbrand Interpretation). A Herbrand Interpretation (over
Y) is a Y-algebra A so that

1. SA = Tg(X) for every sort S € S

3.8. HERBRAND INTERPRETATIONS 113

2. fA:(s1,...,80) = f(51,...,5,) where f € Q, arity(f) = n, s; € Ts,(%)
and f:S; x...x S, = S is the sort declaration for f

3. PAC (Ts, (%) x ... x Ts,, (X)) where P € TI, arity(P) = m and P C
Sy X ... xS, is the sort declaration for P

In other words, values are fixed to be ground terms and functions are fixed
to be the term constructors. Only predicate symbols may be freely interpreted
as relations over ground terms.

Proposition 3.8.2. Every set of ground atoms I uniquely determines a Her-
brand interpretation A4 via

(S15..-58n) € Pq iff P(s1,...,8n) €T

Thus Herbrand interpretations (over ¥) can be identified with sets of X-
ground atoms. A Herbrand interpretation I is called a Herbrand model of ¢, if
I'E¢

Example 3.8.3. Consider the signature ¥ = ({S}, {a,b}, {P,Q}), where a,b
are constants, arity(P) = 1, arity(Q) = 2, and all constants, predicates are
defined over the sort S. Then the following are examples of Herbrand interpre-
tations over X, where for all interpretations S4 = {a, b}.

1 - = @

L: = {P(a)a (a a) Q(bab)}

I+ ={P(a), P(b),Q(a,a),Q(b,b),Q(a,b),Q(b,a)}

Now consider the extension ¥’ of ¥ by one unary function symbol g : S — S.
Then the following are examples of Herbrand interpretations over ¥/, where for
all interpretations S4 = {a,b, g(a), g(b), g(g(a)),...}.

I: =0
I; : ={P(a),Q(a,g(a)),Q(b,b)}
I3 - ={P(a),P(g (), P(g(g (N)s---,Qa,a),Q(b,b),Q(b,g(b)), Q(b,g(g(b))), - - .}

Theorem 3.8.4 (Herbrand). Let N be a set of ¥-clauses. Then N is satisfiable
ifft N has a Herbrand model over ¥ iff ground(X, N) has a Herbrand model
over ¥, where ground(X,N) = {Co | C € N,dom(c) = vars(C), and zo €
Tyort(2)(X) for all z € dom(o)} is the set of ground instances of N.

Example 3.8.5 (Example of a ground(X, N)). Consider ¥’ from Example 3.8.3
and the clause set N = {Q(z,z) V =P(z),~P(z) V P(g(z))}. Then the set of
ground instances ground(X', N) = {

Q(a,a) v —P(a)

Q(b,b) vV =P (b)

Q(g(a),g(a)) vV ~P(g(a))

114 CHAPTER 3. FIRST-ORDER LOGIC

is satisfiable. For example by the Herbrand models
Il L= 0
L : :{P(b),Q(b,b),P(g(b)),Q(g(b),g(b)),}

3.9 Orderings

Definition 3.9.1 (Z-Operation Compatible Relation). A binary relation
3 over T(X,X) is called compatible with X-operations, if s 1 s implies
f1,.y8, o ty) O f(t1,...,8, ... ty) for all f € Q and s,s',t; € T(Z, X).

Lemma 3.9.2. A relation 1 is compatible with ¥-operations iff s 3 s" implies
t[s], 3 t[s']p for all s,s',t € T(X,X) and p € pos(t).

In the literature compatible with Y -operations is sometimes also called com-
patible with contexts.

Definition 3.9.3 (Substitution Stable Relation, Rewrite Relation). A binary
relation 3 over T'(X, X) is called stable under substitutions, if s 7 s’ implies
so 1 s'o for all s,s' € T(X,X) and substitutions . A binary relation 1 is
called a rewrite relation, if it is compatible with Y-operations and stable under
substitutions.

Definition 3.9.4 (Lexicographical Path Ordering (LPO)). Let ¥ = (S,Q,1I)
be a signature and let = be a strict partial ordering on operator symbols in (2,
called precedence. The lexicographical path ordering »p, on T'(X,X) is defined
as follows: if s,¢ are terms in Ts(X, X) then s >, ¢ iff

l.t=x€ X,z cvars(s) and s # t or
2. s=f(s1,-.,8n), t = g(t1,...,tm) and
(a) si =ipo t for some i € {1,...,n} or
(b) f > g and s >p, t; for every j € {1,...,m} or
() f =g, s >ipo t; for every j € {1,...,m} and (s1,...,8n)(>1po
)lez(tla"'atm)-
Theorem 3.9.5. 1. The LPO is a rewrite ordering.

