l ' I I I max planck institut
informatik

Automated Reasoning |
Christoph Weidenbach
Max Planck Institute for Informatics

November 16, 2016

Preliminaries Propositional Logic
0000000000000 0000000000000V 0O0O0O00O000O0O0O0O00O0O00O000O00O0O00O000000000000

Outline

Preliminaries

Propositional Logic

inn p B it November 16, 2016 2067

Preliminaries Propositional Logic
0000000000000 0000000000000V 0O0O0O00O000O0O0O0O00O0O00O000O00O0O00O000000000000

Automated Reasoning

Given a specification of a system, develop technology

logics,
calculi,
algorithms,
implementations,

to automatically execute the specification and to automatically
prove properties of the specification.

Inl p B g planckinstin November 16, 2016 3/67

Preliminaries Propositional Logic
0000000000000 0000000000000V 0O0O0O00O000O0O0O0O00O0O00O000O00O0O00O000000000000

Concept

Slides: Definitions, Lemmas, Theorems, ...
Blackboard: Examples, Proofs, ...
Speech: Motivate, Explain, ...
Script: Slides, partially Blackboard . ..

Exams: able to calculate — pass
understand — (very) good grade

i p B ok instin November 16, 2016 4067

Preliminaries Propositional Logic
0000000000000 0000000000000 0000000000000000000000000000000000000

Orderings

1.4.1 Definition (Orderings)

A (partial) ordering = (or simply ordering) on a set M, denoted
(M, =), is a reflexive, antisymmetric, and transitive binary relation
on M.

It is a total ordering if it also satisfies the totality property.

A strict (partial) ordering > is a transitive and irreflexive binary
relation on M.

A strict ordering is well-founded, if there is no infinite descending
chain mg = my = mo = ... where m; € M.

Inn p BB o ek insiion November 16, 2016 5/67

Preliminaries Propositional Logic
0000000000000 0000000000000 0000000000000000000000000000000000000

1.4.3 Definition (Minimal and Smallest Elements)

Given a strict ordering (M, >-), an element m € M is called
minimal, if there is no element m’ € M so that m = n'.

An element m € M is called smallest, if m" = mforall m € M
different from m.

November 16, 2016 6/67

lllpll’““

Preliminaries Propositional Logic
[e]e] lelelelelelelelo]e]e} 0000000000000 0000000000000000000000000000000000000

Multisets

Given a set M, a multiset S over M is a mapping S: M — N,
where S specifies the number of occurrences of elements m of
the base set M within the multiset S. | use the standard set
notations €, C, C, U, N with the analogous meaning for multisets,
for example (S1 U Sp)(m) = Sy(m) + Sa(m).

A multiset S over a set M is finite if {m € M| S(m) > 0} is finite.
For the purpose of this lecture | only consider finite multisets.

November 16, 2016 7/67

Innpyun:
!

Preliminaries Propositional Logic
0008000000000 0000000000000 0000000000000000000000000000000000000

1.4.5 Definition (Lexicographic and Multiset Ordering

Extensions)

Let (My, =1) and (M», >2) be two strict orderings.

Their lexicographic combination ex= (-1, >2) on My x Ms is
defined as (my, mp) > (m}, m,) iff my =1 m} or my = m, and

mos >»o m’2

Let (M,) be a strict ordering.

The multiset extension =, to multisets over M is defined by

St -mu S2iff Sy # SoandVm e M[S(m) > Si(m) — 3m €
M(m' = mA Si(m') > S(m'))].

November 16, 2016 8/67

Innjyun:
!

Preliminaries Propositional Logic
0000800000000 0000000000000 0000000000000000000000000000000000000

1.4.7 Proposition (Properties of =ex, *=mu)

Let (M,), (My, 1), and (Mo, -») be orderings. Then
>lex IS @n ordering on My x Mo.

if (My,>1), (Mz,->) are well-founded S0 is >e.

if (My,>1), (Mz,=2) are total so is >e.

>mul IS @n ordering on multisets over M.

if (M, >) is well-founded s0 iS >yl

if (M, >) is total s0 is >=my-

C

Please recall that multisets are finite.

November 16, 2016 9/67

)N
!

Preliminaries Propositional Logic
0000080000000 0000000000000 0000000000000000000000000000000000000

Induction

Theorem (Noetherian Induction)

Let (M, -) be a well-founded ordering, and let Q be a predicate
over elements of M. If for all m € M the implication

if Q(m’), for all M € M so that m = m’, (induction hypothesis)
then Q(m). (induction step)

is satisfied, then the property Q(m) holds for all m € M.

