First-Order Logic

First-Order logic is a generalization of propositional logic. Propositional logic can represent propositions, whereas first-order logic can represent individuals and propositions about individuals.

For example, in propositional logic from "Socrates is a man" and "If Socrates is a man then Socrates is mortal" the conclusion "Socrates is mortal" can be drawn.

In first-order logic this can be represented much more fine-grained. From "Socrates is a man" and "All man are mortal" the conclusion "Socrates is mortal" can be drawn.

3.1.1 Definition (Many-Sorted Signature)

A many-sorted signature $\Sigma = (S, \Omega, \Pi)$ is a triple consisting of a finite non-empty set S of sort symbols, a non-empty set Ω of operator symbols (also called *function* symbols) over S and a set Π of predicate symbols.

3.1.1 Definition (Many-Sorted Signature Ctd)

Every operator symbol $f \in \Omega$ has a unique sort declaration $f: S_1 \times \ldots \times S_n \to S$, indicating the sorts of arguments (also called *domain sorts*) and the *range sort* of *f*, respectively, for some $S_1, \ldots, S_n, S \in S$ where $n \ge 0$ is called the *arity* of *f*, also denoted with arity(*f*). An operator symbol $f \in \Omega$ with arity 0 is called a *constant*.

Every predicate symbol $P \in \Pi$ has a unique sort declaration $P \subseteq S_1 \times \ldots \times S_n$. A predicate symbol $P \in \Pi$ with arity 0 is called a *propositional variable*. For every sort $S \in S$ there must be at least one constant $a \in \Omega$ with range sort S.

3.1.1 Definition (Many-Sorted Signature Ctd)

In addition to the signature Σ , a variable set \mathcal{X} , disjoint from Ω is assumed, so that for every sort $S \in S$ there exists a countably infinite subset of \mathcal{X} consisting of variables of the sort S. A variable x of sort S is denoted by x_S .

