

Universität des Saarlandes FR Informatik

Christoph Weidenbach

December 2, 2014

Tutorials for "Automated Reasoning" Exercise sheet 7

Exercise 7.1: (1+1+2+1 P)

Prove the following properties of the superposition partial model construction.

- 1. For every D with $(C \vee \neg P) \prec D$ we have $\delta_D \neq \{P\}$.
- 2. If $\delta_C = \{P\}$ then $N_C \cup \delta_C \models C$.
- 3. If $N_C \models D$ and $D \prec C$ then for all C' with $C \prec C'$ we have $N_{C'} \models D$ and in particular $N_{\mathcal{I}} \models D$.
- 4. There is no clause C with $P \lor P \prec C$ such that $\delta_C = \{P\}$.

Solution:

1. If $(C \vee \neg P) \prec D$ then P cannot be maximal in D because $P \prec \neg P$. Only strictly maximal literals are produced, so $\delta_D \neq \{P\}$.

2. If $\delta_C = \{P\}$ then $C = C' \lor P$ and so in particular $\{P\} \models C$.

3. If $N_C \models D$ then there are two cases. Firstly, $D = P \lor D'$ and $P \in N_C$. Since the model construction adds only positive literals, also $P \in N_{\mathcal{I}}$ and we are done. Secondly, if $D = \neg P \lor D'$ and $P \notin N_C$ then P cannot be produced by any clause $C', C \prec C'$ because for otherwise we would have $C' = C'' \lor P$ with P strictly maximal and at the same time $\neg P \lor D' \prec C'' \lor P$, a cotradiction.

Exercise 7.2: (4 P) Consider the clause set

$$N = \{\neg P \lor \neg R, R \lor S \lor Q, \neg S \lor R, \neg Q \lor R, R \lor P \lor S\}$$

and the CDCL state $(P^1, N, \emptyset, 1, \top)$. Continue the application of CDCL rules to this state (don't use Forget, Restart) until a contradiction is derived or a model is found. Hint: prefer Conflict and Propagate over the other rules.

Solution:

	$(P^1, N, \emptyset, 1, \top)$
$\Rightarrow_{\text{CDCL}}^{\text{Propagate}}$	$(P^1 \neg R^{\neg P \lor \neg R}, N, \emptyset, 1, \top)$
$\Rightarrow_{CDCL}^{Propagate}$	$(P^1 \neg R^{\neg P \lor \neg R} \neg S^{\neg S \lor R}, N, \emptyset, 1, \top)$
$\Rightarrow_{\text{CDCL}}^{\text{Propagate}}$	$(P^{1}\neg R^{\neg P \vee \neg R} \neg S^{\neg S \vee R} \neg Q^{\neg Q \vee R}, N, \emptyset, 1, \top)$
$\Rightarrow_{CDCL}^{Conflict}$	$(P^{1}\neg R^{\neg P \vee \neg R} \neg S^{\neg S \vee R} \neg Q^{\neg Q \vee R}, N, \emptyset, 1, R \vee S \vee Q)$
$\Rightarrow^{\text{Resolve}}_{\text{CDCL}}$	$(P^1 \neg R^{\neg P \vee \neg R} \neg S^{\neg S \vee R}, N, \emptyset, 1, R \vee S)$
$\Rightarrow^{\text{Resolve}}_{\text{CDCL}}$	$(P^1 \neg R^{\neg P \lor \neg R}, N, \emptyset, 1, R)$
$\Rightarrow_{\text{CDCL}}^{\text{Backtrack}}$	$(R^R,N,\{R\},0, op)$
$\Rightarrow^{\text{Propagate}}_{\text{CDCL}}$	$(R^R \neg P^{\neg P \lor \neg R}, N, \{R\}, 0, \top)$

The partial valuation $\{R, \neg P\}$ already satisfies N, so any further application of Decide, Propagate will do.

Exercise 7.3: (3+3+3P)Consider the clause set

$$N = \{P \lor Q \lor S, P \lor Q \lor \neg S, P \lor \neg Q \lor S, P \lor \neg Q \lor \neg S, \neg P \lor Q \lor S, \neg P \lor Q \lor \neg S, \neg P \lor \neg Q \lor S, \neg P \lor \neg Q \lor \neg S\}$$

and refute it by

- 1. Semantic Tableaux
- 2. Propositional Superposition with Redundancy
- 3. CDCL

Solution:

1. Straightforward

2. Applying Subsumption Resolution pairwaise to the clauses of N from left to right on S generates

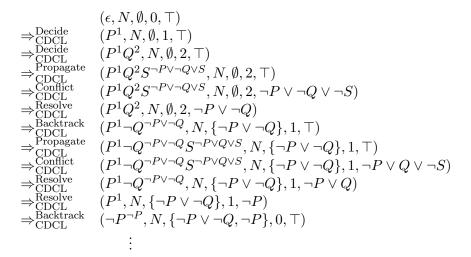
$$P \lor Q, P \lor \neg Q, \neg P \lor Q, \neg P \lor \neg Q$$

doing this once more on Q results in

 $P, \neg P$

and finally in

3. I show the start ... the rest is then similar to 7.2.



Actually this shows a typical phenomenon of CDCL runs: the calculus produces directly one after the other learned clauses that subsume each other, i.e., they get stronger, here $\neg P \lor \neg Q$ and $\neg P$.