

Automated Reasoning I

Christoph Weidenbach

Max Planck Institute for Informatics

November 16, 2016

Preliminaries

Propositional Logic

Automated Reasoning

Given a specification of a system, develop technology

logics, calculi, algorithms, implementations,

to automatically execute the specification and to automatically prove properties of the specification.

Slides: Definitions, Lemmas, Theorems, ... Blackboard: Examples, Proofs, ... Speech: Motivate, Explain, ... Script: Slides, partially Blackboard ... Exams: able to calculate \rightarrow pass understand \rightarrow (very) good grade

Orderings

1.4.1 Definition (Orderings)

A (partial) ordering \succeq (or simply ordering) on a set M, denoted (M, \succeq) , is a reflexive, antisymmetric, and transitive binary relation on M.

It is a *total ordering* if it also satisfies the totality property.

A *strict (partial) ordering* \succ is a transitive and irreflexive binary relation on *M*.

A strict ordering is *well-founded*, if there is no infinite descending chain $m_0 \succ m_1 \succ m_2 \succ \ldots$ where $m_i \in M$.

1.4.3 Definition (Minimal and Smallest Elements)

Given a strict ordering (M, \succ) , an element $m \in M$ is called *minimal*, if there is no element $m' \in M$ so that $m \succ m'$.

An element $m \in M$ is called *smallest*, if $m' \succ m$ for all $m' \in M$ different from m.

Multisets

Given a set *M*, a *multiset S* over *M* is a mapping $S: M \to \mathbb{N}$, where *S* specifies the number of occurrences of elements *m* of the base set *M* within the multiset *S*. I use the standard set notations \in , \subset , \subseteq , \cup , \cap with the analogous meaning for multisets, for example $(S_1 \cup S_2)(m) = S_1(m) + S_2(m)$.

A multiset *S* over a set *M* is *finite* if $\{m \in M \mid S(m) > 0\}$ is finite. For the purpose of this lecture I only consider finite multisets.

1.4.5 Definition (Lexicographic and Multiset Ordering Extensions)

Let (M_1, \succ_1) and (M_2, \succ_2) be two strict orderings.

Their *lexicographic combination* $\succ_{\mathsf{lex}} = (\succ_1, \succ_2)$ on $M_1 \times M_2$ is defined as $(m_1, m_2) \succ (m'_1, m'_2)$ iff $m_1 \succ_1 m'_1$ or $m_1 = m'_1$ and $m_2 \succ_2 m'_2$.

Let (M, \succ) be a strict ordering.

The *multiset extension* \succ_{mul} to multisets over M is defined by $S_1 \succ_{mul} S_2$ iff $S_1 \neq S_2$ and $\forall m \in M[S_2(m) > S_1(m) \rightarrow \exists m' \in M(m' \succ m \land S_1(m') > S_2(m'))].$

1.4.7 Proposition (Properties of \succ_{lex} , \succ_{mul})

Let (M, \succ) , (M_1, \succ_1) , and (M_2, \succ_2) be orderings. Then

- 1. \succ_{lex} is an ordering on $M_1 \times M_2$.
- 2. if (M_1, \succ_1) , (M_2, \succ_2) are well-founded so is \succ_{lex} .
- 3. if (M_1, \succ_1) , (M_2, \succ_2) are total so is \succ_{lex} .
- 4. \succ_{mul} is an ordering on multisets over *M*.
- 5. if (M, \succ) is well-founded so is \succ_{mul} .
- 6. if (M, \succ) is total so is \succ_{mul} .

Please recall that multisets are finite.

Induction

Theorem (Noetherian Induction)

Let (M, \succ) be a well-founded ordering, and let Q be a predicate over elements of M. If for all $m \in M$ the implication

if Q(m'), for all $m' \in M$ so that $m \succ m'$, (induction hypothesis) then Q(m). (induction step)

is satisfied, then the property Q(m) holds for all $m \in M$.