2. If the precedence > is total on Q then >, is total on the set of ground
terms T'(X).

3. If Q is finite then >, is well-founded.

Example 3.9.6. Consider the terms g(z), g(y), g(g9(a)), g(b), g(a), b, a. With
respect to the precedence g > b > a the ordering on the ground terms is
g(g(a)) >ipo 9(b) =1po 9(a) =ipo b >ipo a. The terms g(z) and g(y) are not
comparable. Note that the terms g(g(a)), g(b), g(a) are all instances of both

g(x) and g(y).
With respect to the precedence b > a > g the ordering on the ground terms

is g(b) ~1po b >=1po g(g(a)) >lpo g(a) >lpo Q-

3.9. ORDERINGS 115

Definition 3.9.7 (The Knuth-Bendix Ordering). Let ¥ = (S, Q,II) be a finite
signature, let > be a strict partial ordering (“precedence”) on Q, let w : QU
X —]R(T be a weight function, so that the following admissibility conditions are
satisfied:

1. w(z) = wo € R for all variables z € X'; w(c) > wy for all constants ¢ € Q.
2. If w(f) =0 for some f € Q with arity(f) = 1, then f > g for all g € Q.

Then, the weight function w can be extended to terms recursively:

w(f(t, .. tn)) =w(f) + D w(ty)

1<i<n

or alternatively

Sut)y= 3 w@)-#at) + S wlf)-#(F.0)

z€vars(t) feq

where #(a,t) is the number of occurrences of a in .
The Knuth-Bendiz ordering »jp, on T(X, X) induced by = and admissible
w is defined by: s =ppo t iff

1. #(z,s) > #(z,t) for all variables x and w(s) > w(t), or
2. #(x,s) > #(z,t) for all variables z, w(s) = w(t), and

(a) t =z, s = f™(z) for some n > 1, or
(b) s=f(s1,---,8m), t =g(t1,...,tn), and f = g, or

(¢c)s = f(s1,---,8m), t = [f(t1,---,tm), and (s1,-.-,8m)(>kbo
lez(tla"'atm)-

Theorem 3.9.8. 1. The KBO is a rewrite ordering.

2. If the precedence = is total on {2 then =g, is total on the set of ground
terms T'(X).

3. If Q is finite then >, is well-founded.

The LPO ordering as well as the KBO ordering can be extended to atoms in
a straightforward way. The precedence > is extended to II. For LPO atoms are
then compared according to Definition 3.9.4-2. For KBO the weight function w
is also extended to atoms by giving predicates a non-zero positive weight and
then atoms are compared according to terms.

Actually, since atoms are never substituted for variables in first-order logic,
an alternative to the above would be to first compare the predicate symbols and
let > decide the ordering. Only if the atoms share the same predicate symbol,
the argument terms are considered, e.g., in a lexicographic way and are then
compared with respect to KBO or LPO, respectively.

116 CHAPTER 3. FIRST-ORDER LOGIC

3.10 Ground Superposition

Propositional clauses and ground clauses are essentially the same, as long as
equational atoms are not considered. This section deals only with ground clauses
and recalls mostly the material from Section 2.7 for first-order ground clauses.
Let N be a set of ground clauses.

Definition 3.10.1 (Clause Ordering). Let < be a total strict rewrite ordering
on terms and atoms. Then < can be lifted to a total ordering < on literals
by its multiset extension <, where a positive literal P(ty,...,t,) is mapped
to the multiset {P(ty,...,t,)} and a negative literal =P(ty,...,t,) to the mul-
tiset {P(t1,...,tn), P(t1,...,tn)}. The ordering <y, is further lifted to a total
ordering on clauses <¢ by considering the multiset extension of <, for clauses.

Proposition 3.10.2 (Properties of the Clause Ordering). (i) The orderings on
literals and clauses are total and well-founded.

(ii) Let C and D be clauses with P(t,...,t,) = |max(C)|, Q(s1,...,5m) =
| max(D)|, where max(C) denotes the maximal literal in C'.

1. fQ(s1,-.-,8m) < P(t1,...,t,) then D <& C.