November 16, 2016 10/67

l l I I I max
inf t

Preliminaries Propositional Logic
0000008000000 0000000000000 0000000000000000000000000000000000000

Abstract Rewrite Systems

1.6.1 Definition (Rewrite System)

A rewrite systemis a pair (M, —), where M is a non-empty set
and — C M x M is a binary relation on M.

-0 ={(aa)|acM}
L i

=T = Ujo '

—* = Upg— = 2Tu0
= = -Uu=0

-1 =« ={(b,c)|c—b}
& = U+

ot = (o)t

lllpll’““

identity

i + 1-fold composition
transitive closure

reflexive transitive closure
reflexive closure

inverse

symmetric closure

transitive symmetric closure
refl. trans. symmetric closure

November 16, 2016 11/67

Preliminaries Propositional Logic
0000000800000 0000000000000 0000000000000000000000000000000000000

1.6.2 Definition (Reducible)
Let (M, —) be a rewrite system. An element a € M is reducible, if
there is a b € M such that a — b.

An element a € M is in normal form (irreducible), if it is not
reducible.

An element ¢ € M is a normal form of b, if b —* c and c is in
normal form, denoted by ¢ = bJ.

Two elements b and ¢ are joinable, if there is an a so that

b —* a*— c, denoted by b | c.

November 16, 2016 12/67

lllpll”“‘

Preliminaries Propositional Logic
0000000080000 0000000000000 0000000000000000000000000000000000000

1.6.3 Definition (Properties of —)

A relation — is called
Church-Rosser if b<+* cimpliesb | ¢
confluent if b a—*cimpliesb | c
locally confluent if b+ a— cimpliesb | c
terminating if there is no infinite descending chain

bo — b1 — bg 500

normalizing if every b € A has a normal form
convergent if it is confluent and terminating

l l I p I I '.‘."\\n:“:'. ck institut November 16, 2016 13/67

Preliminaries Propositional Logic

0000000008000 0000000000000V 0O0O0O00O000O0O0O0O00O0O00O000O00O0O00O000000000000

1.6.4 Lemma (Termination vs. Normalization)

If — is terminating, then it is normalizing.

1.6.5 Theorem (Church-Rosser vs. Confluence)
The following properties are equivalent for any (M, —):
(i) — has the Church-Rosser property.
(i) — is confluent.

1.6.6 Lemma (Newman’s Lemma)
Let (M, —) be a terminating rewrite system. Then the following
properties are equivalent:

(i) — is confluent

(ii) — is locally confluent

ax ph:m;k institut November 16, 2016

lllpll”‘

14/67

Preliminaries Propositional Logic
0000000000800 0000000000000 0000000000000000000000000000000000000

LA Equations Rewrite System

M is the set of all LA equations sets N over Q

= includes normalizing the equation

Eliminate {Xx=sx=t}WN = s {x=s,x=t,s=t}UN
provided s A t,ands=t¢ N

Fail {1 =g} N =LA 0
provided g1,z € Q, g1 # @2

l l I p I I max p]:'nitl;l\ institut November 16, 2016 15/67

Preliminaries Propositional Logic
0000000000080 0000000000000 0000000000000000000000000000000000000

LAE Redundancy

Subsume {s=t8=t}WUN =ac {s=t}UN
provided s = t and gs’ = qt’ are identical for some g € Q

Ini p B g planckinstin November 16, 2016 16/67

Preliminaries
0000000000008

Propositional Logic

0000000000000V 0O0O0O00O000O0O0O0O00O0O00O000O00O0O00O000000000000

Rewrite Systems on Logics: Calculi

Validity

Satisfiability

Sound

If the calculus derives a
proof of validity for the
formula, it is valid.

If the calculus derives
satisfiability of the for-
mula, it has a model.

Complete

If the formula is valid, a
proof of validity is deriv-
able by the calculus.

If the formula has a
model, the calculus de-
rives satisfiability.

Strongly
Complete

l l I I I max
inf t

For any validity proof of
the formula, there is a
derivation in the calcu-
lus producing this proof.

For any model of the
formula, there is a
derivation in the cal-
culus producing this
model.