Abstract Rewrite Systems

1.6.1 Definition (Rewrite System)

A *rewrite system* is a pair (M, \rightarrow) , where *M* is a non-empty set and $\rightarrow \subseteq M \times M$ is a binary relation on *M*.

$$\begin{array}{rcl} \rightarrow^{0} &= \{ (a,a) \mid a \in M \} \\ \rightarrow^{i+1} &= \rightarrow^{i} \circ \rightarrow \\ \rightarrow^{+} &= \bigcup_{i \geq 0} \rightarrow^{i} \\ \rightarrow^{*} &= \bigcup_{i \geq 0} \rightarrow^{i} = \rightarrow^{+} \cup \rightarrow^{0} \\ \rightarrow^{=} &= \rightarrow \cup \rightarrow^{0} \\ \rightarrow^{-1} &= \leftarrow = \{ (b,c) \mid c \rightarrow b \} \\ \leftrightarrow &= \rightarrow \cup \leftarrow \\ \leftrightarrow^{+} &= (\leftrightarrow)^{+} \\ \leftrightarrow^{*} &= (\leftrightarrow)^{*} \end{array}$$

identity *i* + 1-fold composition transitive closure reflexive transitive closure reflexive closure inverse symmetric closure transitive symmetric closure refl. trans. symmetric closure

1.6.2 Definition (Reducible)

Let (M, \rightarrow) be a rewrite system. An element $a \in M$ is *reducible*, if there is a $b \in M$ such that $a \rightarrow b$.

An element $a \in M$ is *in normal form (irreducible)*, if it is not reducible.

An element $c \in M$ is a *normal form* of *b*, if $b \rightarrow^* c$ and *c* is in normal form, denoted by $c = b \downarrow$.

Two elements *b* and *c* are *joinable*, if there is an *a* so that $b \rightarrow^* a \stackrel{*}{\leftarrow} c$, denoted by $b \downarrow c$.

1.6.3 Definition (Properties of \rightarrow)

A relation \rightarrow is called

confluent

Church-Rosser if $b \leftrightarrow^* c$ implies $b \downarrow c$ if $b \leftarrow a \rightarrow^* c$ implies $b \downarrow c$ locally confluent if $b \leftarrow a \rightarrow c$ implies $b \downarrow c$ if there is no infinite descending chain terminating $b_0 \rightarrow b_1 \rightarrow b_2 \dots$ if every $b \in A$ has a normal form normalizing if it is confluent and terminating convergent

1.6.4 Lemma (Termination vs. Normalization)

If \rightarrow is terminating, then it is normalizing.

1.6.5 Theorem (Church-Rosser vs. Confluence)

The following properties are equivalent for any (M, \rightarrow) :

- (i) \rightarrow has the Church-Rosser property.
- (ii) \rightarrow is confluent.

1.6.6 Lemma (Newman's Lemma)

Let (M, \rightarrow) be a terminating rewrite system. Then the following properties are equivalent:

- $(i) \rightarrow is \ confluent$
- (ii) \rightarrow is locally confluent

LA Equations Rewrite System

M is the set of all LA equations sets *N* over \mathbb{Q}

 \doteq includes normalizing the equation

Eliminate $\{x \doteq s, x \doteq t\} \uplus N \Rightarrow_{\mathsf{LAE}} \{x \doteq s, x \doteq t, s \doteq t\} \cup N$ provided $s \neq t$, and $s \doteq t \notin N$

 $\begin{array}{ll} \textbf{Fail} & \{q_1 \doteq q_2\} \uplus N \Rightarrow_{\mathsf{LAE}} \emptyset \\ \text{provided } q_1, q_2 \in \mathbb{Q}, \, q_1 \neq q_2 \end{array}$

LAE Redundancy

Subsume $\{s \doteq t, s' \doteq t'\} \uplus N \Rightarrow_{\mathsf{LAE}} \{s \doteq t\} \cup N$ provided $s \doteq t$ and $qs' \doteq qt'$ are identical for some $q \in \mathbb{Q}$

Rewrite Systems on Logics: Calculi

	Validity	Satisfiability
Sound	If the calculus derives a proof of validity for the formula, it is valid.	If the calculus derives satisfiability of the for- mula, it has a model.
Complete	If the formula is valid, a proof of validity is deriv- able by the calculus.	If the formula has a model, the calculus de- rives satisfiability.
Strongly Complete	For any validity proof of the formula, there is a derivation in the calcu- lus producing this proof.	For any model of the formula, there is a derivation in the cal- culus producing this model.

