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Automated Reasoning

Given a specification of a system, develop technology

logics,
calculi,
algorithms,
implementations,

to automatically execute the specification and to automatically
prove properties of the specification.
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Concept

Slides: Definitions, Lemmas, Theorems, ...
Blackboard: Examples, Proofs, ...
Speech: Motivate, Explain, ...
Script: Slides, partially Blackboard . ..

Exams: able to calculate — pass
understand — (very) good grade
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Orderings

1.4.1 Definition (Orderings)

A (partial) ordering = (or simply ordering) on a set M, denoted
(M, =), is a reflexive, antisymmetric, and transitive binary relation
on M.

It is a total ordering if it also satisfies the totality property.

A strict (partial) ordering > is a transitive and irreflexive binary
relation on M.

A strict ordering is well-founded, if there is no infinite descending
chain mg = my = mo = ... where m; € M.
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1.4.3 Definition (Minimal and Smallest Elements)

Given a strict ordering (M, >-), an element m € M is called
minimal, if there is no element m’ € M so that m = n'.

An element m € M is called smallest, if m" = mforall m € M
different from m.

November 16, 2016 6/67
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Multisets

Given a set M, a multiset S over M is a mapping S: M — N,
where S specifies the number of occurrences of elements m of
the base set M within the multiset S. | use the standard set
notations €, C, C, U, N with the analogous meaning for multisets,
for example (S1 U Sp)(m) = Sy(m) + Sa(m).

A multiset S over a set M is finite if {m € M| S(m) > 0} is finite.
For the purpose of this lecture | only consider finite multisets.

November 16, 2016 7/67
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1.4.5 Definition (Lexicographic and Multiset Ordering

Extensions)

Let (My, =1) and (M», >2) be two strict orderings.

Their lexicographic combination ex= (-1, >2) on My x Ms is
defined as (my, mp) > (m}, m,) iff my =1 m} or my = m, and

mos >»o m’2

Let (M, ) be a strict ordering.

The multiset extension =, to multisets over M is defined by

St -mu S2iff Sy # SoandVm e M[S(m) > Si(m) — 3m €
M(m' = mA Si(m') > S(m'))].

November 16, 2016 8/67
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1.4.7 Proposition (Properties of =ex, *=mu)

Let (M, ), (My, 1), and (Mo, -») be orderings. Then
>lex IS @n ordering on My x Mo.

if (My,>1), (Mz,->) are well-founded S0 is >e.

if (My,>1), (Mz,=2) are total so is >e.

>mul IS @n ordering on multisets over M.

if (M, >) is well-founded s0 iS >yl

if (M, >) is total s0 is >=my-

C

Please recall that multisets are finite.

November 16, 2016 9/67
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Induction

Theorem (Noetherian Induction)

Let (M, -) be a well-founded ordering, and let Q be a predicate
over elements of M. If for all m € M the implication

if Q(m’), for all M € M so that m = m’, (induction hypothesis)
then Q(m). (induction step)

is satisfied, then the property Q(m) holds for all m € M.

November 16, 2016 10/67
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Abstract Rewrite Systems

1.6.1 Definition (Rewrite System)

A rewrite systemis a pair (M, —), where M is a non-empty set
and — C M x M is a binary relation on M.

-0 ={(aa)|acM}
L i

=T = Ujo '

—* = Upg— = 2Tu0
= = -Uu=0

-1 =« ={(b,c)|c—b}
& = U+

ot = (o)t

lllpll’““

identity

i + 1-fold composition
transitive closure

reflexive transitive closure
reflexive closure

inverse

symmetric closure

transitive symmetric closure
refl. trans. symmetric closure
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1.6.2 Definition (Reducible)
Let (M, —) be a rewrite system. An element a € M is reducible, if
there is a b € M such that a — b.

An element a € M is in normal form (irreducible), if it is not
reducible.

An element ¢ € M is a normal form of b, if b —* c and c is in
normal form, denoted by ¢ = bJ.

Two elements b and ¢ are joinable, if there is an a so that

b —* a*— c, denoted by b | c.