2. If P(ty,...,tn) = Q(s1,...,8m), P(t1,...,t,) occurs negatively in C but
only positively in D, then D <« C.

Eventually, as I did for propositional logic, I overload < with <7, and <¢. So
if < is applied to literals it denotes <, if it is applied to clauses, it denotes <¢.
Note that < is a total ordering on literals and clauses as well. For superposition,
inferences are restricted to maximal literals with respect to <. For a clause set
N, I define N*¢ ={De N |D<C}.

Definition 3.10.3 (Abstract Redundancy). A ground clause C is redundant
with respect to a ground clause set N if N< |= C.

Tautologies are redundant. Subsumed clauses are redundant if C is strict.
Duplicate clauses are anyway eliminated quietly because the calculus operates
on sets of clauses.

Note that for finite N, and any C € N redundancy N=¢ = C can
be decided but is as hard as testing unsatisfiability for a clause set

N. So the goal is to invent redundancy notions that can be efficiently
decided and that are useful.

Definition 3.10.4 (Selection Function). The selection function sel maps clauses
to one of its negative literals or L. If sel(C') = = P(ty,...,t,) then =P(t1,...,t,)
is called selected in C. If sel(C') = L then no literal in C is selected.

The selection function is, in addition to the ordering, a further means to
restrict superposition inferences. If a negative literal is selected on a clause, any
superposition inference must be on the selected literal.

3.10. GROUND SUPERPOSITION 117

Definition 3.10.5 (Partial Model Construction). Given a clause set N and an
ordering < we can construct a (partial) model Nz for N inductively as follows:

Ne = UD-<C’ op

{P(t1,...,tn)} D =D"VP(t1,...,tn), P(t1,...,t,) strictly maximal, no literal
op = selected in D and Np (= D

1] otherwise
NI = UC’GN 50

Clauses C with §¢ # 0 are called productive.

Proposition 3.10.6. Some properties of the partial model construction.
1. For every D with (C'V =P(t1,...,tn)) < D we have 6p # {P(t1,...,tn)}.
2. If 6¢ = {P(t1,...,tn)} then No Udc = C.

3. If No = D and D < C then for all C' with C < C' we have N¢v |= D
and in particular N7 |= D.

4. There is no clause C with P(t1,...,tn) V P(t1,...,t,) < C such that
dc = {P}.

Please properly distinguish: N is a set of clauses interpreted as the
conjunction of all clauses. N<¢ is of set of clauses from N strictly
smaller than C' with respect to <. Nz, N¢ are Herbrand interpreta-

tions (see Proposition 3.8.2). N7 is the overall (partial) model for N, whereas
N¢ is generated from all clauses from N strictly smaller than C.

Superposition Left (NW{C1VP(t1,...,tn),CaV-P(t1,...,tn)}) =sup
(NU {Cl VP(tl,...,tn),CQ V—lp(tl,...,tn)} U {Ol VCQ})

where (i) P(t1,...,t,) is strictly maximal in Cy V P(ty,...,t,) (ii) no literal in
C1VP(ty,...,t,)is selected (iii) =P(t1, ..., t,) is maximal and no literal selected
in Cy V=P(ty,...,t,), or =P (t1,...,t,) is selected in Cy V =P (t1,...,t,)

Factoring (NW{CV P(ty,...,tn) V P(t1,...,tn)}) =suvp
(NU{CV P(t1,...,tn) VP(t1,...,tn)} U{CV P(t1,...,tn)})
where (i) P(t1,...,tn) is maximal in C'V P(ty,...,t,) V P(t1,...,t,) (il) no
literal is selected in C'V P(t1,...,tn) V P(t1,...,t,)

Note that the superposition factoring rule differs from the resolution factor-
ing rule in that it only applies to positive literals.

Definition 3.10.7 (Saturation). A set N of clauses is called saturated up to
redundancy, if any inference from non-redundant clauses in N yields a redundant
clause with respect to N.

118 CHAPTER 3. FIRST-ORDER LOGIC

Examples for specific redundancy rules that can be efficiently decided are
Subsumption (NwW{C1,C5}) =svp (NU{Cy})
provided C; C Cs

E’:‘)‘:Obgy Dele- \ (o Vv P(t1,...,t0) V=P(t1,...,t)}) =sup (N)

Condensation (Nw{Ci,VLVL}) =sup (NU{C,VL})
Subsumption
Resolution (Nw{C1VL,Cyv-L}) =sup (NU{CLVL,C})

where Ol g CQ

Proposition 3.10.8. All clauses removed by Subsumption, Tautology Deletion,
Condensation and Subsumption Resolution are redundant with respect to the
kept or added clauses.

