Syntax and Semantics

8.2.1 Definition (Hierarchic Theory and Specification)

Let $\mathcal{T}^{B} = (\Sigma^{B}, \mathcal{C}^{B})$ be a many-sorted theory, called the *background theory* and Σ^{B} the *background signature*. Let Σ^{F} be a many sorted signature with $\Omega^{B} \cap \Omega^{F} = \emptyset$, $\mathcal{S}^{B} \subset \mathcal{S}^{F}$, called the *foreground signature* or *free signature*. Let $\Sigma^{H} = (\mathcal{S}^{B} \cup \mathcal{S}^{F}, \Omega^{B} \cup \Omega^{F})$ be the union signature and N be a set of clauses over Σ^{H} , and $\mathcal{T}^{H} = (\Sigma^{H}, N)$ called a *hierarchic theory*. A pair $\mathcal{H} = (\mathcal{T}^{H}, \mathcal{T}^{B})$ is called a *hierarchic specification*.

I abbreviate $\models_{\mathcal{T}^B} \phi$ ($\models_{\mathcal{T}^H} \phi$) with $\models_B \phi$ ($\models_H \phi$), meaning that ϕ is valid in the respective theory, see Definition 3.16.1.

Terms, atoms, literals build over Σ^B are called *pure background terms*, *pure background atoms*, and *pure background literals*, respectively. Non-variable terms, atoms, literals build over Σ^F are called *free terms*, *free atoms*, *free literals*. A variable of sort $S \in (S^F \setminus S^B)$ is also called a *free variable* and a *free term*. Any term of some sort $S \in S^B$ built out of Σ^H is called a *background term*.

A substitution σ is called *simple* if $x_S \sigma \in T_S(\Sigma^B, \mathcal{X})$ for all $S \in S^B$.

8.2.2 Example (Classes of Terms)

Let \mathcal{T}^{B} be linear rational arithmetic and $\Sigma^{F} = (\{S, \mathsf{LA}\}, \{g, a\})$ where a: S and $g: \mathsf{LA} \to \mathsf{LA}$. Then the terms $x_{\mathsf{LA}} + 3$ and $g(x_{\mathsf{LA}})$ are all of sort LA , but $x_{\mathsf{LA}} + 3$ is a pure background term whereas $g(x_{\mathsf{LA}})$ is a free term and an unpure background term. So the substitution $\sigma = \{y_{\mathsf{LA}} \mapsto x_{\mathsf{LA}} + 3\}$ is simple while $\sigma = \{y_{\mathsf{LA}} \mapsto g(x_{\mathsf{LA}})\}$ is not.

8.2.3 Definition (Hierarchic Algebras)

Given a hierarchic specification $\mathcal{H} = (\mathcal{T}^H, \mathcal{T}^B), \mathcal{T}^B = (\Sigma^B, \mathcal{C}^B), \mathcal{T}^H = (\Sigma^H, N), a \Sigma^H$ -algebra \mathcal{A} is called *hierarchic* if $\mathcal{A}|_{\Sigma^B} \in \mathcal{C}^B$. A hierarchic algebra \mathcal{A} is called a *model of a hierarchic* specification \mathcal{H} , if $\mathcal{A} \models N$.

8.2.4 Definition (Abstracted Term, Atom, Literal, Clause)

A term *t* is called *abstracted* with respect to a hierarchic specification $\mathcal{H} = (\mathcal{T}^H, \mathcal{T}^B)$, if $t \in \mathcal{T}_S(\Sigma^B, \mathcal{X})$ or $t \in \mathcal{T}_T(\Sigma^F, \mathcal{X})$ for some $S \in S^B$, $T \in S^B \cup S^F$. An equational atom $t \approx s$ is called *abstracted* if *t* and *s* are abstracted and both pure or both unpure, accordingly for literals. A clause is called *abstracted* of all its literals are abstracted.