Propositional Logic: Syntax

2.1.1 Definition (Propositional Formula)

The set $PROP(\Sigma)$ of *propositional formulas* over a signature Σ , is inductively defined by:

$PROP(\Sigma)$	Comment
\perp	connective \perp denotes "false"
Т	connective $ op$ denotes "true"
Р	for any propositional variable $m{P}\in\Sigma$
$(\neg \phi)$	connective – denotes "negation"
$(\phi \wedge \psi)$	connective \land denotes "conjunction"
$(\phi \lor \psi)$	connective \lor denotes "disjunction"
$(\phi ightarrow \psi)$	connective \rightarrow denotes "implication"
$(\phi \leftrightarrow \psi)$	connective \leftrightarrow denotes "equivalence"

where $\phi, \psi \in \mathsf{PROP}(\Sigma)$.

Propositional Logic: Semantics

2.2.1 Definition ((Partial) Valuation)

A Σ -valuation is a map

$$\mathcal{A}:\Sigma\to\{0,1\}.$$

where $\{0, 1\}$ is the set of *truth values*. A *partial* Σ *-valuation* is a map $\mathcal{A}' : \Sigma' \to \{0, 1\}$ where $\Sigma' \subseteq \Sigma$.

2.2.2 Definition (Semantics)

A Σ -valuation \mathcal{A} is inductively extended from propositional variables to propositional formulas $\phi, \psi \in \mathsf{PROP}(\Sigma)$ by

$$\begin{array}{rcl} \mathcal{A}(\bot) & := & 0 \\ \mathcal{A}(\top) & := & 1 \\ \mathcal{A}(\neg \phi) & := & 1 - \mathcal{A}(\phi) \\ \mathcal{A}(\phi \land \psi) & := & \min(\{\mathcal{A}(\phi), \mathcal{A}(\psi)\}) \\ \mathcal{A}(\phi \lor \psi) & := & \max(\{\mathcal{A}(\phi), \mathcal{A}(\psi)\}) \\ \mathcal{A}(\phi \to \psi) & := & \max(\{1 - \mathcal{A}(\phi), \mathcal{A}(\psi)\}) \\ \mathcal{A}(\phi \leftrightarrow \psi) & := & \operatorname{if} \mathcal{A}(\phi) = \mathcal{A}(\psi) \text{ then } 1 \text{ else } 0 \end{array}$$

If $\mathcal{A}(\phi) = 1$ for some Σ -valuation \mathcal{A} of a formula ϕ then ϕ is *satisfiable* and we write $\mathcal{A} \models \phi$. In this case \mathcal{A} is a *model* of ϕ .

If $\mathcal{A}(\phi) = 1$ for all Σ -valuations \mathcal{A} of a formula ϕ then ϕ is *valid* and we write $\models \phi$.

If there is no Σ -valuation \mathcal{A} for a formula ϕ where $\mathcal{A}(\phi) = 1$ we say ϕ is *unsatisfiable*.

A formula ϕ *entails* ψ , written $\phi \models \psi$, if for all Σ -valuations \mathcal{A} whenever $\mathcal{A} \models \phi$ then $\mathcal{A} \models \psi$.

Propositional Logic: Operations

2.1.2 Definition (Atom, Literal, Clause)

A propositional variable *P* is called an *atom*. It is also called a *(positive) literal* and its negation $\neg P$ is called a *(negative) literal*.

The functions comp and atom map a literal to its complement, or atom, respectively: if $comp(\neg P) = P$ and $comp(P) = \neg P$, $atom(\neg P) = P$ and atom(P) = P for all $P \in \Sigma$. Literals are denoted by letters *L*, *K*. Two literals *P* and $\neg P$ are called *complementary*.

A disjunction of literals $L_1 \vee \ldots \vee L_n$ is called a *clause*. A clause is identified with the multiset of its literals.

2.1.3 Definition (Position)

A *position* is a word over \mathbb{N} . The set of positions of a formula ϕ is inductively defined by

$$\begin{array}{ll} \mathsf{pos}(\phi) & := & \{\epsilon\} \text{ if } \phi \in \{\top, \bot\} \text{ or } \phi \in \Sigma \\ \mathsf{pos}(\neg \phi) & := & \{\epsilon\} \cup \{1p \mid p \in \mathsf{pos}(\phi)\} \\ \mathsf{pos}(\phi \circ \psi) & := & \{\epsilon\} \cup \{1p \mid p \in \mathsf{pos}(\phi)\} \cup \{2p \mid p \in \mathsf{pos}(\psi)\} \\ \text{where } \circ \in \{\land, \lor, \rightarrow, \leftrightarrow\}. \end{array}$$

The prefix order \leq on positions is defined by $p \leq q$ if there is some p' such that pp' = q. Note that the prefix order is partial, e.g., the positions 12 and 21 are not comparable, they are "parallel", see below.

