

Automated Reasoning I

Christoph Weidenbach

Max Planck Institute for Informatics

November 16, 2016

Preliminaries

Propositional Logic

Automated Reasoning

Given a specification of a system, develop technology

logics, calculi, algorithms, implementations,

to automatically execute the specification and to automatically prove properties of the specification.

Slides: Definitions, Lemmas, Theorems, ... Blackboard: Examples, Proofs, . . . Speech: Motivate, Explain, . . . Script: Slides, partially Blackboard ... Exams: able to calculate \rightarrow pass understand \rightarrow (very) good grade

Orderings

1.4.1 Definition (Orderings)

A *(partial)* ordering \succeq (or simply ordering) on a set M, denoted (M, \geq) , is a reflexive, antisymmetric, and transitive binary relation on *M*.

It is a *total ordering* if it also satisfies the totality property.

A *strict (partial) ordering* \succ is a transitive and irreflexive binary relation on *M*.

A strict ordering is *well-founded*, if there is no infinite descending chain $m_0 \succ m_1 \succ m_2 \succ \ldots$ where $m_i \in M$.

1.4.3 Definition (Minimal and Smallest Elements)

Given a strict ordering (M, \succ) , an element $m \in M$ is called *minimal*, if there is no element $m' \in M$ so that $m \succ m'$.

An element $m \in M$ is called *smallest*, if $m' \succ m$ for all $m' \in M$ different from *m*.

Multisets

Given a set *M*, a *multiset S* over *M* is a mapping $S: M \to \mathbb{N}$, where *S* specifies the number of occurrences of elements *m* of the base set *M* within the multiset *S*. I use the standard set notations $\in, \subset, \subset, \cup, \cap$ with the analogous meaning for multisets, for example $(S_1 \cup S_2)(m) = S_1(m) + S_2(m)$.

A multiset *S* over a set *M* is *finite* if ${m \in M \mid S(m) > 0}$ is finite. For the purpose of this lecture I only consider finite multisets.

1.4.5 Definition (Lexicographic and Multiset Ordering Extensions)

Let (M_1, \succ_1) and (M_2, \succ_2) be two strict orderings.

Their *lexicographic combination* $\succ_{\text{lex}} = (\succ_1, \succ_2)$ on $M_1 \times M_2$ is defined as $(m_1, m_2) \succ (m'_1, m'_2)$ iff $m_1 \succ_1 m'_1$ or $m_1 = m'_1$ and $m_2 \succ_2 m'_2$.

Let (M, \rangle) be a strict ordering.

The *multiset extension* \succ_{mul} to multisets over *M* is defined by S_1 $\succ_{mul} S_2$ iff $S_1 \neq S_2$ and $\forall m \in M$ [$S_2(m) > S_1(m) \rightarrow \exists m' \in$ $M(m' \succ m \land S_1(m') > S_2(m'))].$

1.4.7 Proposition (Properties of $\succ_{\text{lev}} \succ_{\text{mul}}$)

Let (M, \succ) , (M_1, \succ_1) , and (M_2, \succ_2) be orderings. Then

- 1. \succ_{lex} is an ordering on $M_1 \times M_2$.
- 2. if (M_1, \succ_1) , (M_2, \succ_2) are well-founded so is \succ_{lex} .
- 3. if (M_1, \succ_1) , (M_2, \succ_2) are total so is \succ_{lex} .
- 4. \geq _{mul} is an ordering on multisets over *M*.
- 5. if (M, \rangle) is well-founded so is \succ_{mul} .
- 6. if (M, \succ) is total so is \succ_{mul} .

Please recall that multisets are finite.

Induction

Theorem (Noetherian Induction)

Let (M, \geq) be a well-founded ordering, and let Q be a predicate over elements of *M*. If for all $m \in M$ the implication

if $Q(m')$, for all $m' \in M$ so that $m \succ m'$, (induction hypothesis) then *Q*(*m*). (induction step)

is satisfied, then the property $Q(m)$ holds for all $m \in M$.