November 16, 2016 12/67
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1.6.3 Definition (Properties of —)

A relation — is called
Church-Rosser if b<+* cimpliesb | ¢
confluent if b a—*cimpliesb | c
locally confluent if b+ a— cimpliesb | c
terminating if there is no infinite descending chain

bo — b1 — bg 500

normalizing if every b € A has a normal form
convergent if it is confluent and terminating

l l I p I I '.‘."\\n:“:'. ck institut November 16, 2016 13/67
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1.6.4 Lemma (Termination vs. Normalization)

If — is terminating, then it is normalizing.

1.6.5 Theorem (Church-Rosser vs. Confluence)
The following properties are equivalent for any (M, —):
(i) — has the Church-Rosser property.
(i) — is confluent.

1.6.6 Lemma (Newman’s Lemma)
Let (M, —) be a terminating rewrite system. Then the following
properties are equivalent:

(i) — is confluent

(ii) — is locally confluent

ax ph:m;k institut November 16, 2016
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LA Equations Rewrite System

M is the set of all LA equations sets N over Q

= includes normalizing the equation

Eliminate {Xx=sx=t}WN = s {x=s,x=t,s=t}UN
provided s A t,ands=t¢ N

Fail {1 =g} N =LA 0
provided g1,z € Q, g1 # @2

l l I p I I max p]:'nitl;l\ institut November 16, 2016 15/67
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LAE Redundancy

Subsume {s=t8=t}WUN =ac {s=t}UN
provided s = t and gs’ = qt’ are identical for some g € Q

Ini p B g planckinstin November 16, 2016 16/67
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Rewrite Systems on Logics: Calculi

Validity

Satisfiability

Sound

If the calculus derives a
proof of validity for the
formula, it is valid.

If the calculus derives
satisfiability of the for-
mula, it has a model.

Complete

If the formula is valid, a
proof of validity is deriv-
able by the calculus.

If the formula has a
model, the calculus de-
rives satisfiability.

Strongly
Complete

l l I I I max
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For any validity proof of
the formula, there is a
derivation in the calcu-
lus producing this proof.

For any model of the
formula, there is a
derivation in the cal-
culus producing this
model.
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Propositional Logic: Syntax

2.1.1 Definition (Propositional Formula)

The set PROP(X) of propositional formulas over a signature ¥, is
inductively defined by:

PROP(X) Comment

1 connective L denotes “false”
T connective T denotes “true”
P for any propositional variable P € ¥

(—o) connective — denotes “negation”
(¢ ANyp)  connective A denotes “conjunction”
(p V)  connective vV denotes “disjunction”
(¢ — ¢) connective — denotes “implication”
(¢ <> 1) connective <> denotes “equivalence”

where ¢, € PROP(X).
l l I p I I 'l!l"t‘\'\nwl;]‘:::'i‘l;ki"\lmﬂ November 16, 2016 18/67
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Propositional Logic: Semantics

2.2.1 Definition ((Partial) Valuation)
A Y -valuation is a map

A:¥ —{0,1}.

where {0, 1} is the set of truth values. A partial X -valuation is a
map A" : ¥’ — {0,1} where X’ C ¥.

November 16, 2016 19/67

l l I I I max
inf t




Preliminaries Propositional Logic
0000000000000 0000000000000 0000O00O000O00O0O00000O00000O000000000000000

2.2.2 Definition (Semantics)

A Y -valuation A is inductively extended from propositional
variables to propositional formulas ¢, € PROP(X) by
A(L) = 0
A(T) = 1
A(=g) = 1-A(¢)
AlpAy) = min({A(¢), A(¥)})
Alpvy) = max({A(¢), A(¥)})
Al =) = max({1 - A(¢), A¥)})
Alp +¢) = if A(¢) = A(v) then 1 else 0

November 16, 2016 20/67
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If A(¢) = 1 for some X-valuation A of a formula ¢ then ¢ is
satisfiable and we write A = ¢. In this case A is a model of ¢.