The relation < is the strict part of \leq , i.e., p < q if $p \leq q$ but not $q \leq p$.

The relation \parallel denotes incomparable, also called parallel positions, i.e., $p \parallel q$ if neither $p \leq q$, nor $q \leq p$.

A position *p* is above *q* if $p \le q$, *p* is strictly above *q* if p < q, and *p* and *q* are parallel if $p \parallel q$.

The *size* of a formula ϕ is given by the cardinality of $pos(\phi)$: $|\phi| := |pos(\phi)|$.

The *subformula* of ϕ at position $p \in \text{pos}(\phi)$ is inductively defined by $\phi|_{\epsilon} := \phi, \neg \phi|_{1p} := \phi|_p$, and $(\phi_1 \circ \phi_2)|_{ip} := \phi_i|_p$ where $i \in \{1, 2\}$, $\circ \in \{\land, \lor, \rightarrow, \leftrightarrow\}$.

Finally, the *replacement* of a subformula at position $p \in \text{pos}(\phi)$ by a formula ψ is inductively defined by $\phi[\psi]_{\epsilon} := \psi$, $(\neg \phi)[\psi]_{1p} := \neg \phi[\psi]_p$, and $(\phi_1 \circ \phi_2)[\psi]_{1p} := (\phi_1[\psi]_p \circ \phi_2)$, $(\phi_1 \circ \phi_2)[\psi]_{2p} := (\phi_1 \circ \phi_2[\psi]_p)$, where $\circ \in \{\land, \lor, \rightarrow, \leftrightarrow\}$.

2.1.5 Definition (Polarity)

The *polarity* of the subformula $\phi|_p$ of ϕ at position $p \in pos(\phi)$ is inductively defined by

$$\begin{array}{rcl} \mathsf{pol}(\phi,\epsilon) & := & 1 \\ \mathsf{pol}(\neg\phi,1p) & := & -\mathsf{pol}(\phi,p) \\ \mathsf{pol}(\phi_1 \circ \phi_2,ip) & := & \mathsf{pol}(\phi_i,p) & \text{if } \circ \in \{\land,\lor\}, i \in \{1,2\} \\ \mathsf{pol}(\phi_1 \to \phi_2,1p) & := & -\mathsf{pol}(\phi_1,p) \\ \mathsf{pol}(\phi_1 \to \phi_2,2p) & := & \mathsf{pol}(\phi_2,p) \\ \mathsf{pol}(\phi_1 \leftrightarrow \phi_2,ip) & := & 0 & \text{if } i \in \{1,2\} \end{array}$$

Valuations can be nicely represented by sets or sequences of literals that do not contain complementary literals nor duplicates.

If ${\mathcal A}$ is a (partial) valuation of domain Σ then it can be represented by the set

$$\{P \mid P \in \Sigma \text{ and } \mathcal{A}(P) = 1\} \cup \{\neg P \mid P \in \Sigma \text{ and } \mathcal{A}(P) = 0\}.$$

Another, equivalent representation are *Herbrand* interpretations that are sets of positive literals, where all atoms not contained in an Herbrand interpretation are false. If \mathcal{A} is a total valuation of domain Σ then it corresponds to the Herbrand interpretation $\{P \mid P \in \Sigma \text{ and } \mathcal{A}(P) = 1\}.$

2.2.4 Theorem (Deduction Theorem)

$\phi \models \psi \text{ iff } \models \phi \rightarrow \psi$

2.2.6 Lemma (Formula Replacement)

Let ϕ be a propositional formula containing a subformula ψ at position p, i.e., $\phi|_{p} = \psi$. Furthermore, assume $\models \psi \leftrightarrow \chi$. Then $\models \phi \leftrightarrow \phi[\chi]_{p}$.