Theorem 3.10.9. Let N be a, possibly countably infinite, set of ground clauses.
If N is saturated up to redundancy and L ¢ N then N is satisfiable and N7 |=
N.

Proof. The proof is by contradiction. So I assume: (i) for any clause D derived
by Superposition Left or Factoring from N that D is redundant, i.e., N = D,
(ii) L ¢ N and (iii) Nz & N. Then there is a minimal, with respect to <, clause
CV L € N such that Nz £ C'V L and L is a selected literal in C'V L or no literal
in CV L is selected and L is maximal. This clause must exist because L ¢ N.

The clause C'V L is not redundant. For otherwise, NX¢VL |= C' Vv L and
hence Nz |= C'V L, because N7 = N=VE 4 contradiction.

I distinguish the case L is a positive and no literal selected in C'V L or L
is a negative literal. Firstly, assume L is positive, i.e., L = P(t1,...,t,) for
some ground atom P(t1,...,t,). Now if P(t1,...,t,) is strictly maximal in
CV P(ty,...,t,) then actually 6cvp = {P(t1,...,t,)} and hence Nz E CV P,
a contradiction. So P(t1,...,t,) is not strictly maximal. But then actually C'V
P(ty,...,t,) has the form C]VP(t1,...,t,)VP(t1,...,t,) and Factoring derives
CiVP(t1,...,t,) where (C{VP(t1,...,tn)) < (CIVP(t1,...,tn)VP(t1,...,tn)).
Now Cy V P(t1,...,t,) is not redundant, strictly smaller than C'V L, we have
CiVP(ti,...,tp) € N and Nz £ C{V P(t1,...,t,), a contradiction against the
choice that C' vV L is minimal.

Secondly, let us assume L is negative, i.e., L = —P(ty,...,t,) for some
ground atom P(ti,...,t,). Then, since Nz [C V =P(t1,...,t,) we know
P(t1,...,t,) € Nz. So there is a clause D V P(t1,...,t,) € N where
ODVP(tr,.tn) = 1P(t1,...,tn)} and P(t1,...,t,) is strictly maximal in D V
P(t1,...,tp) and (D V P(t1,...,tn)) < (CV =P(t1,...,tn)). So Superposition
Left derives C'V D where (C'V D) < (C'V =P(t1,...,t,)). The derived clause
C' V D cannot be redundant, because for otherwise either N<PVFP(t1.tn) 1=

3.10. GROUND SUPERPOSITION 119

DV P(t1,...,t,) or N3XCV=Ptitn) |m O =P(ty,...,t,). So CV D € N and
Nz £ CV D, a contradiction against the choice that C'V L is the minimal false
clause. g

So the proof actually tells us that at any point in time we need only to
consider either a superposition left inference between a minimal false clause and
a productive clause or a factoring inference on a minimal false clause.

Theorem 3.10.10 (Compactness of First-Order Logic). Let N be a, possibly
infinite, set of first-order logic ground clauses. Then N is unsatisfiable iff there
is a finite subset N' C N such that N’ is unsatisfiable.

Proof. If N is unsatisfiable, saturation via superposition generates L. So there
is an i such that N =i;p N’ and L € N'. The clause L is the result of at
most ¢ many superposition inferences, reductions on clauses {C1,...,Cp} C N.
Superposition is sound, so {C1, ..., C,} is a finite, unsatisfiable subset of N. O

Corollary 3.10.11 (Compactness of First-Order Logic: Classical). A set N of
clauses is satisfiable iff all finite subsets of N are satisfiable

Theorem 3.10.12 (Soundness and Completeness of Ground Superposition). A
first-order X-sentence ¢ is valid iff there exists a ground superposition refutation
for ground(X, cnf(—¢)).

Proof. A first-order sentence ¢ is valid iff ¢ is unsatisfiable iff cnf(—¢) is unsat-
isfiable iff ground(X, enf(—¢)) is unsatisfiable iff superposition provides a refu-
tation of ground(X, cnf(—¢)). O

Theorem 3.10.13 (Semi-Decidability of First-Order Logic by Ground Super-
position). If a first-order Y-sentence ¢ is valid then a ground superposition
refutation can be computed.