November 16, 2016

17/67

Preliminaries Propositional Logic
0000000000000 9000000000000 0000000000000000000000000000000000000

Propositional Logic: Syntax

2.1.1 Definition (Propositional Formula)

The set PROP(X) of propositional formulas over a signature ¥, is
inductively defined by:

PROP(X) Comment

1 connective L denotes “false”
T connective T denotes “true”
P for any propositional variable P € ¥

(—o) connective — denotes “negation”
(¢ ANyp) connective A denotes “conjunction”
(p V) connective vV denotes “disjunction”
(¢ — ¢) connective — denotes “implication”
(¢ <> 1) connective <> denotes “equivalence”

where ¢, € PROP(X).
l l I p I I 'l!l"t‘\'\nwl;]‘:::'i‘l;ki"\lmﬂ November 16, 2016 18/67

Preliminaries Propositional Logic
0000000000000 0000000000000 0000000000000000000000000000000000000

Propositional Logic: Semantics

2.2.1 Definition ((Partial) Valuation)
A Y -valuation is a map

A:¥ —{0,1}.

where {0, 1} is the set of truth values. A partial X -valuation is a
map A" : ¥’ — {0,1} where X’ C ¥.

November 16, 2016 19/67

l l I I I max
inf t

Preliminaries Propositional Logic
0000000000000 0000000000000 0000O00O000O00O0O00000O00000O000000000000000

2.2.2 Definition (Semantics)

A Y -valuation A is inductively extended from propositional
variables to propositional formulas ¢, € PROP(X) by
A(L) = 0
A(T) = 1
A(=g) = 1-A(¢)
AlpAy) = min({A(¢), A(¥)})
Alpvy) = max({A(¢), A(¥)})
Al =) = max({1 - A(¢), A¥)})
Alp +¢) = if A(¢) = A(v) then 1 else 0

November 16, 2016 20/67

Preliminaries Propositional Logic
0000000000000 0000000000000 0000000000000000000000000000000000000

If A(¢) = 1 for some X-valuation A of a formula ¢ then ¢ is
satisfiable and we write A = ¢. In this case A is a model of ¢.

If A(¢) = 1 for all X-valuations A of a formula ¢ then ¢ is valid
and we write = ¢.

If there is no X-valuation A for a formula ¢ where A(¢) = 1 we
say ¢ is unsatisfiable.

A formula ¢ entails 1, written ¢ = v, if for all -valuations A
whenever A |= ¢ then A = «.

l l I p I I max p]:'nitl;l\ institut November 16, 2016 21/67

Preliminaries Propositional Logic
0000000000000 0000000000000 0000000000000000000000000000000000000

Propositional Logic: Operations

2.1.2 Definition (Atom, Literal, Clause)

A propositional variable P is called an atom. It is also called a
(positive) literal and its negation —P is called a (negative) literal.

The functions comp and atom map a literal to its complement, or
atom, respectively: if comp(—P) = P and comp(P) = =P,
atom(—P) = P and atom(P) = P for all P € ¥. Literals are
denoted by letters L, K. Two literals P and —P are called
complementary.

A disjunction of literals Ly v ...V L, is called a clause. A clause is
identified with the multiset of its literals.

in p W e November 16, 2016 22/67

Preliminaries Propositional Logic
0000000000000 0000080000000 0000000000000000000000000000000000000

2.1.3 Definition (Position)

A position is a word over N. The set of positions of a formula ¢ is
inductively defined by

pos(¢) = {e}ifoe{T,L}orpeckX
pos(—¢) := {e}U{1p|p € pos(4)}
pos(povp) = {e}U{lp|pepos(¢)}U{2p|pcpos(L)}

where o € {A,V, —, <}

November 16, 2016 23/67

LITOILEE
info, i

Preliminaries Propositional Logic
0000000000000 000000 @000

The prefix order < on positions is defined by p < q if there is
some p’ such that ppo’ = q. Note that the prefix order is partial,
e.g., the positions 12 and 21 are not comparable, they are
“parallel”, see below.

The relation < is the strict part of <, i.e., p < g if p < g but not
qg=p.

The relation || denotes incomparable, also called parallel
positions, i.e., p || q if neither p < g, nor g < p.

A position p is above q if p < q, p is strictly above q if p < g, and
p and q are parallelif p || g.