Propositional Tableau

2.4.1 Definition (α -, β -Formulas)

A formula ϕ is called an α -formula if ϕ is a formula $\neg \neg \phi_1$, $\phi_1 \land \phi_2$, $\phi_1 \leftrightarrow \phi_2$, $\neg(\phi_1 \lor \phi_2)$, or $\neg(\phi_1 \to \phi_2)$.

A formula ϕ is called a β -formula if ϕ is a formula $\phi_1 \lor \phi_2$, $\phi_1 \to \phi_2$, $\neg(\phi_1 \land \phi_2)$, or $\neg(\phi_1 \leftrightarrow \phi_2)$.

2.4.2 Definition (Direct Descendant)

Given an α - or β -formula ϕ , its direct descendants are as follows:

α	Left Descendant	Right Descendant
$\neg \neg \phi$	ϕ	ϕ
$\phi_1 \wedge \phi_2$	ϕ_1	ϕ_2
$\phi_1 \leftrightarrow \phi_2$	$\phi_1 \rightarrow \phi_2$	$\phi_2 \rightarrow \phi_1$
$\neg(\phi_1 \lor \phi_2)$	$\neg \phi_1$	$\neg \phi_2$
$\neg(\phi_1 \rightarrow \phi_2)$	ϕ_1	$\neg \phi_2$

eta	Left Descendant	Right Descendant
$\phi_1 \lor \phi_2$	ϕ_1	ϕ_2
$\phi_1 \rightarrow \phi_2$	$\neg \phi_1$	ϕ_2
$\neg(\phi_1 \land \phi_2)$	$\neg \phi_1$	$\neg \phi_2$
$\neg(\phi_1 \leftrightarrow \phi_2)$	$\neg(\phi_1 \rightarrow \phi_2)$	$\neg(\phi_2 \rightarrow \phi_1)$

2.4.3 Proposition ()

For any valuation \mathcal{A} :

(i) if ϕ is an α -formula then $\mathcal{A}(\phi) = 1$ iff $\mathcal{A}(\phi_1) = 1$ and $\mathcal{A}(\phi_2) = 1$ for its descendants ϕ_1 , ϕ_2 .

(ii) if ϕ is a β -formula then $\mathcal{A}(\phi) = 1$ iff $\mathcal{A}(\phi_1) = 1$ or $\mathcal{A}(\phi_2) = 1$ for its descendants ϕ_1, ϕ_2 .

Tableau Rewrite System

The tableau calculus operates on states that are sets of sequences of formulas. Semantically, the set represents a disjunction of sequences that are interpreted as conjunctions of the respective formulas.

A sequence of formulas (ϕ_1, \ldots, ϕ_n) is called *closed* if there are two formulas ϕ_i and ϕ_j in the sequence where $\phi_i = \text{comp}(\phi_j)$.

A state is *closed* if all its formula sequences are closed.

The tableau calculus is a calculus showing unsatisfiability of a formula. Such calculi are called *refutational* calculi. Recall a formula ϕ is valid iff $\neg \phi$ is unsatisfiable.

A formula ϕ occurring in some sequence is called *open* if in case ϕ is an α -formula not both direct descendants are already part of the sequence and if it is a β -formula none of its descendants is part of the sequence.

Tableau Rewrite Rules

$\begin{array}{l} \alpha \text{-Expansion} & \mathsf{N} \uplus \{(\phi_1, \dots, \psi, \dots, \phi_n)\} \Rightarrow_{\mathsf{T}} \\ \mathsf{N} \uplus \{(\phi_1, \dots, \psi, \dots, \phi_n, \psi_1, \psi_2)\} \end{array}$

provided ψ is an open α -formula, ψ_1 , ψ_2 its direct descendants and the sequence is not closed.

 $\begin{array}{ll} \beta\text{-Expansion} & N \uplus \{(\phi_1, \dots, \psi, \dots, \phi_n)\} \Rightarrow_T \\ N \uplus \{(\phi_1, \dots, \psi, \dots, \phi_n, \psi_1)\} \uplus \{(\phi_1, \dots, \psi, \dots, \phi_n, \psi_2)\} \\ \text{provided } \psi \text{ is an open } \beta\text{-formula, } \psi_1, \psi_2 \text{ its direct descendants} \\ \text{and the sequence is not closed.} \end{array}$

Tableau Properties

2.4.4 Theorem (Propositional Tableau is Sound)

If for a formula ϕ the tableau calculus computes $\{(\neg \phi)\} \Rightarrow^*_T N$ and *N* is closed, then ϕ is valid.