Proof. In a fair way enumerate ground(X, cnf(—¢)) and perform superposition
inference steps. The enumeration can, e.g., be done by considering Herbrand
terms of increasing size. O

Example 3.10.14 (Ground Superposition). Consider the below clauses 1-4
and superposition refutation with respect a KBO with precedence P =) >
g = f > ¢ > b > a where the weight function w returns 1 for all signature
symbols. Maximal literals are marked with a *.

L. =P(f(c))* vV =P(f(c))" vV Q(b) (Input)
2. P(f(e)*VQ(b) (Input)
3. =P(g(b,e))* V-Q(b) (Input)
4. P(g(b,c))* (Input)
5. =P(f(c))" v Q(b) (Cond(1))
6. Q)" VQ(b)” (Sup(5,2)))
7. Q(b)* (Fact(6))
8. —Q(b)* (Sup(3,4))
10. L (Sup(8,7))

120 CHAPTER 3. FIRST-ORDER LOGIC

Note that clause 5 cannot be derived by Factoring whereas clause 7 can also be
derived by Condensation. Clause 8 is also the result of a Subsumption Resolution
application to clauses 3, 4.

Theorem 3.10.15 (Craig Theorem [14]). Let ¢ and ¢ be two propositional
formulas so that ¢ = ¢. Then there exists a formula x (called the interpolant
for ¢ |= 1), so that x contains only propositional variables occurring both in ¢
and in ¢ so that ¢ = x and x |= 9.

Proof. Translate ¢ and —¢ into CNF. let N and M, respectively, denote the
resulting clause set. Choose an atom ordering > for which the propositional
variables that occur in ¢ but not in ¢ are maximal. Saturate N into N* w.r.t.
Sup?,, with an empty selection function sel. Then saturate N* UM w.r.t. Sup?,,
to derive L. As N* is already saturated, due to the ordering restrictions only
inferences need to be considered where premises, if they are from N*, only
contain symbols that also occur in 4. The conjunction of these premises is an
interpolant y. The theorem also holds for first-order formulas. For universal for-
mulas the above proof can be easily extended. In the general case, a proof based
on superposition technology is more complicated because of Skolemization. O

3.11 First-Order Superposition with Selection

The completeness proof of ground superposition (Section 3.10) talks about
(strictly) maximal literals of ground clauses. The non-ground calculus considers
those literals that correspond to (strictly) maximal literals of ground instances.

The used ordering is exactly the ordering of Definition 3.10.1 where clauses
with variables are projected to their ground instances for ordering computations.

Definition 3.11.1 (Maximal Literal). A literal L is called [strictly] mazimal
in a clause C if and only if there exists a grounding substitution ¢ so that Lo
is [strictly] maximal in Co (i.e., if for no other L' in C: Lo < L' [Lo X L'0]).

Superposition Left (NW{C1VP(t1,...,tn),C2V-P(s1,...,80)}) =sup
(N U {Cl \% P(tl, .. .,tn),CQ \% —|P(81, . ,Sn)} U {(Cl V 02)0'})

where (i) P(t1,...,t,)o is strictly maximal in (C; V P(t1,...,tn))o (il) no
literal in C; V P(t1,...,t,) is selected (iii) =P(s1,...,8,)0 is maximal and
no literal selected in (Cy V =P(s1,...,8,))0, or =P(s1,...,s,) is selected in
(CyV =P(s1,...,8,))0 (iv) o is the mgu of P(t1,...,t,) and P(s1,...,8p)

Factoring (NW{CV P(t1,...,tn) V P(s1,...,82)}) =suvp
(NU{CV P(t1,...,tn) VP(s1,...,80)} U{(CV P(t1,...,tn))0})

where (i) P(t1,...,tp)0 is maximal in (C' V P(t1,...,tn) V P(s1,...,8n))0
(ii) no literal is selected in C'V P(ty,...,t,)V P(s1,...,sy,) (ili) o is the mgu of
P(ty,...,t,) and P(s1,...,$p)

3.11. FIRST-ORDER SUPERPOSITION WITH SELECTION 121

Note that the above inference rules Superpositions Left and Factoring are
generalizations of their respective counterparts from Section 3.10. On ground
clauses they coincide. Therefore, we can safely overload them in the sequel.