If A(¢) = 1 for all X-valuations A of a formula ¢ then ¢ is valid
and we write = ¢.

If there is no X-valuation A for a formula ¢ where A(¢) = 1 we
say ¢ is unsatisfiable.

A formula ¢ entails 1, written ¢ = v, if for all -valuations A
whenever A |= ¢ then A = «.

l l I p I I max p]:'nitl;l\ institut November 16, 2016 21/67
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Propositional Logic: Operations

2.1.2 Definition (Atom, Literal, Clause)

A propositional variable P is called an atom. It is also called a
(positive) literal and its negation —P is called a (negative) literal.

The functions comp and atom map a literal to its complement, or
atom, respectively: if comp(—P) = P and comp(P) = =P,
atom(—P) = P and atom(P) = P for all P € ¥. Literals are
denoted by letters L, K. Two literals P and —P are called
complementary.

A disjunction of literals Ly v ...V L, is called a clause. A clause is
identified with the multiset of its literals.

in p W e November 16, 2016 22/67
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2.1.3 Definition (Position)

A position is a word over N. The set of positions of a formula ¢ is
inductively defined by

pos(¢) = {e}ifoe{T,L}orpeckX
pos(—¢) := {e}U{1p|p € pos(4)}
pos(povp) = {e}U{lp|pepos(¢)}U{2p|pcpos(L)}

where o € {A,V, —, <}

November 16, 2016 23/67
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The prefix order < on positions is defined by p < q if there is
some p’ such that ppo’ = q. Note that the prefix order is partial,
e.g., the positions 12 and 21 are not comparable, they are
“parallel”, see below.

The relation < is the strict part of <, i.e., p < g if p < g but not
qg=p.

The relation || denotes incomparable, also called parallel
positions, i.e., p || q if neither p < g, nor g < p.

A position p is above q if p < q, p is strictly above q if p < g, and
p and q are parallelif p || g.

November 16, 2016 24/67
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The size of a formula ¢ is given by the cardinality of pos(¢):

6] := | pos(¢)]-

The subformula of ¢ at position p € pos(¢) is inductively defined
by ¢l := &, =¢l1p := dlp, and (¢4 o P2)|jp := ¢ilp Where i € {1,2},
o€ {AV,—, <}

Finally, the replacement of a subformula at position p € pos(¢) by
a formula ¢ is inductively defined by ¢[¢]. := v,

(D) [W]1p = —0[]p, and (¢1 0 p2)[Y]1p = (¢1[Y]p © ¢2),
(91 0 ¢2)[¥]2p := (@1 0 P2[1]p), where o € {A,V, =, <}

November 16, 2016 25/67
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2.1.5 Definition (Polarity)

The polarity of the subformula ¢|, of ¢ at position p € pos(¢) is
inductively defined by
pol(¢,e) = 1
pOI(_'QS, 1p) = = pOI(ng,p)
pol(¢1 0 ¢2,ip) = pol(¢;,p) if o€ {A V} i€{1,2}

pol(¢1 — ¢2,1p) = —pol(¢1,p)

pol(¢1 — ¢2,2p) = pol(d2,p)

pol(¢1 > é2.ip) = O if ie{1,2}

i p B ok instin November 16, 2016 26/67
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Valuations can be nicely represented by sets or sequences of
literals that do not contain complementary literals nor duplicates.

If Ais a (partial) valuation of domain X then it can be represented
by the set
{P|PeXxand A(P)=1}U{=P| P e X and A(P) = 0}.