November 16, 2016 24/67

l l I I I max
inf t

Preliminaries Propositional Logic
0000000000000 000000 0@00

The size of a formula ¢ is given by the cardinality of pos(¢):

6] := | pos(¢)]-

The subformula of ¢ at position p € pos(¢) is inductively defined
by ¢l := &, =¢l1p := dlp, and (¢4 o P2)|jp := ¢ilp Where i € {1,2},
o€ {AV,—, <}

Finally, the replacement of a subformula at position p € pos(¢) by
a formula ¢ is inductively defined by ¢[¢]. := v,

(D) [W]1p = —0[]p, and (¢1 0 p2)[Y]1p = (¢1[Y]p © ¢2),
(91 0 ¢2)[¥]2p := (@1 0 P2[1]p), where o € {A,V, =, <}

November 16, 2016 25/67

l l I I I max planck institut
inforn

Preliminaries Propositional Logic
0000000000000 00000000@0000000000O00000O0O00000O00000O000000000000000

2.1.5 Definition (Polarity)

The polarity of the subformula ¢|, of ¢ at position p € pos(¢) is
inductively defined by
pol(¢,e) = 1
pOI(_'QS, 1p) = = pOI(ng,p)
pol(¢1 0 ¢2,ip) = pol(¢;,p) if o€ {A V} i€{1,2}

pol(¢1 — ¢2,1p) = —pol(¢1,p)

pol(¢1 — ¢2,2p) = pol(d2,p)

pol(¢1 > é2.ip) = O if ie{1,2}

i p B ok instin November 16, 2016 26/67

Preliminaries Propositional Logic
0000000000000 0000000000 000000000000000000000000000000000000000

Valuations can be nicely represented by sets or sequences of
literals that do not contain complementary literals nor duplicates.

If Ais a (partial) valuation of domain X then it can be represented
by the set
{P|PeXxand A(P)=1}U{=P| P e X and A(P) = 0}.

Another, equivalent representation are Herbrand interpretations
that are sets of positive literals, where all atoms not contained in
an Herbrand interpretation are false. If A is a total valuation of
domain X then it corresponds to the Herbrand interpretation
{P|PeXand A(P)=1}.

l l I p I I max ;'1::“} institut November 16, 2016 27/67

Preliminaries Propositional Logic
0000000000000 0000000000 @000000000000000000000000000000000000000

2.2.4 Theorem (Deduction Theorem)
oYt =

l l I p I I :“‘1‘(\"1::.";1} institut November 16, 2016 28/67

Preliminaries Propositional Logic
0000000000000 0000000000080 0000000000000000000000000000000000000

2.2.6 Lemma (Formula Replacement)

Let ¢ be a propositional formula containing a subformula v at
position p, i.e., ¢|p = ¥. Furthermore, assume |= ¢ <> x.
Then = ¢ < ¢[x]p-

l l I p I I :'I"!\”;l and ck institut November 16, 2016 29/67

Preliminaries Propositional Logic
0000000000000 000000000000 @0000000000000000000000000000000000000

Propositional Tableau

2.4.1 Definition (a-, 5-Formulas)

A formula ¢ is called an a-formula if ¢ is a formula =—¢4, @1 A ¢o,

1 < @2, 2(d1 V ¢2), OF ~(P1 — P2).

A formula ¢ is called a g-formula if ¢ is a formula ¢1 V ¢o,

1 = ¢2, 2(P1 A ¢2), OF =(P1 <> o).

November 16, 2016 30/67

)N
!

Preliminaries
0000000000000

Propositional Logic
0000000000000 e0000000000O0O00000O00000O0O00000000000000

2.4.2 Definition (Direct Descendant)

Given an «a- or -formula ¢, its direct descendants are as follows:

o Left Descendant | Right Descendant
—¢ ¢ ¢
P1 A P2 P P2
1 < P2 P11 — P2 P2 = P1
(1 V $2) —¢1 —¢2
(1 — ¢2) ¢ —¢2
B Left Descendant | Right Descendant
1V P2 ?1 ¢2
P1 = P2 —p1 P2
(1 A $2) —91 ~¢2
(P11 <> p2) | (1 — @2) (P2 — ¢1)

Ini BB o plank insii
informatik

November 16, 2016 31/67

Preliminaries Propositional Logic
0000000000000 0000000000000 0e00000000000000000000000000000000000

2.4.3 Proposition ()
For any valuation A:

(i) if ¢ is an a-formula then A(¢) = 1 iff A(¢¢) =1 and A(¢2) =1
for its descendants ¢4, ¢o.

(ii) if ¢ is a p-formula then A(¢) = 1 iff A(¢1) =1 or A(¢p2) = 1 for
its descendants ¢4, ¢o.