Definition 3.11.2 (Abstract Redundancy). A clause C is redundant with
respect to a clause set N if for all ground instances C'c where are clauses
{C1,...,Cp} C N with ground instances Cy7,...,C,7, such that C;7; < Co
for all i and Ci1y,...,Chm E Co.

Definition 3.11.3 (Saturation). A set N of clauses is called saturated up to
redundancy, if any inference from non-redundant clauses in N yields a redundant
clause with respect to N.

In contrast to the ground case, the above abstract notion of redundancy is
not effective, i.e., it is undecidable for some clause C' whether it is redundant, in
general. Nevertheless, the concrete redundancy notions from Section 3.10 carry
over to the non-ground case. Let dup be a function from clauses to clauses that
removes duplicate literals, i.e., dup(C) = C' where C' C C, C' does not contain
any duplicate literals, and for each L € C also L € C".

Subsumption (NW{C1,Cs}) =sup (NU{Cy})
provided Cio C Cs for some o

E?a“t"logy Dele- NV P(t1,....t)) V=P(th,... tn)}) =sup (N)
10on

Condensation (N"U{CiVLVLY}) =sup (NU{dup((Cy VLV L)o)})
provided Lo = L' and dup((Cy V LV L')o) subsumes Cy V LV L' for some o

Subsumption ,
Resolution (NW{CiVL,CyVL'}) =sup (NU{C1VL,Cs})

where Lo = =L’ and Cio C Cs for some o

Lemma 3.11.4. All reduction rules are instances of the abstract redundancy
criterion

Lemma 3.11.5 (Subsumption is NP-complete). Subsumption is NP-complete.

Proof. Let Cy subsume C5 with substitution o Subsumption is in NP because
the size of o is bound by the size of Cs and the subset relation can be checked
in time at most quadratic in the size of C; and Cs.

Propositional SAT can be reduced as follows. Assume a 3-SAT clause set
N. Consider a 3-place predicate R and a unary function g and a mapping from
propositional variables P to first order variables zp. ... O

Lemma 3.11.6 (Lifting). Let DV L and C'V L' be variable-disjoint clauses and
o a grounding substitution for C'V L and D V L'. If there is a superposition left
inference

(NW{(DV L)o,(CV L"Yo}) =sup (NU{(DV L)o,(CV Lo} U{DoV Cc})

122 CHAPTER 3. FIRST-ORDER LOGIC

and if sel((D Vv L)o) = sel((D V L))o, sel((C vV L")o) = sel((C' vV L'))o , then
there exists a mgu 7 such that

(NW{DVL,CVLY}) =sup (NU{DVL,CVL}U{(DVC)T}).

Let CV LV L' be a clause and o a grounding substitution for CV LV L'. If
there is a factoring inference

(NW{(CVLVLY}) =sup (NU{(CVLVL)Y}U{(CVL)})

and if sel((C'V LV L")o) =sel((CV LV L))o , then there exists a mgu 7 such
that
(NU{CVLVLY}) =sup (NU{CVLVL}YU{(CVL)T})

Note that in the above lemma the clause DoV Co is an instance of the clause
(D V C)7 The reduction rules cannot be lifted in the same way as the following
example shows.

Example 3.11.7 (First-Order Reductions are not Liftable). Consider the two
clauses P(z) V Q(z), P(g(y)) and grounding substitution {z — g(a),y — a}.
Then P(g(y))o subsumes (P(z)V Q(x))o but P(g(y)) does not subsume P(x)V
Q(z). For all other reduction rules similar examples can be constructed.

Lemma 3.11.8 (Soundness and Completeness). Superposition is sound and
complete.

Proof. Soundness is obvious. For completeness, Theorem 3.10.12 proves the
ground case. Now by applying Lemma 3.11.6 to this proof it can be lifted to the
first-order level. O

There are questions left open by Lemma 3.11.8. It just says that a ground
refutation can be lifted to a first-order refutation. But what about abstract
redundancy, Definition 3.11.27 Can first-order redundant clauses be deleted
without harming completeness? And what about the ground model operator
with respect to clause sets NV saturated on the first order level. Is in this case
ground(X, N)7 a model? The next two lemmas answer these questions positively.

Lemma 3.11.9 (Redundant Clauses are Obsolete). If a clause set N is unsat-
isfiable, then there is a derivation N =§yp N’ such that L € N’ and no clause
in the derivation of L is redundant.