2.4.5 Theorem (Propositional Tableau Terminates)

Starting from a start state $\{(\phi)\}$ for some formula ϕ , the relation $\Rightarrow_{\mathsf{T}}^+$ is well-founded.

2.4.6 Theorem (Propositional Tableau is Complete)

If ϕ is valid, tableau computes a closed state out of $\{(\neg \phi)\}$.

2.4.7 Corollary (Propositional Tableau generates Models)

Let ϕ be a formula, $\{(\phi)\} \Rightarrow^*_T N$ and $s \in N$ be a sequence that is not closed and neither α -expansion nor β -expansion are applicable to s. Then the literals in s form a (partial) valuation that is a model for ϕ .

Normal Forms

Definition (CNF, DNF)

A formula is in *conjunctive normal form (CNF)* or *clause normal form* if it is a conjunction of disjunctions of literals, or in other words, a conjunction of clauses.

A formula is in *disjunctive normal form (DNF)*, if it is a disjunction of conjunctions of literals.

Checking the validity of CNF formulas or the unsatisfiability of DNF formulas is easy:

(i) a formula in CNF is valid, if and only if each of its disjunctions contains a pair of complementary literals P and $\neg P$,

(ii) conversely, a formula in DNF is unsatisfiable, if and only if each of its conjunctions contains a pair of complementary literals P and $\neg P$

Basic CNF Transformation

ElimEquiv ElimImp PushNea1 PushNeg2 PushNeg3 PushDisi ElimTB1 ElimTB2 ElimTB3 ElimTB4 ElimTB5 ElimTB6

 $\chi[(\phi \leftrightarrow \psi)]_{\rho} \Rightarrow_{\mathsf{BCNF}} \chi[(\phi \to \psi) \land (\psi \to \phi)]_{\rho}$ $\chi[(\phi \to \psi)]_{\rho} \Rightarrow_{\mathsf{BCNF}} \chi[(\neg \phi \lor \psi)]_{\rho}$ $\chi[\neg(\phi \lor \psi)]_{\rho} \Rightarrow_{\mathsf{BCNF}} \chi[(\neg \phi \land \neg \psi)]_{\rho}$ $\chi[\neg(\phi \land \psi)]_{\rho} \Rightarrow_{\mathsf{BCNF}} \chi[(\neg \phi \lor \neg \psi)]_{\rho}$ $\chi[\neg\neg\phi]_{\rho} \Rightarrow_{\mathsf{BCNF}} \chi[\phi]_{\rho}$ $\chi[(\phi_1 \land \phi_2) \lor \psi]_{\rho} \Rightarrow_{\mathsf{BCNF}} \chi[(\phi_1 \lor \psi) \land (\phi_2 \lor \psi)]_{\rho}$ $\chi[(\phi \land \top)]_{\rho} \Rightarrow_{\mathsf{BCNF}} \chi[\phi]_{\rho}$ $\chi[(\phi \land \bot)]_{\rho} \Rightarrow_{\mathsf{BCNF}} \chi[\bot]_{\rho}$ $\chi[(\phi \lor \top)]_{\rho} \Rightarrow_{\mathsf{BCNF}} \chi[\top]_{\rho}$ $\chi[(\phi \lor \bot)]_{\rho} \Rightarrow_{\mathsf{BCNF}} \chi[\phi]_{\rho}$ $\chi[\neg \bot]_{\rho} \Rightarrow_{\mathsf{BCNF}} \chi[\top]_{\rho}$ $\chi[\neg\top]_{\rho} \Rightarrow_{\mathsf{BCNF}} \chi[\bot]_{\rho}$

Basic CNF Algorithm

1 Algorithm: 2 $bcnf(\phi)$

Input : A propositional formula ϕ .

Output: A propositional formula ψ equivalent to ϕ in CNF.

