
First-Order Logic Modulo Theories 301

Theorem 8.3.3 (SUP(T) Completeness). Let H = (T H , T B) be sufficiently
complete and T B be compact and term-generated. Then N is unsatisfiable
with respect to hierarchic algebras of H iff N ⇒∗SUPT N ′ ∪ {⊥}.

ToDo: Proof

The concrete redundancy notions from superposition, Section 5.2, carry
over to the extension with theories, however, implication of the respective
constraints has to be checked in addition.

Subsumption (N] {Λ1 ‖ C1,Λ2 ‖ C2}) ⇒SUPT (N ∪ {Λ1 ‖ C1})
provided C1σ ⊂ C2 for some matcher σ and |=B ∀~x.∃~y.(Λ2 → Λ1σ where
~x = vars(Λ2 ‖ C2) and ~y = vars((Λ1 ‖ C1)σ)) \ vars(Λ2 ‖ C2)

8.4 SUP(T) Decides the Ground Case

If the clause set N , not yet abstracted, of a hierarchic specification H is
ground, then an instance of SUP(T) decides unsatisfiability of N , provided
T B enables a decision procedure for the applicability of Constraint Refutation.
An immediate application of SUP(T) to a ground clause set N does not yield
a decision procedure, because N may not be sufficiently complete and hence
SUP(T) may not be complete, and, SUP(T) does not necessarily terminate on
N without further refinements. So this section is mainly about solving these
two issues.

Sufficient comepleteness, Definition 8.3.1, requires equality of any unpure
background theory sort ground term t to a pure background theory ground
term t′. There are only finitely many ground terms in a ground clause set N .
If N can be “completed”, i.e., extended by further defining unit equations,
such that N becomes sufficiently complete for all its ground terms and if then
SUP(T) does not derive any new unpure ground terms of a background theory
sort, this guarantees sufficient completeness for all ground terms occurring in
a SUP(T) derivation of N . The below rule transforms N into a sufficiently
complete clause set by the introduction of new parameters, preserving satisfi-
ability.

Sufficient
Comple-
tion

N [f(t1, . . . , tn)]p1,...,pn ⇒SC N [b]p1,...,pn ∪ {f(t1, . . . , tn) ≈ b}

provided f is a ΣF function symbol ranging into a background theory sort,
no ti contains a ΣF function symbol ranging into a background theory sort,
and b is a fresh parameter from ΣB

302Automated Reasoning – The Art of Generic Problem Solving July 24, 2017

So ⇒SC replaces unpure ground terms with parameters in a bottom-up
way. For example, the ground clause

¬P (f(h(1 + g(a)))) ∨ f(h(1)) + g(a) ≥ 0 ∨ P (g(a)) ∨Q(g(a))

is replaced by the clauses

¬P (b3) ∨ b2 + b1 ≥ 0 ∨ P (b1) ∨Q(b1)
g(a) ≈ b1
f(h(1)) ≈ b2
f(h(1 + b1)) ≈ b3

where T B is LRA, a is not of sort LA, h does not range into LA, and the bi
are fresh parameters from LRA.

Next the clauses are abstracted resulting in the clause set

y = b1, x = b3, b2 + b1 < 0 ‖ ¬P (x) ∨ P (y) ∨Q(y)
y = b1 ‖ g(a) ≈ y
z = b2, w = 1 ‖ f(h(w)) ≈ z
u = 1 + b1, v = b3 ‖ f(h(u)) ≈ v

where now all introduced variables are equal in the constraint to a background
theory ground term. The resulting clauses now have the property that all
variables are variables of a background theory sort and that for all background
variables x ∈ C of some clause Λ ‖ C there is a an atom x = t ∈ Λ where
t is a ground base term. In addtion, the only variable occurrences in Λ are
equations x = t for some ground term t.

The additional parameters bi destroy compactness of LRA, see the intro-
duction, Section 8.1. However, compactness is not needed here, because I will
eventually show termination of superposition on completed and abstracted
clause sets. In order to show termination, clauses must not become arbitrarily
long and terms must not become aribtrarily deep in the generated clauses.
The length of clauses can always be limited if variable chains in clauses are
prevented. For example, the transitivity clause ¬R(x, y) ∨ ¬R(y, z) ∨ R(x, z)
constiutes such a variable chain preventing the clause to be split into variable
disjoint parts.