November 16, 2016 32/67

LIRS
info, i

Preliminaries Propositional Logic
0000000000000 0000000000000 00e0000000000000000000000000000000000

Tableau Rewrite System

The tableau calculus operates on states that are sets of
sequences of formulas. Semantically, the set represents a
disjunction of sequences that are interpreted as conjunctions of
the respective formulas.

A sequence of formulas (¢1, ..., ¢n) is called closed if there are
two formulas ¢; and ¢; in the sequence where ¢; = comp(¢;).

A state is closed if all its formula sequences are closed.

The tableau calculus is a calculus showing unsatisfiability of a
formula. Such calculi are called refutational calculi. Recall a
formula ¢ is valid iff —¢ is unsatisfiable.

l l I p I I :'I"!‘\”;l ::\Itk institut November 16, 2016 33/67

Preliminaries Propositional Logic
0000000000000 0000000000000 000e000000000000000000000000000000000

A formula ¢ occurring in some sequence is called open if in case
¢ is an a-formula not both direct descendants are already part of
the sequence and if it is a S-formula none of its descendants is
part of the sequence.

i p | | November 16, 2016 34/67

Preliminaries Propositional Logic
0000000000000 0000000000000 0000e00000000000000000000000000000000

Tableau Rewrite Rules

a-Expansion N&{(¢1,..., ¢, dn)} =T
NH’J{(¢17--->¢a--‘7¢naw1’d}2)}

provided v is an open a-formula, 1, v its direct descendants
and the sequence is not closed.

B-Expansion N {(p1,...,0,...,én)} =1
Nw{(o1,.. - 0, bn, 1)} W (D1, 55 Pn, o)}
provided v is an open S-formula, 4, ¥ its direct descendants
and the sequence is not closed.

November 16, 2016 35/67

l l I I I max
inf ti

Preliminaries Propositional Logic
0000000000000 0000000000000 00000e0000000000000000000000000000000

Tableau Properties

2.4.4 Theorem (Propositional Tableau is Sound)

If for a formula ¢ the tableau calculus computes {(—¢)} =3 N
and N is closed, then ¢ is valid.

2.4.5 Theorem (Propositional Tableau Terminates)

Starting from a start state {(¢)} for some formula ¢, the relation
=1 is well-founded.

November 16, 2016 36/67

l l I I I max
inf t

Preliminaries Propositional Logic
0000000000000 0000000000000 000000e000000000000000000000000000000

2.4.6 Theorem (Propositional Tableau is Complete)
If ¢ is valid, tableau computes a closed state out of {(—¢)}.

2.4.7 Corollary (Propositional Tableau generates Models)

Let ¢ be a formula, {(¢)} =5 N and s € N be a sequence that is
not closed and neither a-expansion nor g-expansion are
applicable to s. Then the literals in s form a (partial) valuation
that is a model for ¢.

November 16, 2016 37/67

Preliminaries Propositional Logic
0000000000000 0000000000000 0000000eO00000000000000000000000000000

Normal Forms

Definition (CNF, DNF)

A formula is in conjunctive normal form (CNF) or clause normal
form if it is a conjunction of disjunctions of literals, or in other
words, a conjunction of clauses.

A formula is in disjunctive normal form (DNF), if it is a disjunction
of conjunctions of literals.

l l I p I I ?."“n:“:‘. ck institut November 16, 2016 38/67

Preliminaries Propositional Logic
0000000000000 0000000000000 00000000e0000000000000000000000000000

Checking the validity of CNF formulas or the unsatisfiability of
DNF formulas is easy:

(i) a formula in CNF is valid, if and only if each of its disjunctions
contains a pair of complementary literals P and —P,

(if) conversely, a formula in DNF is unsatisfiable, if and only if

each of its conjunctions contains a pair of complementary literals
Pand -P

i p B gk instion November 16, 2016 39/67

Preliminaries
0000000000000

Propositional Logic
0000000000000 000000000e000000000000000000000000000

Basic CNF Transformation

ElimEquiv
Elimimp
PushNeg1
PushNeg2
PushNeg3
PushDisj
ElimTB1
ElimTB2
ElimTB3
ElimTB4
ElimTB5
ElimTB6

l l I p I I max planck institut

X[(¢ < ¥)lp =Bene X[(¢ — V) A (¥ — d)lp
x[(¢ = ¥)lp =BenF X[(—¢ V ¥)lp
X[=(oVY)lp =BeNF X[(—6 A —Y)]p