Abstraction $N \uplus \{C \lor E[t]_{\rho}[s]_q\} \Rightarrow_{ABSTR} N \cup \{C \lor x_s \not\approx s \lor E[x_S]_q\}$ provided t, s are non-variable terms, $q \not< p$, sort(s) = S, and either top $(t) \in \Sigma^F$ and top $(s) \in \Sigma^B$ or top $(t) \in \Sigma^B$ and top $(s) \in \Sigma^F$

8.2.5 Proposition (Properties of the Abstraction)

Given a finite clause set *N* out of a hierarchic specification $\mathcal{H} = (\mathcal{T}^H, \mathcal{T}^B)$, \Rightarrow_{ABSTR} terminates on *N* and preserves satisfiability. For any clause $C \in (N \Downarrow_{ABSTR})$ and any literal $E \in C$, *E* does not both contain a function symbol from Σ^B and a function symbol from Σ^F .

From now on I assume fully abstracted clauses *C*, i.e., for all atoms $s \approx t$ occurring in *C*, either $s, t \in T(\Sigma^B, \mathcal{X})$ or $s, t \in T(\Sigma^F, \mathcal{X})$. This justifies the notation of clauses $\Lambda \parallel C$ where all pure background literals are in Λ and belong to FOL (Σ^B, \mathcal{X}) and all literals in *C* belong to FOL (Σ^F, \mathcal{X}) .

The literals in Λ form a conjunction and the literals in *C* a disjunction and the overall clause the implication $\Lambda \rightarrow C$. For a clause $\Lambda \parallel C$ the background theory part Λ is called the *constraint* and *C* the *free part* of the clause.

8.2.6 Example (Abstracted Clause)

Continuing Example 8.2.2, the unabstracted clause

$$g(x) \leq 1 + y \lor g(g(1)) \approx 2$$

corresponds to the abstracted clause

$$z \not\approx g(x) \lor z \leq 1 + y \lor u \not\approx 2 \lor v \not\approx 1 \lor g(g(v)) \approx u$$

that is written

$$z > 1 + y \land u \approx 2 \land v \approx 1 \parallel z \not\approx g(x) \lor g(g(v)) \approx u$$

SUP(T) on Abstracted Clauses

As usual the calculus is presented with respect to a reduction ordering \prec , total on ground terms. For the SUP(T) calculus I assume that any pure base term is strictly smaller than any term containing a function symbol from Σ^{F} . This justifies the below ordering conditions with respect to the constraint notation of clauses and can, e.g., be obtained by an LPO where all symbols from Σ^{B} are smaller in the precedence than the symbols from Σ^{F} .

Superposition Right

 $(N \uplus \{\Lambda \parallel D \lor t \approx t', \Gamma \parallel C \lor s[u] \approx s'\}) \Rightarrow_{\text{SUPT}} (N \cup \{\Lambda \parallel D \lor t \approx t', \Gamma \parallel C \lor s[u] \approx s'\} \cup \{(\Lambda, \Gamma \parallel D \lor C \lor s[t'] \approx s')\sigma\})$ where σ is the mgu of t, u, σ is simple, u is not a variable $t\sigma \not\preceq t'\sigma, s\sigma \not\preceq s'\sigma, (t \approx t')\sigma$ strictly maximal in $(D \lor t \approx t')\sigma$, nothing selected and $(s \approx s')\sigma$ maximal in $(C \lor s \approx s')\sigma$ and nothing selected

Superposition Left

 $\begin{array}{l} (N \uplus \{\Lambda \parallel D \lor t \approx t', \Gamma \parallel C \lor s[u] \not\approx s'\}) \Rightarrow_{\mathsf{SUPT}} (N \cup \{\Lambda \parallel D \lor t \approx t', \Gamma \parallel C \lor s[u] \not\approx s'\} \cup \{(\Lambda, \Gamma \parallel D \lor C \lor s[t'] \not\approx s')\sigma\}) \\ \text{where } \sigma \text{ is the mgu of } t, u, \sigma \text{ is simple, } u \text{ is not a variable } t\sigma \not\preceq t'\sigma, \\ s\sigma \not\preceq s'\sigma, (t \approx t')\sigma \text{ strictly maximal in } (D \lor t \approx t')\sigma, \text{ nothing} \\ \text{selected and } (s \not\approx s')\sigma \text{ maximal in } (C \lor s \not\approx s')\sigma \text{ or selected} \end{array}$