Abstract Rewrite Systems

1.6.1 Definition (Rewrite System)

A *rewrite system* is a pair (M, \rightarrow) , where M is a non-empty set and $\rightarrow \subseteq M \times M$ is a binary relation on M.

$$
\rightarrow^{0} = \{(a, a) \mid a \in M\} \qquad identity
$$
\n
$$
\rightarrow^{i+1} = \rightarrow^{i} \circ \rightarrow \qquad i+1 \text{-}to
$$
\n
$$
\rightarrow^{+} = \bigcup_{i \geq 0} \rightarrow^{i} \qquad transitivity
$$
\n
$$
\rightarrow^{+} = \bigcup_{i \geq 0} \rightarrow^{i} = \rightarrow^{+} \cup \rightarrow^{0} \qquad reflexiv
$$
\n
$$
\rightarrow^{-} = \rightarrow \cup \rightarrow^{0} \qquad reflexiv
$$
\n
$$
\rightarrow^{-1} = \leftarrow = \{(b, c) \mid c \rightarrow b\} \qquad inverse
$$
\n
$$
\leftrightarrow^{+} = (\leftrightarrow)^{+} \qquad transitivity
$$
\n
$$
\leftrightarrow^{*} = (\leftrightarrow)^{*} \qquad real. tra
$$

→⁰ = { (*a*, *a*) | *a* ∈ *M* } *identity* $i + 1$ -fold composition *transitive closure reflexive transitive closure reflexive closure* ↔ = → ∪ ← *symmetric closure* ⁺ *transitive symmetric closure refl. trans. symmetric closure*

1.6.2 Definition (Reducible)

Let (M, \rightarrow) be a rewrite system. An element $a \in M$ is *reducible*, if there is a *b* \in *M* such that $a \rightarrow b$.

An element $a \in M$ is *in normal form (irreducible)*, if it is not reducible.

An element $c \in M$ is a *normal form* of *b*, if $b \rightarrow^* c$ and *c* is in normal form, denoted by $c = b \downarrow$.

Two elements *b* and *c* are *joinable*, if there is an *a* so that $b \rightarrow^* a^* \leftarrow c$, denoted by $b \downarrow c$.

1.6.3 Definition (Properties of \rightarrow)

A relation \rightarrow is called

1.6.4 Lemma (Termination vs. Normalization)

If \rightarrow is terminating, then it is normalizing.

1.6.5 Theorem (Church-Rosser vs. Confluence)

The following properties are equivalent for any (M, \rightarrow) :

- (i) \rightarrow has the Church-Rosser property.
- (ii) \rightarrow is confluent.

1.6.6 Lemma (Newman's Lemma)

Let (M, \rightarrow) be a terminating rewrite system. Then the following properties are equivalent:

- $(i) \rightarrow is$ confluent
- (ii) \rightarrow is locally confluent

LA Equations Rewrite System

M is the set of all LA equations sets *N* over Q

 $\dot{=}$ includes normalizing the equation

Eliminate $\{x = s, x \neq t\} \cup N \Rightarrow_{\text{LAE}} \{x = s, x = t, s = t\} \cup N$ $\mathsf{provided} \; \mathsf{s} \neq \vec{t}, \; \mathsf{and} \; \mathsf{s} \stackrel{\cdot}{=} \vec{t} \notin \mathsf{N}$

Fail {*q*¹ ${q_1 \doteq q_2} \uplus N \Rightarrow_{\text{IAF}} \emptyset$ provided $q_1, q_2 \in \mathbb{Q}$, $q_1 \neq q_2$

LAE Redundancy

Subsume {*s* $\dot{=} t, s' \dot{=} t' \} \uplus N \Rightarrow_{\mathsf{LAE}} \{s \dot{=} t\} \cup N$ provided $s = t$ and $qs' = qt'$ are identical for some $q \in \mathbb{Q}$

Preliminaries Propositional Logic

Rewrite Systems on Logics: Calculi

Propositional Logic: Syntax

2.1.1 Definition (Propositional Formula)

The set PROP(Σ) of *propositional formulas* over a signature Σ, is inductively defined by:

where $\phi, \psi \in \text{PROP}(\Sigma)$.

Propositional Logic: Semantics

2.2.1 Definition ((Partial) Valuation)

A Σ*-valuation* is a map

$$
\mathcal{A}:\Sigma\rightarrow\{0,1\}.
$$

where {0, 1} is the set of *truth values*. A *partial* Σ*-valuation* is a map $\mathcal{A}' : \Sigma' \to \{0, 1\}$ where $\Sigma' \subseteq \Sigma$.

