Firstly, we define the classic Herbrand interpretations for formulas without equality.

3.5.1 Definition (Herbrand Interpretation)

A Herbrand Interpretation (over Σ) is a Σ -algebra \mathcal{H} such that 1. $S^{\mathcal{H}} := T_S(\Sigma)$ for every sort $S \in S$ 2. $f^{\mathcal{H}} : (s_1, \ldots, s_n) \mapsto f(s_1, \ldots, s_n)$ where $f \in \Omega$, arity(f) = n, $s_i \in S_i^{\mathcal{H}}$ and $f : S_1 \times \ldots \times S_n \to S$ is the sort declaration for f3. $P^{\mathcal{H}} \subseteq (S_1^{\mathcal{H}} \times \ldots \times S_m^{\mathcal{H}})$ where $P \in \Pi$, arity(P) = m and $P \subseteq S_1 \times \ldots \times S_m$ is the sort declaration for P

3.5.2 Lemma (Herbrand Interpretations are Well-Defined)

Every Herbrand Interpretation is a Σ -algebra.

3.5.3 Proposition (Representing Herbrand Interpretations)

A Herbrand interpretation ${\cal A}$ can be uniquely determined by a set of ground atoms ${\it I}$

$$(s_1,\ldots,s_n)\in P^{\mathcal{A}}$$
 iff $P(s_1,\ldots,s_n)\in I$

3.5.5 Theorem (Herbrand)

Let *N* be a finite set of Σ -clauses. Then *N* is satisfiable iff *N* has a Herbrand model over Σ iff ground(Σ , *N*) has a Herbrand model over Σ .