Proof. If N is unsatisfiable then there is a ground superposition refutation of
ground(X, N) such that no ground clause in the refutation is redundant. Now
according to Lemma 3.11.8 this proof can be lifted to the first-order level. Now
assume some clause C in the first-order proof is redundant that is the lifting of
some clause C'o from the ground proof with respect to a grounding substitution
o. The clause C' is redundant by Definition 3.11.2 if all its ground instances are,
in particular, Co. But this contradicts the fact that the lifted ground proof does
not contain redundant clauses. O

3.11. FIRST-ORDER SUPERPOSITION WITH SELECTION 123

Lemma 3.11.10 (Model Property). If N is a saturated clause set and L ¢ N
then ground(X, N)z = N.

Proof. As usual we assume that selection on the ground and respective non-
ground clauses is identical. Assume ground(X, N)z = N. Then there is a min-
imal ground clause Co, C # 1, C € N such that ground(Z,N)z £ Co.
Note that Co is not redundant as for otherwise ground(X,N)z | Co. So
ground(X, N) is not saturated. If Co is productive, i.e., Co = (C' V L)o such
that L is positive, Lo strictly maximal in (C' V L)o then Lo € ground(X, N)z
and hence ground(X, N)z | Co contradicting ground(X, N)z (£ Co.

If Co = (C'V LV Lo such that L is positive, Lo maximal in (C' VLV L")o
then, because N is saturated, there is a clause (C' V L)T € N such that (C' Vv
L)ro = (C'VL)o. Now (C'V L) is not redundant, ground(X, N)z %= (C'V L),
contradicting the minimal choice of Co.

If Co = (C'VL)o such that L is selected, or negative and maximal then there
is a clause (D'VL') € N and grounding substitution p, such that L'p is a strictly
maximal positive literal in (D' V L')p, L'p € ground(X, N)z and L'p = —Lo.
Again, since N is saturated, there is variable disjoint clause (C' VvV D")r € N
for some unifier 7, (C' V D')rop < Co, and ground(X, N)z £ (C' vV D')rop
contradicting the minimal choice of Co. O

Definition 3.11.11 (Persistent Clause). Let Ny =sup N1 =sup ... be a,
possibly infinite, superposition derivation. A clause C'is called persistent in this
derivation if C' € N; for some 4 and for all j > 4 also C' € IV;.

Definition 3.11.12 (Fair Derivation). A derivation Ny =sup N1 =sup -. - is
called fair if for any persistent clause C' € N; where factoring is applicable to
C, there is a j such that the factor of C' € N; or L € N;. If {C,D} C N; are
persistent clauses such that superposition left is applicable to C'; D then the
superposition left result is also in N; for some j or L € Nj.

Theorem 3.11.13 (Dynamic Superposition Completeness). If N is unsatisfi-
able and N = Ny =sup N1 =sup -.. is a fair derivation, then there is L € N;
for some j.

Proof. If N is unsatisfiable, then by Lemma 3.11.8 there is a derivation of L
by superposition. Furthermore, no clause contributing to the derivation of L is
redundant (Lemma 3.11.9). So all clauses in the derivation of L are persistent.
The derivation No =sup N1 =sup ... is fair, hence L € N; for some j. O

Lemma 3.11.14. Let red(V) be all clauses that are redundant with respect to
the clauses in N and N, M be clause sets. Then

1. if N C M then red(N) C red(M)
2. if M Cred(N) then red(N) C red(N \ M)

It follows that redundancy is preserved when, during a theorem proving
process, new clauses are added (or derived) or redundant clauses are deleted.
Furthermore, red(N) may include clauses that are not in N.

124 CHAPTER 3. FIRST-ORDER LOGIC

Algorithm 7: SupProver(N)

Input : A set of clauses N.
Output: A saturated set of clauses N’, equivalent to V.

1 WO := ()

2 US .= N;

3 while (US # 0 and L ¢ US) do

4 Given:= pick a clause from US;

5 WO := WO U {Given};

6 New := SupLeft(WO,Given) U Fact(Given);
7 while (New # () do

8 Given:= pick a clause from New;

9 if (/TautDel(Given)) then

10 if (/SubDel(Given,WO UUS)) then
11 Given:= Cond(Given);

12 Given:= SubRes(Given,WO);

13 WO:= SubDel(WO,Given);

14 US:= SubDel(US,Given);

15 New:= New U SubRes(WO UUS,Given);
16 US:= US U {Given };

17

18

19 end

20 end

21 return WQO;