2.2.2 Definition (Semantics)

A Σ-valuation $\mathcal A$ is inductively extended from propositional variables to propositional formulas $\phi, \psi \in \mathsf{PROP}(\Sigma)$ by

$$
\begin{array}{rcl}\n\mathcal{A}(\bot) & := & 0 \\
\mathcal{A}(\top) & := & 1 \\
\mathcal{A}(\neg\phi) & := & 1 - \mathcal{A}(\phi) \\
\mathcal{A}(\phi \land \psi) & := & \min(\{\mathcal{A}(\phi), \mathcal{A}(\psi)\}) \\
\mathcal{A}(\phi \lor \psi) & := & \max(\{\mathcal{A}(\phi), \mathcal{A}(\psi)\}) \\
\mathcal{A}(\phi \to \psi) & := & \max(\{1 - \mathcal{A}(\phi), \mathcal{A}(\psi)\}) \\
\mathcal{A}(\phi \leftrightarrow \psi) & := & \text{if } \mathcal{A}(\phi) = \mathcal{A}(\psi) \text{ then 1 else 0}\n\end{array}
$$

If $A(\phi) = 1$ for some Σ -valuation A of a formula ϕ then ϕ is *satisfiable* and we write $A \models \phi$. In this case A is a *model* of ϕ .

If $A(\phi) = 1$ for all Σ -valuations A of a formula ϕ then ϕ is *valid* and we write $\models \phi$.

If there is no Σ -valuation A for a formula ϕ where $\mathcal{A}(\phi) = 1$ we say φ is *unsatisfiable*.

A formula ϕ *entails* ψ , written $\phi \models \psi$, if for all Σ -valuations A whenever $A \models \phi$ then $A \models \psi$.

Propositional Logic: Operations

2.1.2 Definition (Atom, Literal, Clause)

A propositional variable *P* is called an *atom*. It is also called a *(positive) literal* and its negation ¬*P* is called a *(negative) literal*.

The functions comp and atom map a literal to its complement, or atom, respectively: if $comp(\neg P) = P$ and $comp(P) = \neg P$, atom($\neg P$) = *P* and atom(P) = *P* for all $P \in \Sigma$. Literals are denoted by letters *L*, *K*. Two literals *P* and ¬*P* are called *complementary*.

A disjunction of literals $L_1 \vee \ldots \vee L_n$ is called a *clause*. A clause is identified with the multiset of its literals.

2.1.3 Definition (Position)

A *position* is a word over N. The set of positions of a formula ϕ is inductively defined by

$$
\begin{array}{rcl}\n\text{pos}(\phi) & := & \{ \epsilon \} \text{ if } \phi \in \{ \top, \bot \} \text{ or } \phi \in \Sigma \\
\text{pos}(\neg \phi) & := & \{ \epsilon \} \cup \{ 1p \mid p \in \text{pos}(\phi) \} \\
\text{pos}(\phi \circ \psi) & := & \{ \epsilon \} \cup \{ 1p \mid p \in \text{pos}(\phi) \} \cup \{ 2p \mid p \in \text{pos}(\psi) \} \\
\text{where } \circ \in \{ \land, \lor, \to, \leftrightarrow \}.\n\end{array}
$$

The prefix order \leq on positions is defined by $p \leq q$ if there is some p' such that $pp' = q$. Note that the prefix order is partial, e.g., the positions 12 and 21 are not comparable, they are "parallel", see below.

The relation \lt is the strict part of \lt , i.e., $p \lt q$ if $p \lt q$ but not *q* ≤ *p*.

The relation \parallel denotes incomparable, also called parallel positions, i.e., $p \parallel q$ if neither $p \leq q$, nor $q \leq p$.

A position *p* is *above q* if $p < q$, *p* is *strictly above q* if $p < q$, and *p* and *q* are *parallel* if $p \parallel q$.

The *size* of a formula ϕ is given by the cardinality of pos(ϕ): $|\phi| := |\text{pos}(\phi)|$.