The next step is to prevent variable chains. If in some clause Λ ‖ C
a variable x occurs several times in C, then in the context of completed and
abstracted ground clauses a fresh variables y is introduced and the assignment
x = t ∈ Λ is copied for y and added to Λ. For the first clause of the running
example the result is

z = b1, y = b1, x = b3, b2 + b1 < 0 ‖ ¬P (x) ∨ P (y) ∨Q(z).

Now this clause can actually be split into three variable disjoint parts

x = b3, b2 + b1 < 0 ‖ ¬P (x)
y = b1, b2 + b1 < 0 ‖ P (y)
z = b1, b2 + b1 < 0 ‖ Q(z)

First-Order Logic Modulo Theories 303

where the inital clause set containing z = b1, y = b1, x = b3, b2 + b1 <
0 ‖ ¬P (x) ∨ P (y) ∨Q(z) is unsatisfiable iff the three clause sets obtained by
replacing the clause with one of the three split clauses x = b3, b2 + b1 < 0 ‖
¬P (x), y = b1, b2 + b1 < 0 ‖ P (y), z = b1, b2 + b1 < 0 ‖ Q(z), respectively, is
unsatisfiable. So for the overall inference process it can be assumed that every
clause contains at most one background theory variable.

Proposition 8.4.1 (Clause Variations). Let M be a finite set of ground
literals of the background theory and k ∈ N fixed. Then there are only finitely
many non-redundat clauses Λ ‖ C where

1. vars(Λ ‖ C) = {x} for some variable x

2. Λ = {x = t}] Λ′ where Λ′ ⊆M

3. |L| ≤ k for all L ∈ C.

Practically, the number of clause variations is kept finite in a SUP(T) run
by exhaustive application of subsumption.

So far I have explained how the conditions 8.4.1.1 and 8.4.1.2 can be
obtained and preserved during derivations of the SUP(T) calculus. It re-
mains to guarantee 8.4.1.3 via a suitable reduction ordering. Note that any
reduction ordering is total on the clauses considered here, because every vari-
able is from a background theory sort and mapped to a background theory
ground term in the constraint. So in order to compare literals in a clause
{x = t}] Λ′ ‖ C[x] it is sufficient to consider the simple ground instance
({x = t}] Λ′ ‖ C[x]){x 7→ t} because all other different simple ground
instances are tautologies.

Definition 8.4.2 (�Flpo). For some term t let |t|F be the number of function

symbols from ΣF contained in t. Then �Flpo is defined by t �Flpo s iff

1. |t|F > |s|F or

2. |t|F = |s|F and t �lpo s

Note that for any clause Λ ‖ C considered here, all function symbols
occurring in C are from ΣF and if C contains a variable x, it is of a back-
ground theory sort, hence instantiated only by ΣB (ground) terms via simple
substitutions. Recall that any pure ΣB ground term is by assumption strictly
smaller than any ground term containing symbols from ΣF . Therefore, �Flpo
is stable under substitutions in the current context and hence a reduction
ordering total on ground terms.

There is final complication to be considered. It might happen that SUP(T)
generates a variable equation in a clause Λ1,Λ2 ‖ x ◦ y ∨C ′ ∨D′, ◦ ∈ {≈, 6≈},
as a result of a superposition inference from clauses Λ1 ‖ L1 ∨ C ′ and Λ2 ‖
L2 ∨ D′ where actually the clauses have the form {x = t1}] Λ′1 ‖ L1 ∨ C ′
and {y = t2}]Λ2 ‖ L2 ∨D′. In this case I simply replace the clause Λ1,Λ2 ‖
x ◦ y ∨ C ′ ∨D′ with Λ1,Λ2, t1 = t2 ‖ C ′ ∨D′.

304Automated Reasoning – The Art of Generic Problem Solving July 24, 2017

Lemma 8.4.3 (SUP(T) Termination). SUP(T) terminates on any completed
and abstracted ground clause set with respect to the ordering �Flpo, exhaustive
splitting, and simplifications on background theory variables and equations.

Theorem 8.4.4 (Decision Procedure). SUP(T) is a decision procedure for a
hierarchic specification H = (T H , T B) where N is ground and T B provides a
decision procedure for ground formulas with parameters.