Another, equivalent representation are Herbrand interpretations
that are sets of positive literals, where all atoms not contained in
an Herbrand interpretation are false. If A is a total valuation of
domain X then it corresponds to the Herbrand interpretation
{P|PeXand A(P)=1}.

l l I p I I max ;'1::“} institut November 16, 2016 27/67
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2.2.4 Theorem (Deduction Theorem)
oYt =

l l I p I I :“‘1‘(\"1::.";1} institut November 16, 2016 28/67
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2.2.6 Lemma (Formula Replacement)

Let ¢ be a propositional formula containing a subformula v at
position p, i.e., ¢|p = ¥. Furthermore, assume |= ¢ <> x.
Then = ¢ < ¢[x]p-

l l I p I I :'I"!\”;l and ck institut November 16, 2016 29/67
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Propositional Tableau

2.4.1 Definition (a-, 5-Formulas)

A formula ¢ is called an a-formula if ¢ is a formula =—¢4, @1 A ¢o,

1 < @2, 2(d1 V ¢2), OF ~(P1 — P2).

A formula ¢ is called a g-formula if ¢ is a formula ¢1 V ¢o,

1 = ¢2, 2(P1 A ¢2), OF =(P1 <> o).

November 16, 2016 30/67
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2.4.2 Definition (Direct Descendant)

Given an «a- or -formula ¢, its direct descendants are as follows:

o Left Descendant | Right Descendant
—¢ ¢ ¢
P1 A P2 P P2
1 < P2 P11 — P2 P2 = P1
(1 V $2) —¢1 —¢2
(1 — ¢2) ¢ —¢2
B Left Descendant | Right Descendant
1V P2 ?1 ¢2
P1 = P2 —p1 P2
(1 A $2) —91 ~¢2
(P11 <> p2) | (1 — @2) (P2 — ¢1)

Ini BB o plank insii
informatik
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2.4.3 Proposition ()
For any valuation A:

(i) if ¢ is an a-formula then A(¢) = 1 iff A(¢¢) =1 and A(¢2) =1
for its descendants ¢4, ¢o.

(ii) if ¢ is a p-formula then A(¢) = 1 iff A(¢1) =1 or A(¢p2) = 1 for
its descendants ¢4, ¢o.

November 16, 2016 32/67
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Tableau Rewrite System

The tableau calculus operates on states that are sets of
sequences of formulas. Semantically, the set represents a
disjunction of sequences that are interpreted as conjunctions of
the respective formulas.

A sequence of formulas (¢1, ..., ¢n) is called closed if there are
two formulas ¢; and ¢; in the sequence where ¢; = comp(¢;).

A state is closed if all its formula sequences are closed.

The tableau calculus is a calculus showing unsatisfiability of a
formula. Such calculi are called refutational calculi. Recall a
formula ¢ is valid iff —¢ is unsatisfiable.

l l I p I I :'I"!‘\”;l ::\Itk institut November 16, 2016 33/67
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A formula ¢ occurring in some sequence is called open if in case
¢ is an a-formula not both direct descendants are already part of
the sequence and if it is a S-formula none of its descendants is
part of the sequence.

i p | | November 16, 2016 34/67
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Tableau Rewrite Rules

a-Expansion N&{(¢1,..., ¢, dn)} =T
NH’J{(¢17--->¢a--‘7¢naw1’d}2)}

provided v is an open a-formula, 1, v its direct descendants
and the sequence is not closed.

B-Expansion N {(p1,...,0,...,én)} =1
Nw{(o1,.. - 0, bn, 1)} W (D1, 55 Pn, o)}
provided v is an open S-formula, 4, ¥ its direct descendants
and the sequence is not closed.

November 16, 2016 35/67
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Tableau Properties

2.4.4 Theorem (Propositional Tableau is Sound)

If for a formula ¢ the tableau calculus computes {(—¢)} =3 N
and N is closed, then ¢ is valid.

2.4.5 Theorem (Propositional Tableau Terminates)

Starting from a start state {(¢)} for some formula ¢, the relation
=1 is well-founded.

November 16, 2016 36/67
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2.4.6 Theorem (Propositional Tableau is Complete)
If ¢ is valid, tableau computes a closed state out of {(—¢)}.

2.4.7 Corollary (Propositional Tableau generates Models)

Let ¢ be a formula, {(¢)} =5 N and s € N be a sequence that is
not closed and neither a-expansion nor g-expansion are
applicable to s. Then the literals in s form a (partial) valuation
that is a model for ¢.