The *subformula* of ϕ at position $p \in \text{pos}(\phi)$ is inductively defined by $\phi|_{\epsilon}:=\phi,$ $\neg\phi|_{1p}:=\phi|_{p},$ and $(\phi_{1}\circ\phi_{2})|_{ip}:=\phi_{i}|_{p}$ where $i\in\{1,2\},$ $\circ \in \{\wedge, \vee, \rightarrow, \leftrightarrow\}.$

Finally, the *replacement* of a subformula at position $p \in \text{pos}(\phi)$ by a formula ψ is inductively defined by $\phi[\psi]_{\epsilon} := \psi$, $(\neg \phi)[\psi]_{1p} := \neg \phi[\psi]_p$, and $(\phi_1 \circ \phi_2)[\psi]_{1p} := (\phi_1[\psi]_p \circ \phi_2)$, $(\phi_1 \circ \phi_2)[\psi]_{2\rho} := (\phi_1 \circ \phi_2[\psi]_{\rho}),$ where $\circ \in {\wedge, \vee, \rightarrow, \leftrightarrow}.$

2.1.5 Definition (Polarity)

The *polarity* of the subformula $\phi|_p$ of ϕ at position $p \in \text{pos}(\phi)$ is inductively defined by

$$
\begin{array}{rcll} \mathsf{pol}(\phi,\epsilon) & := & 1 \\ \mathsf{pol}(\neg\phi,1\rho) & := & -\mathsf{pol}(\phi,\rho) \\ \mathsf{pol}(\phi_1\circ\phi_2,\mathsf{i}\rho) & := & \mathsf{pol}(\phi_i,\rho) \quad \text{if} \quad \circ \in \{\land,\lor\}, \, i \in \{1,2\} \\ \mathsf{pol}(\phi_1\to\phi_2,1\rho) & := & -\mathsf{pol}(\phi_1,\rho) \\ \mathsf{pol}(\phi_1\to\phi_2,2\rho) & := & \mathsf{pol}(\phi_2,\rho) \\ \mathsf{pol}(\phi_1\leftrightarrow\phi_2,\mathsf{i}\rho) & := & 0 \quad \text{if} \ \ i \in \{1,2\} \end{array}
$$

Valuations can be nicely represented by sets or sequences of literals that do not contain complementary literals nor duplicates.

If A is a (partial) valuation of domain Σ then it can be represented by the set

$$
\{P \mid P \in \Sigma \text{ and } A(P) = 1\} \cup \{\neg P \mid P \in \Sigma \text{ and } A(P) = 0\}.
$$

Another, equivalent representation are *Herbrand* interpretations that are sets of positive literals, where all atoms not contained in an Herbrand interpretation are false. If A is a total valuation of domain Σ then it corresponds to the Herbrand interpretation ${P \mid P \in \Sigma \text{ and } \mathcal{A}(P) = 1}.$

2.2.4 Theorem (Deduction Theorem)

$\phi \models \psi$ iff $\models \phi \rightarrow \psi$

2.2.6 Lemma (Formula Replacement)

Let ϕ be a propositional formula containing a subformula ψ at position *p*, i.e., $\phi|_p = \psi$. Furthermore, assume $\models \psi \leftrightarrow \chi$. Then $\models \phi \leftrightarrow \phi[\chi]_p$.

Propositional Tableau

2.4.1 Definition (α -, β -Formulas)

A formula ϕ is called an α -formula if ϕ is a formula $\neg\neg\phi_1$, $\phi_1 \wedge \phi_2$, $\phi_1 \leftrightarrow \phi_2$, $\neg(\phi_1 \vee \phi_2)$, or $\neg(\phi_1 \rightarrow \phi_2)$.

A formula ϕ is called a β -formula if ϕ is a formula $\phi_1 \vee \phi_2$, $\phi_1 \rightarrow \phi_2$, $\neg(\phi_1 \wedge \phi_2)$, or $\neg(\phi_1 \leftrightarrow \phi_2)$.

2.4.2 Definition (Direct Descendant)

Given an α - or β -formula ϕ , its direct descendants are as follows:

2.4.3 Proposition ()

For any valuation \mathcal{A} :

(i) if ϕ is an α -formula then $\mathcal{A}(\phi) = 1$ iff $\mathcal{A}(\phi_1) = 1$ and $\mathcal{A}(\phi_2) = 1$ for its descendants ϕ_1 , ϕ_2 .

(ii) if ϕ is a β -formula then $\mathcal{A}(\phi) = 1$ iff $\mathcal{A}(\phi_1) = 1$ or $\mathcal{A}(\phi_2) = 1$ for its descendants ϕ_1 , ϕ_2 .

Tableau Rewrite System

The tableau calculus operates on states that are sets of sequences of formulas. Semantically, the set represents a disjunction of sequences that are interpreted as conjunctions of the respective formulas.