- 2 whilerule (ElimEquiv(ϕ)) do ;
- 3 whilerule (ElimImp (ϕ)) do ;
- 4 whilerule (ElimTB1(ϕ),...,ElimTB6(ϕ)) do ;
- 5 whilerule (PushNeg1(ϕ),...,PushNeg3(ϕ)) do ;
- 6 whilerule (PushDisj(ϕ)) do ;
- 7 return ϕ ;

Advanced CNF Algorithm

For the formula

$$P_1 \leftrightarrow (P_2 \leftrightarrow (P_3 \leftrightarrow (\dots (P_{n-1} \leftrightarrow P_n) \dots)))$$

the basic CNF algorithm generates a CNF with 2^{n-1} clauses.

2.5.4 Proposition (Renaming Variables)

Let *P* be a propositional variable not occurring in $\psi[\phi]_{\rho}$.

- 1. If $pol(\psi, p) = 1$, then $\psi[\phi]_p$ is satisfiable if and only if $\psi[P]_p \land (P \to \phi)$ is satisfiable.
- 2. If $pol(\psi, p) = -1$, then $\psi[\phi]_p$ is satisfiable if and only if $\psi[P]_p \land (\phi \to P)$ is satisfiable.
- 3. If $pol(\psi, p) = 0$, then $\psi[\phi]_p$ is satisfiable if and only if $\psi[P]_p \land (P \leftrightarrow \phi)$ is satisfiable.

Renaming

SimpleRenaming $\phi \Rightarrow_{\text{SimpRen}} \phi[P_1]_{p_1}[P_2]_{p_2} \dots [P_n]_{p_n} \land \text{def}(\phi, p_1, P_1) \land \dots \land \text{def}(\phi[P_1]_{p_1}[P_2]_{p_2} \dots [P_{n-1}]_{p_{n-1}}, p_n, P_n)$ provided $\{p_1, \dots, p_n\} \subset \text{pos}(\phi)$ and for all i, i + j either $p_i \parallel p_{i+j}$ or $p_i > p_{i+j}$ and the P_i are different and new to ϕ

Simple choice: choose $\{p_1, \ldots, p_n\}$ to be all non-literal and non-negation positions of ϕ .

Renaming Definition

$$def(\psi, p, P) := \begin{cases} (P \to \psi|_p) & \text{if } \operatorname{pol}(\psi, p) = 1\\ (\psi|_p \to P) & \text{if } \operatorname{pol}(\psi, p) = -1\\ (P \leftrightarrow \psi|_p) & \text{if } \operatorname{pol}(\psi, p) = 0 \end{cases}$$

Obvious Positions

A smaller set of positions from ϕ , called *obvious positions*, is still preventing the explosion and given by the rules:

(i) *p* is an obvious position if $\phi|_p$ is an equivalence and there is a position q < p such that $\phi|_q$ is either an equivalence or disjunctive in ϕ or

(ii) *pq* is an obvious position if $\phi|_{pq}$ is a conjunctive formula in ϕ , $\phi|_p$ is a disjunctive formula in ϕ and for all positions *r* with p < r < pq the formula $\phi|_r$ is not a conjunctive formula.

A formula $\phi|_{\rho}$ is conjunctive in ϕ if $\phi|_{\rho}$ is a conjunction and pol $(\phi, \rho) \in \{0, 1\}$ or $\phi|_{\rho}$ is a disjunction or implication and pol $(\phi, \rho) \in \{0, -1\}$.

Analogously, a formula $\phi|_p$ is disjunctive in ϕ if $\phi|_p$ is a disjunction or implication and pol(ϕ, p) $\in \{0, 1\}$ or $\phi|_p$ is a conjunction and pol(ϕ, p) $\in \{0, -1\}$.

Polarity Dependent Equivalence Elimination

$$\begin{split} \textbf{ElimEquiv1} \quad & \chi[(\phi \leftrightarrow \psi)]_{\rho} \ \Rightarrow_{\mathsf{ACNF}} \ \chi[(\phi \to \psi) \land (\psi \to \phi)]_{\rho} \\ \text{provided pol}(\chi, \rho) \in \{0, 1\} \end{split}$$

ElimEquiv2 $\chi[(\phi \leftrightarrow \psi)]_{\rho} \Rightarrow_{\mathsf{ACNF}} \chi[(\phi \land \psi) \lor (\neg \phi \land \neg \psi)]_{\rho}$ provided $\mathsf{pol}(\chi, \rho) = -1$