November 16, 2016 37/67
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Normal Forms

Definition (CNF, DNF)

A formula is in conjunctive normal form (CNF) or clause normal
form if it is a conjunction of disjunctions of literals, or in other
words, a conjunction of clauses.

A formula is in disjunctive normal form (DNF), if it is a disjunction
of conjunctions of literals.

l l I p I I ?."“n:“:‘. ck institut November 16, 2016 38/67
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Checking the validity of CNF formulas or the unsatisfiability of
DNF formulas is easy:

(i) a formula in CNF is valid, if and only if each of its disjunctions
contains a pair of complementary literals P and —P,

(if) conversely, a formula in DNF is unsatisfiable, if and only if

each of its conjunctions contains a pair of complementary literals
Pand -P

i p B gk instion November 16, 2016 39/67
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Basic CNF Transformation

ElimEquiv
Elimimp
PushNeg1
PushNeg2
PushNeg3
PushDisj
ElimTB1
ElimTB2
ElimTB3
ElimTB4
ElimTB5
ElimTB6

l l I p I I max planck institut

X[(¢ < ¥)lp =Bene X[(¢ — V) A (¥ — d)lp
x[(¢ = ¥)lp =BenF X[(—¢ V ¥)lp
X[=(oVY)lp =BeNF X[(—6 A —Y)]p

xX[=(@ A)lp =Bene X[(—o V )]p
x[-=dlp =8BenF X[¢lp

xX[(&1 A d2) Vbl =BenF XI(¢1 V) A(d2 VY)]p
x[(@AT)lp =Bene X[9lp

xl(@ A Lo =8ene X[L]p

x[(@V T)lp =8ene X[Tlp

xl(¢V L)]p =Bene x[9]p

x[-Llp =8ene X[ Tlp

X[~ Tlp =Bene X[L]p

November 16, 2016 40/67
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Basic CNF Algorithm

Algorithm: 2 benf(¢)

Input : A propositional formula ¢.

Output: A propositional formula ¢ equivalent to ¢ in CNF.
whilerule (ElimEquiv(¢)) do ;

whilerule (Elimimp(¢)) do ;

whilerule (ElimTB1(¢),...,ElimTB6(¢)) do ;

whilerule (PushNeg1(¢),...,PushNeg3(¢)) do ;
whilerule (PushDisj(¢)) do ;

return ¢;

November 16, 2016 41/67

l l I I I max planck institut
inforn



Preliminaries Propositional Logic
0000000000000 0000000000000 00000000000e0000000000000000000000000

Advanced CNF Algorithm

For the formula

Py < (Po<s (P35 (... (Pn_y < Pp)...)))

the basic CNF algorithm generates a CNF with 2"~ clauses.

i p | | November 16, 2016 42/67
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2.5.4 Proposition (Renaming Variables)

Let P be a propositional variable not occurring in 1[¢]p.

1. If pol(y, p) = 1, then ¢[¢], is satisfiable if and only if
Y[Plp A (P — ¢) is satisfiable.

2. If pol(v, p) = —1, then ¢[¢], is satisfiable if and only if
Y[Plp A (¢ — P) is satisfiable.

3. If pol(y, p) = 0, then ¥[¢],, is satisfiable if and only if
Y[Plp A (P« ¢) is satisfiable.

November 16, 2016 43/67
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Renaming
SimpleRenaming ¢ =>simpren ®[P1lp,[P2lp, - - - [Pnlp, N

def((b:p'l ) P1) ARTIAN def(¢[P1 ]P1 [P2]P2 e [Pn—1]Pn—17pn7 Pn)

provided {py,...,pn} C pos(¢) and for all i, i + j either p; || p;;, or
pi > pitj and the P; are different and new to ¢

Simple choice: choose {p1, ..., pn} to be all non-literal and
non-negation positions of ¢.

l l I I I max
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Renaming Definition

(P — ¢lp) if pol(s, p) =1
def(y, p, P) == ¢ (¢[p = P) if pol(¢, p) = —1
(P < ¢lp) if pol(s,p) =0

November 16, 2016 45/67
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Obvious Positions

A smaller set of positions from ¢, called obvious positions, is still
preventing the explosion and given by the rules:

(i) p is an obvious position if ¢|, is an equivalence and there is a
position g < p such that ¢|4 is either an equivalence or
disjunctive in ¢ or

(i) pq is an obvious position if ¢|pq is a conjunctive formula in ¢,
¢|p is a disjunctive formula in ¢ and for all positions r with

p < r < pq the formula ¢|, is not a conjunctive formula.