Equality Resolution $(N \uplus \{ \Gamma \parallel C \lor s \not\approx s' \})$ $\Rightarrow_{\mathsf{SUPT}} (N \cup \{ \Gamma \parallel C \lor s \not\approx s' \} \cup \{ (\Gamma \parallel C) \sigma \})$ where σ is the mgu of s, s', σ is simple, $(s \not\approx s')\sigma$ maximal in $(C \lor s \not\approx s')\sigma$ or selected

Equality Factoring $(N \uplus \{\Gamma \parallel C \lor s' \approx t' \lor s \approx t\})$ $\Rightarrow_{\mathsf{SUPT}}$ $(N \cup \{\Gamma \parallel C \lor s' \approx t' \lor s \approx t\} \cup \{(\Gamma \parallel C \lor t \not\approx t' \lor s \approx t')\sigma\})$ where σ is the mgu of s, s', σ is simple, $s'\sigma \not\leq t'\sigma, s\sigma \not\leq t\sigma,$ $(s \approx t)\sigma$ maximal in $(C \lor s' \approx t' \lor s \approx t)\sigma$ and nothing selected

 $\begin{array}{ll} \text{Constraint Refutation} & (N \uplus \{\Gamma_1 \parallel \bot, \dots, \Gamma_n \parallel \bot\}) \\ \Rightarrow_{\text{SUPT}} & (N \cup \{\Gamma_1 \parallel \bot, \dots, \Gamma_n \parallel \bot\} \cup \{\bot\}) \\ \text{where } \Gamma_1 \parallel \bot \land \dots \land \Gamma_n \parallel \bot \models_B \bot \end{array}$

8.3.1 Definition (Sufficient Completeness)

A hierarchic specification $\mathcal{H} = (\mathcal{T}^H, \mathcal{T}^B)$ is *sufficiently complete* with respect to simple ground instances if for all unpure ground terms *t* of a background sort, there exists a pure ground term *t'* of the same sort such that $\mathcal{A} \models t \approx t'$ for all \mathcal{A} algebras with $\mathcal{A} \models \text{sgi}(N) \cup \text{grd}(\mathcal{T}^B)$ where $\text{grd}(\mathcal{T}^B)$ is the set of all ground formulas ϕ over Σ^B with $\models_B \phi$.

8.3.2 Definition (SUP(T) Abstract Redundancy)

A clause $\Gamma \parallel C$ is *redundant* with respect to a clause set *N* if for all simple ground instances ($\Gamma \parallel C$) σ there are clauses $\{\Lambda_1 \parallel C_1, \ldots, \Lambda_n \parallel C_n\} \subseteq N$ with simple ground instances $(\Lambda_1 \parallel C_1)\tau_1, \ldots, (\Lambda_n \parallel C_n)\tau_n$ such that $(\Lambda_i \parallel C_i)\tau_i \prec (\Gamma \parallel C)\sigma$ for all *i* and $(\Lambda_1 \parallel C_1)\tau_1, \ldots, (\Lambda_n \parallel C_n)\tau_n \models_B (\Gamma \parallel C)\sigma$.

8.3.3 Theorem (SUP(T) Completeness)

Let $\mathcal{H} = (\mathcal{T}^H, \mathcal{T}^B)$ be sufficiently complete and \mathcal{T}^B be compact and term-generated. Then *N* is unsatisfiable with respect to hierarchic algebras of \mathcal{H} iff $N \Rightarrow_{SUPT}^* N' \cup \{\bot\}$.