xX[=(@ A)lp =Bene X[(—o V)]p
x[-=dlp =8BenF X[¢lp

xX[(&1 A d2) Vbl =BenF XI(¢1 V) A(d2 VY)]p
x[(@AT)lp =Bene X[9lp

xl(@ A Lo =8ene X[L]p

x[(@V T)lp =8ene X[Tlp

xl(¢V L)]p =Bene x[9]p

x[-Llp =8ene X[Tlp

X[~ Tlp =Bene X[L]p

November 16, 2016 40/67

Preliminaries Propositional Logic
0000000000000 0000000000000 0000000000e00000000000000000000000000

-

N o a0 ODN

Basic CNF Algorithm

Algorithm: 2 benf(¢)

Input : A propositional formula ¢.

Output: A propositional formula ¢ equivalent to ¢ in CNF.
whilerule (ElimEquiv(¢)) do ;

whilerule (Elimimp(¢)) do ;

whilerule (ElimTB1(¢),...,ElimTB6(¢)) do ;

whilerule (PushNeg1(¢),...,PushNeg3(¢)) do ;
whilerule (PushDisj(¢)) do ;

return ¢;

November 16, 2016 41/67

l l I I I max planck institut
inforn

Preliminaries Propositional Logic
0000000000000 0000000000000 00000000000e0000000000000000000000000

Advanced CNF Algorithm

For the formula

Py < (Po<s (P35 (... (Pn_y < Pp)...)))

the basic CNF algorithm generates a CNF with 2"~ clauses.

i p | | November 16, 2016 42/67

Preliminaries Propositional Logic
0000000000000 0000000000000 000000000000e000000000000000000000000

2.5.4 Proposition (Renaming Variables)

Let P be a propositional variable not occurring in 1[¢]p.

1. If pol(y, p) = 1, then ¢[¢], is satisfiable if and only if
Y[Plp A (P — ¢) is satisfiable.

2. If pol(v, p) = —1, then ¢[¢], is satisfiable if and only if
Y[Plp A (¢ — P) is satisfiable.

3. If pol(y, p) = 0, then ¥[¢],, is satisfiable if and only if
Y[Plp A (P« ¢) is satisfiable.

November 16, 2016 43/67

l l I I I max planck institut
inforn

Preliminaries Propositional Logic

0000000000000 0000000000000 0000000O000000e00000000000000000000000
Renaming
SimpleRenaming ¢ =>simpren ®[P1lp,[P2lp, - - - [Pnlp, N

def((b:p'l) P1) ARTIAN def(¢[P1]P1 [P2]P2 e [Pn—1]Pn—17pn7 Pn)

provided {py,...,pn} C pos(¢) and for all i, i + j either p; || p;;, or
pi > pitj and the P; are different and new to ¢

Simple choice: choose {p1, ..., pn} to be all non-literal and
non-negation positions of ¢.

l l I I I max
inf ti

November 16, 2016 44/67

Preliminaries Propositional Logic
0000000000000 0000000000000 00000000000000@0000000000000000000000

Renaming Definition

(P — ¢lp) if pol(s, p) =1
def(y, p, P) == ¢ (¢[p = P) if pol(¢, p) = —1
(P < ¢lp) if pol(s,p) =0

November 16, 2016 45/67

l l I I I max
inf ti

Preliminaries Propositional Logic
0000000000000 0000000000000 000000000000000e000000000000000000000

Obvious Positions

A smaller set of positions from ¢, called obvious positions, is still
preventing the explosion and given by the rules:

(i) p is an obvious position if ¢|, is an equivalence and there is a
position g < p such that ¢|4 is either an equivalence or
disjunctive in ¢ or

(i) pq is an obvious position if ¢|pq is a conjunctive formula in ¢,
¢|p is a disjunctive formula in ¢ and for all positions r with

p < r < pq the formula ¢|, is not a conjunctive formula.