A sequence of formulas (ϕ_1, \ldots, ϕ_n) is called *closed* if there are two formulas ϕ_i and ϕ_j in the sequence where $\phi_i = \mathsf{comp}(\phi_j).$

A state is *closed* if all its formula sequences are closed.

The tableau calculus is a calculus showing unsatisfiability of a formula. Such calculi are called *refutational* calculi. Recall a formula ϕ is valid iff $\neg \phi$ is unsatisfiable.

A formula φ occurring in some sequence is called *open* if in case ϕ is an α -formula not both direct descendants are already part of the sequence and if it is a β -formula none of its descendants is part of the sequence.

Tableau Rewrite Rules

α **-Expansion** $N \uplus \{(\phi_1, \ldots, \psi, \ldots, \phi_n)\}\Rightarrow_{\tau}$ $N \oplus \{ (\phi_1, \ldots, \psi, \ldots, \phi_n, \psi_1, \psi_2) \}$

provided ψ is an open α -formula, ψ_1 , ψ_2 its direct descendants and the sequence is not closed.

 β -Expansion $N \uplus \{(\phi_1, \ldots, \psi, \ldots, \phi_n)\} \Rightarrow$ $N \boxplus \{ (\phi_1, \ldots, \psi, \ldots, \phi_n, \psi_1) \} \boxplus \{ (\phi_1, \ldots, \psi, \ldots, \phi_n, \psi_2) \}$ provided ψ is an open β -formula, ψ_1 , ψ_2 its direct descendants and the sequence is not closed.

Tableau Properties

2.4.4 Theorem (Propositional Tableau is Sound)

If for a formula ϕ the tableau calculus computes $\{(\neg \phi)\}\Rightarrow^*_{\mathsf{T}}\mathsf{M}$ and N is closed, then ϕ is valid.

2.4.5 Theorem (Propositional Tableau Terminates)

Starting from a start state $\{(\phi)\}\$ for some formula ϕ , the relation $\Rightarrow_{\mathsf{T}}^+$ is well-founded.

2.4.6 Theorem (Propositional Tableau is Complete)

If ϕ is valid, tableau computes a closed state out of $\{(\neg \phi)\}.$

2.4.7 Corollary (Propositional Tableau generates Models)

Let ϕ be a formula, $\{(\phi)\}\Rightarrow^*_{\mathsf{T}}\mathsf{N}$ and $\boldsymbol{s}\in\mathsf{N}$ be a sequence that is not closed and neither α -expansion nor β -expansion are applicable to *s*. Then the literals in *s* form a (partial) valuation that is a model for ϕ .

Normal Forms

Definition (CNF, DNF)

A formula is in *conjunctive normal form (CNF)* or *clause normal form* if it is a conjunction of disjunctions of literals, or in other words, a conjunction of clauses.

A formula is in *disjunctive normal form (DNF)*, if it is a disjunction of conjunctions of literals.

Checking the validity of CNF formulas or the unsatisfiability of DNF formulas is easy:

(i) a formula in CNF is valid, if and only if each of its disjunctions contains a pair of complementary literals *P* and ¬*P*,

(ii) conversely, a formula in DNF is unsatisfiable, if and only if each of its conjunctions contains a pair of complementary literals *P* and ¬*P*

Basic CNF Transformation

ElimEquiv $\chi[(\phi \leftrightarrow \psi)]_{\mathcal{D}} \Rightarrow_{\text{BCNF}} \chi[(\phi \rightarrow \psi) \wedge (\psi \rightarrow \phi)]_{\mathcal{D}}$ **Elimimp** $\chi[(\phi \to \psi)]_p \Rightarrow_{BCNF} \chi[(\neg \phi \lor \psi)]_p$ **PushNeg1** $\chi[\neg(\phi \lor \psi)]_p \Rightarrow_{BCNF} \chi[(\neg \phi \land \neg \psi)]_p$ **PushNeg2** $\chi[\neg(\phi \land \psi)]_p \Rightarrow_{BCNF} \chi[(\neg\phi \lor \neg\psi)]_p$ **PushNeg3** χ $\left[\neg \neg \phi\right]_p \Rightarrow_{\text{RCNF}} \chi$ $\left[\phi\right]_p$ **PushDisj** $\chi[(\phi_1 \wedge \phi_2) \vee \psi]_p \Rightarrow_{BCNF} \chi[(\phi_1 \vee \psi) \wedge (\phi_2 \vee \psi)]_p$ **ElimTB1** $\chi[(\phi \wedge \top)]_p \Rightarrow_{BCNF} \chi[\phi]_p$ **ElimTB2** $\chi[(\phi \wedge \bot)]_p \Rightarrow_{BCNF} \chi[\bot]_p$ **ElimTB3** $\chi[(\phi \vee \top)]_p \Rightarrow_{\text{BCNF}} \chi[\top]_p$ **ElimTB4** $\chi[(\phi \lor \bot)]_p \Rightarrow_{\text{BCNF}} \chi[\phi]_p$ **ElimTB5** $\chi[\neg \bot]_p \Rightarrow_{\text{BCNF}} \chi[\top]_p$ **ElimTB6** $\chi[\neg \top]_p \Rightarrow_{BCNF} \chi[\bot]_p$