Extra \top, \bot Elimination Rules

ElimTB7	$\chi[\phi \to \bot]_{\rho} \Rightarrow_{ACNF}$	$\chi[\neg\phi]_{\rho}$
ElimTB8	$\chi[\perp \to \phi]_{\rho} \Rightarrow_{ACNF}$	$\chi[\top]_{p}$
ElimTB9	$\chi[\phi \to \top]_{\rho} \Rightarrow_{ACNF}$	$\chi[\top]_{p}$
ElimTB10	$\chi[\top \to \phi]_{\rho} \Rightarrow_{ACNF}$	$\chi[\phi]_{ m ho}$
ElimTB11	$\chi[\phi\leftrightarrow\perp]_{\rho}$ \Rightarrow_{ACNF}	$\chi[\neg\phi]_{P}$
ElimTB12	$\chi[\phi\leftrightarrow\top]_{\rho} \Rightarrow_{ACNF}$	$\chi[\phi]_{ m ho}$

where the two rules ElimTB11, ElimTB12 for equivalences are applied with respect to commutativity of \leftrightarrow .

Advanced CNF Algorithm

1 Algorithm: 3 $\operatorname{acnf}(\phi)$

Input : A formula ϕ .

Output: A formula ψ in CNF satisfiability preserving to ϕ .

- 2 whilerule (ElimTB1(ϕ),...,ElimTB12(ϕ)) do ;
- **3** SimpleRenaming(ϕ) on obvious positions;
- 4 whilerule (ElimEquiv1(ϕ),ElimEquiv2(ϕ)) do ;
- 5 whilerule (ElimImp (ϕ)) do ;
- 6 whilerule (PushNeg1(ϕ),...,PushNeg3(ϕ)) do ;
- 7 whilerule (PushDisj(ϕ)) do ;

8 return ϕ ;

Propositional Resolution

The propositional resolution calculus operates on a set of clauses and tests unsatisfiability.

Recall that for clauses I switch between the notation as a disjunction, e.g., $P \lor Q \lor P \lor \neg R$, and the multiset notation, e.g., $\{P, Q, P, \neg R\}$. This makes no difference as we consider \lor in the context of clauses always modulo AC. Note that \bot , the empty disjunction, corresponds to \emptyset , the empty multiset. Clauses are typically denoted by letters *C*, *D*, possibly with subscript.

Resolution Inference Rules

 $\begin{array}{l} \textbf{Resolution} \quad (N \uplus \{C_1 \lor P, C_2 \lor \neg P\}) \Rightarrow_{\mathsf{RES}} \\ (N \cup \{C_1 \lor P, C_2 \lor \neg P\} \cup \{C_1 \lor C_2\}) \end{array}$

Factoring $(N \uplus \{C \lor L \lor L\}) \Rightarrow_{\mathsf{RES}} (N \cup \{C \lor L \lor L\} \cup \{C \lor L\})$

2.6.1 Theorem (Soundness & Completeness)

The resolution calculus is sound and complete: N is unsatisfiable iff $N \Rightarrow_{RES}^* N'$ and $\bot \in N'$ for some N'

Resolution Reduction Rules

- Subsumption $(N \uplus \{C_1, C_2\}) \Rightarrow_{\mathsf{RES}} (N \cup \{C_1\})$ provided $C_1 \subset C_2$
- Tautology Deletion $(N \uplus \{C \lor P \lor \neg P\}) \Rightarrow_{\mathsf{RES}} (N)$

Condensation $(N \uplus \{C_1 \lor L \lor L\}) \Rightarrow_{\mathsf{RES}} (N \cup \{C_1 \lor L\})$

 $\begin{aligned} & \textbf{Subsumption Resolution} \quad (\textit{N} \uplus \{\textit{C}_1 \lor \textit{L},\textit{C}_2 \lor \texttt{comp}(\textit{L})\}) \\ \Rightarrow_{\mathsf{RES}} & (\textit{N} \cup \{\textit{C}_1 \lor \textit{L},\textit{C}_2\}) \\ & \text{where } \textit{C}_1 \subseteq \textit{C}_2 \end{aligned}$

2.6.5 Theorem (Resolution Termination)

If reduction rules are preferred over inference rules and no inference rule is applied twice to the same clause(s), then $\Rightarrow^+_{\mathsf{RES}}$ is well-founded.