A formula ¢|, is conjunctive in ¢ if ¢|, is a conjunction and
pol(¢, p) € {0,1} or ¢|p is a disjunction or implication and
pol(¢,p) € {0, -1}

Analogously, a formula ¢|, is disjunctive in ¢ if ¢|, is a disjunction
or implication and pol(¢, p) € {0, 1} or ¢|p is a conjunction and
pol(¢, p) € {0, -1}

p]uninl;l\ institut November 16, 2016 46/67

l l I I I max
inf t

Preliminaries Propositional Logic
0000000000000 0000000000000 0000000000000000e00000000000000000000

Polarity Dependent Equivalence
Elimination

ElimEquivl x[(¢ < ¥)lo =acnF X[(¢ = ¥) A (¥ — 9)lp
provided pol(x, p) € {0,1}

ElimEquivz x[(¢ < ¥)]p =acnk X[(@AY) V (md A —9)]p
provided pol(x, p) = —1

November 16, 2016 47/67

l l I I I max planck institut
inforn

0000000000000

Propositional Logic
0000000000000 00000000000000000e0000000000000000000

Extra T, L Elimination Rules

ElimTB7 xl¢ = Llp =acnF X[~9)p
ElimTB8 x[L = dlp =acnF X[Tlp
ElimTB9 xlo — Tlp =acnF X[Tlp
ElimTB10 x[T = 9lp =acNF x[9lp
ElimTB11 xl¢ < Llp =acnF X[79lp
ElimTB12 x[® < Tlp =acnF x[9lo

where the two rules ElimTB11, ElimTB12 for equivalences are
applied with respect to commutativity of «.

November 16, 2016

48/67

l l I I I max
inf ti

Preliminaries Propositional Logic
0000000000000 0000000000000 000000000000000000e000000000000000000

0 N O o b ODN

Advanced CNF Algorithm

Algorithm: 3 acnf(¢)

Input : A formula ¢.

Output: A formula v in CNF satisfiability preserving to ¢.
whilerule (ElimTB1(¢),....ElimTB12(¢)) do ;
SimpleRenaming(¢) on obvious positions;

whilerule (ElimEquiv1(¢),ElimEquiv2(¢)) do ;
whilerule (Elimimp(¢)) do ;

whilerule (PushNeg1(¢),...,PushNeg3(¢)) do ;
whilerule (PushDisj(¢)) do ;

return ¢;

November 16, 2016 49/67

l l I I I max planck institut
inforn

Preliminaries Propositional Logic
0000000000000 0000000000000 0000000000000000000e00000000000000000

Propositional Resolution

The propositional resolution calculus operates on a set of clauses
and tests unsatisfiability.

Recall that for clauses | switch between the notation as a
disjunction, e.g., PV QV PV =R, and the multiset notation, e.g.,
{P, Q, P,-R}. This makes no difference as we consider V in the
context of clauses always modulo AC. Note that L, the empty
disjunction, corresponds to (), the empty multiset. Clauses are
typically denoted by letters C, D, possibly with subscript.

Iil p B g planckinstin November 16, 2016 50/67

Preliminaries Propositional Logic
0000000000000 0000000000000 000000O00000000000000e0000000000000000

Resolution Inference Rules

Resolution (Nw{CyV P,CoV-P}) =pes
(NU{CyVP,CoVv-P}U{CyV Cs})

Factoring (Nw{CVLVL}) =Res
(Nu{CvLvL}u{CVL})

TITVLEY
infos

\lzm_tl;l\ institut November 16, 2016 51/67

Preliminaries Propositional Logic
0000000000000 0000000000000 000000O000000000000000e000000000000000

2.6.1 Theorem (Soundness & Completeness)

The resolution calculus is sound and complete:
N is unsatisfiable iff N = N and L € N’ for some N’

l l I p I I :'I"!‘\”;l ::\Itk institut November 16, 2016 52/67

Preliminaries Propositional Logic
0000000000000 0000000000000 0000000000000000000000e00000000000000

Resolution Reduction Rules

Subsumption (Nw{Cy,Co}) =ges (NU{C1})
provided C; C C,

Tautology Deletion (Nw{CV PV -P}) =pges (N)

Condensation (Nw{CiVLVL}) =Rres (NU{C;yVL})

Subsumption Resolution (Nw{C; Vv L, Cs Vv comp(L)})
=res (NU{Ci VL, Cy})
where C1 - Cg

November 16, 2016 53/67

l l I I I max planck institut
inforn

Preliminaries Propositional Logic
0000000000000 0000000000000 000000O00000000000000000e0000000000000

2.6.5 Theorem (Resolution Termination)

If reduction rules are preferred over inference rules and no
inference rule is applied twice to the same clause(s), then =fcq
is well-founded.

l l I p I I :'I"!‘\”;l ::\Itk institut November 16, 2016 54/67