Basic CNF Algorithm

1 Algorithm: 2 bcnf(ϕ)

Input : A propositional formula ϕ .

Output: A propositional formula ψ equivalent to ϕ in CNF.

- **2 whilerule** *(***ElimEquiv**(φ)*)* **do** ;
- **3 whilerule** *(***ElimImp**(φ)*)* **do** ;
- **4 whilerule** *(***ElimTB1**(φ)*,*. . .*,***ElimTB6**(φ)*)* **do** ;
- **5 whilerule** *(***PushNeg1**(φ)*,*. . .*,***PushNeg3**(φ)*)* **do** ;
- **6 whilerule** *(***PushDisj**(φ)*)* **do** ;
- **7 return** φ;

Advanced CNF Algorithm

For the formula

$$
P_1 \leftrightarrow (P_2 \leftrightarrow (P_3 \leftrightarrow (\dots (P_{n-1} \leftrightarrow P_n) \dots)))
$$

the basic CNF algorithm generates a CNF with 2*n*−¹ clauses.

2.5.4 Proposition (Renaming Variables)

Let *P* be a propositional variable not occurring in $\psi[\phi]_p$.

- 1. If pol $(\psi, \rho) = 1$, then $\psi[\phi]_p$ is satisfiable if and only if $\psi[P]_p \wedge (P \to \phi)$ is satisfiable.
- 2. If pol $(\psi, p) = -1$, then $\psi[\phi]_p$ is satisfiable if and only if $\psi[P]_p \wedge (\phi \rightarrow P)$ is satisfiable.
- 3. If pol $(\psi, p) = 0$, then $\psi[\phi]_p$ is satisfiable if and only if $\psi[P]_p \wedge (P \leftrightarrow \phi)$ is satisfiable.

Renaming

 $\phi \Rightarrow_{\mathsf{SimpRen}} \phi[P_1]_{\rho_1}[P_2]_{\rho_2} \ldots [P_n]_{\rho_n} \wedge$ $\det(\phi, p_1, P_1) \wedge \ldots \wedge \det(\phi[P_1]_{p_1}[P_2]_{p_2} \ldots [P_{n-1}]_{p_{n-1}}, p_n, P_n)$ provided $\{p_1, \ldots, p_n\} \subset \text{pos}(\phi)$ and for all *i*, *i* + *j* either $p_i \parallel p_{i+i}$ or $p_i > p_{i+i}$ and the P_i are different and new to ϕ

Simple choice: choose $\{p_1, \ldots, p_n\}$ to be all non-literal and non-negation positions of ϕ .

Renaming Definition

$$
\text{def}(\psi, p, P) := \left\{ \begin{array}{ll} (P \to \psi|_p) & \text{if } \text{pol}(\psi, p) = 1 \\ (\psi|_p \to P) & \text{if } \text{pol}(\psi, p) = -1 \\ (P \leftrightarrow \psi|_p) & \text{if } \text{pol}(\psi, p) = 0 \end{array} \right.
$$

Obvious Positions

A smaller set of positions from φ, called *obvious positions*, is still preventing the explosion and given by the rules:

(i) *p* is an obvious position if $\phi|_p$ is an equivalence and there is a position $q < p$ such that $\phi|_q$ is either an equivalence or disjunctive in ϕ or

(ii) *pq* is an obvious position if $\phi|_{pq}$ is a conjunctive formula in ϕ , $\phi|_p$ is a disjunctive formula in ϕ and for all positions *r* with $\bm{\mathsf{p}} < \bm{\mathsf{r}} < \bm{\mathsf{p}}$ q the formula $\phi|_{\bm{\mathsf{r}}}$ is not a conjunctive formula.