A formula ¢|, is conjunctive in ¢ if ¢|, is a conjunction and
pol(¢, p) € {0,1} or ¢|p is a disjunction or implication and
pol(¢,p) € {0, -1}

Analogously, a formula ¢|, is disjunctive in ¢ if ¢|, is a disjunction
or implication and pol(¢, p) € {0, 1} or ¢|p is a conjunction and
pol(¢, p) € {0, -1}

p]uninl;l\ institut November 16, 2016 46/67
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Polarity Dependent Equivalence
Elimination

ElimEquivl  x[(¢ < ¥)lo =acnF X[(¢ = ¥) A (¥ — 9)lp
provided pol(x, p) € {0,1}

ElimEquivz  x[(¢ < ¥)]p =acnk X[(@AY) V (md A —9)]p
provided pol(x, p) = —1

November 16, 2016 47/67
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Extra T, L Elimination Rules

ElimTB7 xl¢ = Llp =acnF X[~9)p
ElimTB8 x[L = dlp =acnF X[Tlp
ElimTB9 xlo — Tlp =acnF X[Tlp
ElimTB10 x[T = 9lp =acNF x[9lp
ElimTB11 xl¢ < Llp =acnF X[79lp
ElimTB12 x[® < Tlp =acnF x[9lo

where the two rules ElimTB11, ElimTB12 for equivalences are
applied with respect to commutativity of «.

November 16, 2016
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Advanced CNF Algorithm

Algorithm: 3 acnf(¢)

Input : A formula ¢.

Output: A formula v in CNF satisfiability preserving to ¢.
whilerule (ElimTB1(¢),....ElimTB12(¢)) do ;
SimpleRenaming(¢) on obvious positions;

whilerule (ElimEquiv1(¢),ElimEquiv2(¢)) do ;
whilerule (Elimimp(¢)) do ;

whilerule (PushNeg1(¢),...,PushNeg3(¢)) do ;
whilerule (PushDisj(¢)) do ;

return ¢;
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Propositional Resolution

The propositional resolution calculus operates on a set of clauses
and tests unsatisfiability.

Recall that for clauses | switch between the notation as a
disjunction, e.g., PV QV PV =R, and the multiset notation, e.g.,
{P, Q, P,-R}. This makes no difference as we consider V in the
context of clauses always modulo AC. Note that L, the empty
disjunction, corresponds to (), the empty multiset. Clauses are
typically denoted by letters C, D, possibly with subscript.
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Resolution Inference Rules

Resolution (Nw{CyV P,CoV-P}) =pes
(NU{CyVP,CoVv-P}U{CyV Cs})

Factoring (Nw{CVLVL}) =Res
(Nu{CvLvL}u{CVL})

TITVLEY
infos
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2.6.1 Theorem (Soundness & Completeness)

The resolution calculus is sound and complete:
N is unsatisfiable iff N = N and L € N’ for some N’
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Resolution Reduction Rules

Subsumption (Nw{Cy,Co}) =ges (NU{C1})
provided C; C C,

Tautology Deletion (Nw{CV PV -P}) =pges (N)

Condensation (Nw{CiVLVL}) =Rres (NU{C;yVL})

Subsumption Resolution (Nw{C; Vv L, Cs Vv comp(L)})
=res (NU{Ci VL, Cy})
where C1 - Cg
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2.6.5 Theorem (Resolution Termination)

If reduction rules are preferred over inference rules and no
inference rule is applied twice to the same clause(s), then =fcq
is well-founded.
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