A formula $\phi|_p$ is conjunctive in ϕ if $\phi|_p$ is a conjunction and $pol(\phi, p) \in \{0, 1\}$ or $\phi|_p$ is a disjunction or implication and $pol(\phi, p) \in \{0, -1\}.$

Analogously, a formula $\phi|_p$ is disjunctive in ϕ if $\phi|_p$ is a disjunction or implication and pol $(\phi, p) \in \{0, 1\}$ or $\phi|_p$ is a conjunction and pol $(\phi, p) \in \{0, -1\}.$ \blacksquare max planek institut
 informatik November 16, 2016 46/67

Polarity Dependent Equivalence Elimination

ElimEquiv1 $\chi[(\phi \leftrightarrow \psi)]_p \Rightarrow_{ACNF} \chi[(\phi \rightarrow \psi) \wedge (\psi \rightarrow \phi)]_p$ provided pol $(\chi, p) \in \{0, 1\}$

ElimEquiv2 $\chi[(\phi \leftrightarrow \psi)]_p \Rightarrow_{ACNF} \chi[(\phi \land \psi) \lor (\neg \phi \land \neg \psi)]_p$ provided pol $(y, p) = -1$

Extra \top , \bot Elimination Rules

where the two rules ElimTB11, ElimTB12 for equivalences are applied with respect to commutativity of \leftrightarrow .

Advanced CNF Algorithm

1 Algorithm: 3 acnf(ϕ)

Input : A formula ϕ .

Output: A formula ψ in CNF satisfiability preserving to ϕ .

- **2 whilerule** *(***ElimTB1**(φ)*,*. . .*,***ElimTB12**(φ)*)* **do** ;
- **SimpleRenaming** (ϕ) on obvious positions;
- **4 whilerule** *(***ElimEquiv1**(φ)*,***ElimEquiv2**(φ)*)* **do** ;
- **5 whilerule** *(***ElimImp**(φ)*)* **do** ;
- **6 whilerule** *(***PushNeg1**(φ)*,*. . .*,***PushNeg3**(φ)*)* **do** ;
- **7 whilerule** *(***PushDisj**(φ)*)* **do** ;

8 return φ;

Propositional Resolution

The propositional resolution calculus operates on a set of clauses and tests unsatisfiability.

Recall that for clauses I switch between the notation as a disiunction, e.g., $P \vee Q \vee P \vee \neg R$, and the multiset notation, e.g., {*P*, *Q*, *P*, ¬*R*}. This makes no difference as we consider ∨ in the context of clauses always modulo AC. Note that ⊥, the empty disjunction, corresponds to ∅, the empty multiset. Clauses are typically denoted by letters *C*, *D*, possibly with subscript.

Resolution Inference Rules

Resolution $(N \oplus \{C_1 \vee P, C_2 \vee \neg P\}) \Rightarrow_{R \in S}$ $(N \cup \{C_1 \vee P, C_2 \vee \neg P\} \cup \{C_1 \vee C_2\})$

Factoring $(N \oplus \{C \vee L \vee L\}) \Rightarrow_{R \in S}$ (*N* ∪ {*C* ∨ *L* ∨ *L*} ∪ {*C* ∨ *L*})

2.6.1 Theorem (Soundness & Completeness)

The resolution calculus is sound and complete: *N* is unsatisfiable iff $N \Rightarrow_{RES}^* N'$ and $\bot \in N'$ for some N'

Resolution Reduction Rules

- **Subsumption** $(N \oplus \{C_1, C_2\}) \Rightarrow_{RFS} (N \cup \{C_1\})$ provided $C_1 \subset C_2$
- **Tautology Deletion** $(N \oplus \{C \vee P \vee \neg P\}) \Rightarrow_{BFS} (N)$

Condensation $(N \oplus \{C_1 \vee L \vee L\}) \Rightarrow_{BES} (N \cup \{C_1 \vee L\})$

Subsumption Resolution $(N \oplus \{C_1 \vee L, C_2 \vee \text{comp}(L)\})$ \Rightarrow BES $(N \cup \{C_1 \vee L, C_2\})$ where $C_1 \subset C_2$

2.6.5 Theorem (Resolution Termination)

If reduction rules are preferred over inference rules and no inference rule is applied twice to the same clause(s), then $\Rightarrow_{\sf RES}^+$ is well-founded.

